
Access Control Enforcement
for Conversation-based Web Services

Massimo Mecella ∗

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”, Italy

mecella@dis.uniroma1.it

Mourad Ouzzani
Cyber Center, Discovery Park

Purdue University, USA

mourad@cs.purdue.edu

Federica Paci
Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano, Italy

paci@dico.unimi.it

Elisa Bertino
CERIAS and Department of Computer Sciences

Purdue University, USA

bertino@cerias.purdue.edu

ABSTRACT
Service Oriented Computing is emerging as the main ap-
proach to build distributed enterprise applications on the
Web. The widespread use of Web services is hindered by
the lack of adequate security and privacy support. In this
paper, we present a novel framework for enforcing access
control in conversation-based Web services. Our approach
takes into account the conversational nature of Web ser-
vices. This is in contrast with existing approaches to access
control enforcement that assume a Web service as a set of in-
dependent operations. Furthermore, our approach achieves
a tradeoff between the need to protect Web service’s access
control policies and the need to disclose to clients the por-
tion of access control policies related to the conversations
they are interested in. This is important to avoid situations
where the client cannot progress in the conversation due to
the lack of required security requirements. We introduce the
concept of k-trustworthiness that defines the conversations
for which a client can provide credentials maximizing the
likelihood that it will eventually hit a final state.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: [Access controls]; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection—Authentication; H.3.5
[Information Storage and Retrieval]: Online Informa-
tion Services—Web-based Services

General Terms
Security

Keywords
Web services, Access control, Transition systems, Conversa-
tions

∗This work was performed while visiting research assistant
at CERIAS and Department of Computer Sciences, Purdue
University, USA.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

1. INTRODUCTION
Service Oriented Computing is poised to be the leading

approach to build (distributed) applications on the Web us-
ing Web services as the basic building blocks. Web services
provide a standard framework for interoperating indepen-
dently developed Web applications. Generally speaking, a
Web service is a set of related functionalities that can be
programmatically accessed through the Web. These func-
tionalities represent the different operations made available
by the Web service and are described in its service descrip-
tion using the WSDL standard language. While many in
the literature treated Web services as a set of independent
single operations, interacting with real world Web services
involves generally a sequence of invocations of several of
their operations, referred to as conversation. A simple ex-
ample is a bookstore Web service; buying a book involves
generally searching for the book, browsing the details and
reviews about this book, adding the book to the shopping
cart, checking out, paying, etc. It is then important to rep-
resent Web services in some formalism that would represent
all potential conversations that can take place between the
Web service and the client.

As organizations increase their use of Web services and
adopt them as the primary tool to build fairly complex dis-
tributed systems, security and policy disclosure become cru-
cial [14]. It is well acknowledged that the wide spread adop-
tion of Web services cannot happen without effective solu-
tions for security issues. In this paper, we focus on access
control and the limited disclosure of access control policies.
An access control model restricts the set of clients or sub-
jects that can invoke Web service’s operations. Since clients
are not known a priori, we adopt credentials to enforce ac-
cess control. Credentials are signed assertions describing
properties of a subject that are used to establish trust be-
tween two unknown communicating parties before allowing
access to information or services. Access control policies de-
fine rules stating that only subjects with certain credentials
satisfying specific conditions can invoke a given operation of
the Web service.

While access control has been widely studied in the liter-
ature and especially in database systems [7], only recently
work on security for Web services has emerged as an impor-

tant part of the Web service saga [19, 15, 1, 6]. Most ap-
proaches in the literature assume a single operation model
where operations are independent from each other. Access
control is either enforced at the level of the entire Web ser-
vice or at the level of single operations. In the first approach,
the Web service could ask, in advance, the client to provide
all the credentials associated with all operations of that Web
service. This approach guarantees that a subject will always
arrive at the end of whichever conversation. However, it has
the drawback that the subject will become aware of all poli-
cies on the base of which access control is enforced. Another
drawback is that the client may have to submit more creden-
tials than needed. An alternative strategy is to require only
the credentials associated with the next operation that the
client wants to perform. This strategy has the advantage
of asking from the subject only the credentials necessary to
gain access to the requested operation. However, the sub-
ject is continuously solicited to provide credentials for each
transition. In addition, after several steps, the client may
reach a state where it cannot progress because the lack of
credentials.

It is important to observe that Web service operations
represent a coarse-grained process that takes place in the
application supporting the Web service and usually involves
the consumption of several resources. This shows how im-
portant it is for the Web service to maximize the chance
that a user would reach a final state to avoid of wasting re-
sources. This should be balanced with the need to retain
some control on the disclosure of access policies.

In this paper, we propose a conversation-based access con-
trol model that enables service providers to retain some con-
trol on the disclosure of their access control policies while
giving clients some guarantees on the termination of their
interactions. First, we model all possible conversations as fi-
nite transition systems (aka finite state machines) [17, 4], in
which final states represent those in which the interaction
with the client can be (but not necessarily) ended. Fur-
thermore, our access control model attempts to maximize
the likelihood that a client reaches a final state without nec-
essarily having to be made aware of all the access control
policies. We introduce a novel concept of k-trustworthiness
where k can be seen as the level of trust that a Web service
has on a client at any point of their interaction. The greater
the level of trust associated with a client, the greater is the
amount of information about access control policies that can
be disclosed to this client. The k represents the length of the
conversations, from the current state, such that the client is
requested to provide the credentials to invoke any operation
along these paths. All conversations along these paths will
eventually lead to a final state after k steps. Thus, the client
is assured that its conversation can eventually terminate. As
we shall see, based on this simple notion of k-trustworthiness,
we are able to develop a flexible (with limited policy disclo-
sure) access control model for conversation-based Web ser-
vices.

The rest of the paper is organized as follows. Section
2 presents the related work. In Section 3, we present our
conversation-based access control model for Web services.
In Section 4, we introduce the algorithms used to enforce
access control. In Section 5, we describe how the model can
be implemented in Web service environments. Finally, in
Section 6 we discuss our approach and its advantages. We
also identify the major issues in extending our approach to

composite services.

2. RELATED WORK
Recent papers [3, 4, 13] have argued that a Web service

is more than a set of independent operations. In fact, dur-
ing a Web service’s invocation, a client interacts with the
service performing a sequence of operations in a particular
order. Such a sequence is called conversation. Specifically,
[3, 4] adopt a model based on finite transition systems (aka
finite state machines) for representing all possible conversa-
tions. The approach of [13] is based on the combined use of
two Web service languages, WS-Conversation (WSCL) and
WS-Agreement, that allows one to specify non-trivial con-
versations in which several messages have to be exchanged
before the service is completed and/or the conversation may
evolve in different ways depending on the state and the needs
of the requesting agents and of the service provider.

As far as security issues in Web services are concerned, a
fair amount of related research in this area comes from the
industry. Two major standards have emerged, namely Se-
curity Assertion Markup Language (SAML) and eXtensible
Access Control Markup Language (XACML). SAML defines
an XML framework for exchanging authentication and au-
thorization information for securing Web services. XACML
is an XML framework for specifying access control policies
for Web-based resources. Recently it has been extended
to specify access control policies for Web services. Other
emerging specifications include WS-Security and WS-Policy.
WS-Security is a specification for securing SOAP messages
using XML Encryption and XML Signature standards and
attaching security credentials thereto. WS-Policy is used
to describe the security policies in terms of their charac-
teristics and supported features (such as required security
tokens, encryption algorithms, privacy rules, etc.).

These proposals do not address the issue of enforcing ac-
cess control policies. Several approaches [19, 15, 1, 6]
suggest some preliminary ideas, but none of them provide
a comprehensive solution. [19] proposes two RBAC (Role
Based Access Control) models, SWS-RBAC, for single Web
services, and CWS-RBAC, for composite Web services. In
both models, a service has a few access modes and a role
is associated with a list of services which clients, who are
assigned that role, have permission to execute. In CWS-
RBAC model, the role to which a client is assigned to ac-
cess a composite service, must be a global role, which is
mapped onto local roles of the service providers of the com-
ponent Web services. [15] proposes an approach for spec-
ifying and enforcing security policies. These are specified
using a language called WebGuard based on temporal logic
and are processed by an enforcement engine to yield site
and platform-specific access control. This code is integrated
with a Web server and platform specific libraries to enforce
the specified policies on a given Web service. [1] presents a
Web service architecture for enforcing access control policies
expressed in WS-Policy. The architecture is similar to the
one proposed in the XACML standard and is characterized
by three main components: PDP (Policy Decision Point),
PEP (Policy Enforcement Point) and PAP (Policy Admin-
istration Point). The PDP realizes the interface between a
service and the access control architecture. When a client
requests to invoke a service, the service forwards the request
to the PDP, which, in turn, sends it to the PEP. The PEP
asks to the PAP for the policies applicable to the request

and evaluates it against the applicable policies. Then, it re-
turns the final decision to the PDP, which issues the service
access.

[6] presents WS-AC1, an access control model with flexi-
ble granularity in protecting objects and negotiation capa-
bilities. WS-AC1 is based on the specification of policies
stating conditions on the values of the identity attributes
and service parameters that a client must provide to invoke
the service. Conditions may also be specified against con-
text parameters, such as time. Further, it is possible to de-
fine fine-grained policies by associating them with a specific
service as well as coarse-grained policies, to be applied to a
class of services. The negotiation capabilities of WS-AC1 are
related to both identity attributes and service parameters.
Through a negotiation process, the client is driven toward
an access request compliant with the service description and
policies.

The work in [16] considers the issue of modeling and man-
aging trust policies and how to assure that an enforcement
system can migrate, during negotiation of trust policies,
from a previous and no-more valid set of policies to a new
one. Trust policies are modeled as finite state machines, and
lifecycle management is obtained by managing such formal-
ization. This work is indeed orthogonal and complementary
to our one, even if the basic formalism is the same: our fo-
cus is on enforcing access control during service execution,
whereas their focus is on modeling and managing trust ne-
gotiations. Clearly the two approaches can be merged, e.g.,
our trust policies can be managed according to their model.

All the previous proposals describe policy-driven access
control models. They are based on the enforcement of ac-
cess control policies stating the requirements to be satisfied
by a client to be granted access to a Web service. Since
a Web service can be invoked potentially by anyone, the
requirements are expressed as conditions on the digital cre-
dentials owned by a client. But all these models assume
that a Web service provides just a single operation or that
all operations are independent.

3. CONVERSATION-BASED ACCESS
CONTROL

In the proposed model, a Web service is characterized by
the set of operations that it exports and constraints on the
possible conversations it can execute. We compactly repre-
sent the service conversations as a finite transition system.

Definition 1. (Transition System). Let WS be a Web

service. The transition system of WS is a tuple T S =

(Σ, S, s0, δ, F) where Σ is the alphabet of operations offered

by the service, S is a finite set of states, s0 ∈ S is the single

initial state, δ : S × Σ → S is the transition function, and

F ⊆ S is the set of final states(states in which a conversation

may end, but does not necessarily have to).

If δ(si, a) = sj , we represent this as si
a−→ sj , and we

call a the label of the transition. The transition function
can be extended to finite length sequences of operations or
conversations (traces [17]). Given a conversation c : a1 · a2 ·
. . . an, and two states s0 and sn, we say that s0 evolves in

sn (represented as s0
c

=⇒ sn) iff ∃ s′ such that s0
a1−→ s′ and

s′
a2·...an=⇒ sn.

completeTransaction

addToCart

checkOut
saveForLater

S1

S2

S3 S4

S0

chooseItem completeTransaction

addToCart

checkOut
saveForLater

S1

S2

S3 S4

S0

chooseItem

Figure 1: eShop service’s transition system

Example 1. Figure 1 represents the transition system of

a simple retail Web service eShop, selling some goods. The

different labels represent the operations that a client can in-

voke from any given state and are self-explaining. Final

states are represented by gray circles. A client can be in-

volved in different conversations with the service. The client

can choose an item (chooseItem), then can add to the cart

(addToCart). Further, the client can decide to buy the item

(checkOut and then completeTransaction operations) or

postpone the purchase (saveForLater) and end the interac-

tion.

Credentials are the mean to establish trust between a
client and the service provider. They are assertions about a
given client, referred to as the owner, issued by trusted third
parties called Certification Authorities (CAs). They are dig-
itally signed using the private key of the issuer CA and can
be verified using the issuer’s public key. A credential con-
tains typically a set of arbitrary properties characterizing
the owner and are specified via (name,value) pairs. Each
credential has a type based on the set of attribute names in
the credential.

Definition 2. (Credential). A credential C is a tuple

(Issuer,Owner, T ype,Attr) where Issuer is the name of

the CA that issues the credential, Owner is the name of the

credential owner, T ype identifies the type of the credential,

and Attr = (Ai, . . . ,An) is the set of attributes character-

izing the T ype of the credential. An attribute Ai is a pair

(nameAi , valueAi), where nameAi is the name of the at-

tribute Ai and valueAi is a value in the attribute domain

domAi of Ai.

Conditions on the attributes in a credential specify the
security requirements of the service provider. An attribute
condition AC is an expression of the form nameAi op k,
where nameAi is an attribute name, op is a comparison op-
erator, and k is a constant value in domAi . We say that a
credential C : (Issuer,Owner, T ype,Attr) satisfies an at-
tribute condition AC: nameAi op k (denoted as C � AC)

if and only if ∃ Al ∈ Attr such that nameAl = nameAi in
AC and valueAl makes true nameAi op k.

We denote with term T a couple 〈T ypeC, SetOfAC〉,
where T ypeC is a credential type and SetOfAC is a set
(eventually empty) of attribute conditions. These attribute
conditions are combined using classical boolean operators.

Definition 3. (Operation Access Control Policy). Let

T S = (Σ, S, s0, δ, F) be the transition system of a Web ser-

vice WS and o the identifier of an operation in Σ. An oper-

ation access control policy for o is an expression of the form

P : o ← T1, T2, . . . Tn, n ≥ 1 where T1, T2, . . . Tn are terms

and o is the Web service operation guarded by the access

control policy.

The semantics of an access control policy is that, given a
set of credentials CC, the access to the operation is granted
iff the credentials satisfies all the attribute conditions (i.e.,
∃Ci1 ∈ CC � T1 and Ci2 ∈ CC � T2 and . . . Cin ∈
CC � Tn). As discussed in many logical formalizations
(e.g., [9, 11]), the access to the Web service operation can
be checked through a reasoning service that verifies if the
access request is a logical consequence of the policy and the
credentials.

Definition 4. (Conversation Access Control Policy).

Let T S = (Σ, S, s0, δ, F) be the transition system of

a Web service WS, c : a1 · . . . ak a conversation in

S, a1, . . . ak identifiers of operations in Σ, and P1 :

a1 ← T11, . . . T1n1 , . . . , Pk : ak ← Tk1, . . . Tknk

the corresponding operation access control policies. A

conversation access control policy for c is an expres-

sion of the form: c ← T11, . . . T1n1 , . . . Tk1, . . . , Tknk

where T11, . . . T1n1 , . . . Tk1 is the conjunction of the terms in

P1. . .Pk.

This definition captures the intuition that a client, owning
a set of credentials satisfying a conversation access control
policy is granted access to all the operations constituting
the conversation. If the conversation is such that it reaches
a final state, then the satisfaction of the policy assures that
the client will be authorized up to reaching its own goal.
The service provider will not be forced to deny access to
some operations in the middle of the conversation due to
lack of authorization.

Example 1 (cont.). An example of access control poli-

cies for operations addToCart and saveForLater are respec-

tively:

P1 : addToCart ← CreditCard Holder(Type = MasterCard)

P2 : saveForLater ← Subscribed Member.

Policy P1 states that only the clients having a MasterCard

can perform operation addToCart, while policy P2 authorizes

only the subscribed clients to execute saveForLater. The

conversation access control policy for the conversation C:

addToCart · saveForLater is:

C ← CreditCard Holder(Type = MasterCard),

Subscribed Member.

Definition 5. (Trustworthiness Level). Let T S =

(Σ, S, s0, δ, F) be the transition system of a Web service WS

and s ∈ S be a state. A trustworthiness level for s is the

length of a conversation c such that s
c

=⇒ t with t ∈ F .

A trustworthiness level represents the length of a conver-
sation, from a given state s in the transition system, that
leads to a final state.

Definition 6. (k-Trust Policy). Let T S =

(Σ, S, s0, δ, F) be the transition system of Web service

WS and ks a trustworthiness level computed on s ∈ S. A

k-trust policy is an expression of the form ks ← T1, T2, ., Tn,

n ≥ 1, where T1, T2, . . . Tn are terms.

A k-trust policy states the type of credentials and the con-
ditions on the credential attributes a client, in state s, must
hold in order to be assigned to a trustworthiness level k. We
use the concept of trustworthiness level to limit the disclo-
sure of service provider’s access control policies. Therefore,
when a client is assigned the trustworthiness level k (on
the basis of an appropriate k-trust policy), the enforcement
system asks only the credentials needed to satisfy all the
conversation access control policies associated with the con-
versations from the current state to final states and having
length less or equal to k.

Example 1 (cont.). Let us consider the start state

(labeled with S0) in Figure 1 and determine the po-

tential conversations. These potential conversations

that lead to a final state and that we need to con-

sider to compute the k-trustworthiness levels are:

(1) chooseItem · addToCart · saveForLater; (2)

chooseItem·addToCart·checkOut·completeTransaction.
Adding more conversations will be useless from access

control perspective since the same conversation will be

repeated. Hence there are 2 different k-trustworthiness

levels: {3, 4}. For instance, the {ks0 = 3}-trust policy to

assign a client to trustworthiness level 3 is of the form

{ks0 = 3} ← PictureID(Age > 18): it means that if the

client is older then eighteen is entrusted with trustworthi-

ness level 3. Such a client has to fulfill the access control

policies associated with the conversations having length less

or equal to 3. These conversations include the following

operations: chooseItem, addToCart, and saveForLater.

4. ACCESS CONTROL ENFORCEMENT
The main feature of the enforcement system proposed in

this paper is that access control is enforced by considering
conversations, thus maximizing the likelihood that a client
reaches a final state and does not drop off due to lack of au-
thorization. The idea is to determine, whenever needed and
in any step of the interaction with the client (i.e., at each
state of the transition system), the appropriate trustworthi-
ness level k to assign to the client. This requires knowing
all potential trustworthiness levels at any state. The level
assigned to the client is determined based on the k-trust
policies. If the client holds the required credentials, the
likelihood that it will end up to a final state without lacking
authorizations is high. Clearly, the client is not forced to fol-
low one of the conversations it has been authorized to; this
is why we refer to “high likelihood” and not to “guarantee”

that the client will reach a final state. At some states of the
conversations defined by k, the client may decide to take a
different conversation that is not included in the ones it has
been authorized to, a longer conversation for example. If
this is the case, the current trustworthiness level k is recal-
culated on the basis of the potential levels at the current
state and new credentials are required.

The challenge now is that given a transition system, we
need to determine for each state all possible trustworthiness
levels from that state as well as the possible conversations
that would define the corresponding access policies. We base
our solution on the following observations:

• For an acyclic transition system, the set of potential
paths leading from any state to any final state is finite.
This set can be easily calculated by a simple traversal
of the graph of the transition system.

• If from a given state, a conversation involves a cycle,
an infinite number of paths are possible to arrive to a
final state within or while traversing this cycle.

• Since we are dealing with access control policies, usu-
ally if an access control policy of an operation a has
been checked against a client, we do not have to check
it again if the client invoke the operation a more than
once.

We clearly see that the main difficulties in traversing the
transition system and determining the potential conversa-
tions relate to the existence of cycles. Before going further,
let us introduce the concept of strongly connected compo-
nent (scc for short). A strongly connected component is
the maximal subgraph of a directed graph such that for ev-
ery pair of vertices u, v in the subgraph, there is a directed
path from u to v and a directed path from v to u [18]. The
transition system of a Web service can be regarded as a
directed graph where a transition between two states is a
directed edge, without considering the labeling. Based on
the above concept, an acyclic graph can be produced where
nodes represent the different strongly connected components
of the initial graph. This graph is called the directed graph
of the strongly connected components and is noted Gscc. It
can be efficiently computed through the classical Tarjan’s
algorithm [18] or more recent optimizations, e.g., [12].

We can then make the following observations on this new
graph: (i) if the initial T S is acyclic then Gscc is T S itself
[10]; (ii) the nodes that are not involved in cycles will remain
unchanged in the new graph; (iii) cycles will be “collapsed”
into strongly connected components and need to be dealt
with in an appropriate way.

For any scc, we need to determine all possible conversa-
tions that will lead from an in-going node, i.e., coming from
outside the component, to an out-going node, i.e., going
outside the component. These conversations should have
the property to cover all potential operations within that
strongly connected component. The overall idea of the al-
gorithm which finds all potential k-trustworthiness levels for
all states, will be: for a given state, determine all subsequent
strongly connected components, including the one to which
the current state belongs to. The algorithm will then tra-
verse the transition system from that state and record all
conversations leading to a final state. By having computed
all possible conversations of all strongly connected compo-

nents, we will be able to find finite conversations even in the
case of cycles.

Before giving the details of the algorithm, we will need to
introduce several concepts.

An object type SetOf<element>1 for representing a set
of <element>s, where <element> can be whichever other
object type. We use the term set in a proper way, to
mean a collection of elements without repetitions and with-
out any order. We assume the availability of the = op-
erator on sets, which compares two homogeneous sets for
equality, a method add(<element> e) for adding a new el-
ement, and | | for calculating its dimension (number of el-
ements). An object type Sequence is defined for represent-
ing conversations. On such a type, two methods are de-
fined: (i) length() returns the length of the sequence, and
(ii) set() → SetOfOperation returns the set of all the dis-
tinct operations. As an example, acg.set() = {a, c, g} =
acgcgcg.set().

The directed graph of the strongly connected components
of the original transition system is defined as follows:

Definition 7. (Graph of scc). Given a transition sys-

tem T S = (Σ, S, s0, δ, F), the directed graph of the strongly

connected components Gscc = 〈Sscc, Escc〉 is the graph with

nodes Nscc and oriented edges Escc obtained as follows:

Nscc = {c: c is a strongly connected component in T S};
Escc = {〈c1, c2〉: c1 �= c2 and ∃a ∈ δ, s1 ∈ c1, s2 ∈ c2 such

that s1
a−→ s2}

Given a state s ∈ T S, we refer to the node of Gscc asso-
ciated to the strongly connected component of s as c(s); we
also say that c(s) is the image of s.

In the algorithms presented in the following, we assume
an object type GraphSCC, defined for representing a graph of
scc. On the type GraphSCC, a method projection(Node c)

→ GraphSCC is defined, that takes as input a node c and
returns a new subgraph obtained by considering c and all
nodes reachable by it, i.e., it is the subgraph obtained by
visiting depth-first the graph starting from c.

For each node/scc of Gscc, we know the number of differ-
ent operations that label transitions among the associated
states of T S. More specifically, for each scc c, the set Oc =
{ a such that s1

a−→ s2 and c(s1) = c(s2) = c } can be easily
determined. The cardinality of Oc is referred to as card(c).
If the connected component c is the image of a single state of
T S, then its card(c) = 0. On the type GraphSCC, we define
a method card(Node c) → Integer that takes as input a
node c and returns its cardinality.

For each node/scc of Gscc, the longest path, among the
shortest ones that (i) starting from an in-going node finish in
a distinct out-going node, and (ii) comprise all the different
operations in Oc, is considered. More specifically, for each
scc c, a sequence of operations str is said to be covering

iff e
str
=⇒ o with e in-going state of c and o out-going state

(c(e) = c(o) = c) and str.set() = Oc. We use the notation
fstr for referring to a traversing sequence of operations 2.

1In the following, we use Type for indicating object types,
and object for indicating object instances.
2A traversing sequence is not necessarily an Eulerian path
of c, whereas each Eulerian path, if it exists, is a traversing
sequence. This is why we do not impose the uniqueness of
an edge.

Then for each scc c, a set Cc is defined: Cc = { gstri such

that: (oi �= oj for i �= j) and (∀gstrk with oi = ok then
gstrk.length()≥ gstri.length()) }. We denote coverage(c)

= max(gstri ∈ Cc).
The coverage of a scc can be calculated by generating by

enumeration, which can be done with a simple recursion,
all the paths from any in-going node to an out-going one.
A global array of boolean variables, with dimension equal
to the number of distinct out-going nodes is used to record
whether the out-going node has been reached, and another
global array of integer variables maintains the length of the
sequence that evolves the in-going node up to the out-going
one. As soon as all the boolean variables are set to true,
meaning that we have found the shortest paths, then the
maximum among the values in the other array is calculated.
In order to close all the recursive instances, each of them
is controlled by a condition on the conjunction of all the
boolean array’s values.

On the type GraphSCC, a method coverage(Node c) →
Integer is defined, that takes as input a node c and returns
its coverage.

For each node/scc of Gscc, we define the rank as follows:

rank(c) =

8>>>>>>>>>>><
>>>>>>>>>>>:

coverage(c)

if c is the root of Gscc

1 + coverage(c)

+max(rank(m))

where m are all the

possible predecessors

of c

As Gscc is acyclic, the rank of each node can be computed
in three steps: (i) by running a depth-first-search algorithm,
and for each visited node to push on a stack a record, labeled
with the node, containing the predecessor node; (ii) then by
popping the stack, and for each encountered record, to re-
move from the stack all the records with the same state, by
recording the corresponding predecessor node, and to push
in another stack the formula for calculating the rank (at this
point the predecessors are all correctly identified); (iii) fi-
nally, by popping the second stack, and for each removed
record, we calculate the rank. We should observe that the
stack now gives the exact order according to which to calcu-
late the formulas: each removed record gives the values to
be used in following records.

Finally, on the type GraphSCC, a method rank(Node c)

→ Integer is defined, that takes as input a node c and
returns its rank.

We can now present the algorithms for computing, for
each state of the Web service transition system, the possible
k-trustworthiness levels and the conversations corresponding
to them. These algorithms assume some global variables,
on which all instances of the recursion have shared access.
These variables are the transition system T S of type TS,
the AC − Set of type SetOfPolicy that, for each operation,
report the corresponding access control policy P (of type
Policy), the Gscc (of type GraphSCC) and a C − Bag (of
type SetOfSequence), which is built during the execution
of the algorithms, and represents the set of conversations
defining the k-trustworthiness levels.

Algorithm 1: isNewString()

Input: b: Boolean

Output:

(1) foreach x ∈ C − Bag

(2) if x.set() = this.set()

(3) return (false);

(4) return (true);

The isNewString() is a method defined on the object
type Sequence.

Algorithm 2: build()

Input: s: State, str: Sequence

Output:

(1) if s has no out-going transition (i.e., is

a leaf)

(2) if str.isNewString()

(3) C − Bag.add(str);

(4) return ();

(5) else

(6) if s ∈ T S.F (i.e., s is final) and

str.isNewString()

(7) if | str.set()| >

Gscc.rank(c(s))

(8) return ();

(9) C − Bag.add(str);

(10) foreach s
a−→ t

(11) build(t, str · a);

Algorithm 3: buildBag&KLevels()

Input: s: State

Output: C − Bag: SetOfSequence,

K − Bag: SetOfInteger

(1) var C − Bag: SetOfSequence;

(2) var K − Bag: SetOfInteger;

(3) C − Bag := ∅;
(4) K − Bag := ∅;
(5) build(s,ε) /* ε is the empty

Sequence*/;

(6) foreach str ∈ C − Bag

(7) K − Bag.add(str.length());

(8) return C − Bag,K − Bag;

The overall algorithm builds, for each state of the Web
service transition system, the k-trustworthiness levels and
the corresponding conversations.

Algorithm 4: computeOverallBag&KLevels()

(1) var C − Bag − Set: SetOfSetOfSe-

quence;

(2) var K−Bag−Set: SetOfSetOfInteger;

(3) foreach s ∈ T S.S

(4) { C − Bag[s], K − Bag[s] } :=

buildBag&KLevels(s);

S5

h

d

g

a

S2

S4

S1

f

S0

b

S3

e

c

S5

S6

l

i

k

(3, 3)

c1

C0

c3

c2 (0, 0)

(0, 0)

(4, 7)

(a) (b)

S5

h

d

g

a

S2

S4

S1

f

S0

b

S3

e

c

S5

S6

l

i

kS5

h

d

g

a

S2

S4

S1

f

S0

b

S3

e

c

S5

S6

l

i

k

(3, 3)

c1

C0

c3

c2 (0, 0)

(0, 0)

(4, 7)

(3, 3)

c1

C0

c3

c2 (0, 0)

(0, 0)

(4, 7)

(a) (b)

Figure 2: A transition system (a) with its Gscc (b)

Example 2. Figure 2(a) represents the transition system

of some Web service. This transition system can be re-

duced to the graph in figure 2(b) containing four strongly

connected components. The different states, representing

each a strongly connected component, are labeled with pairs

(x, y) representing the maximum number of symbols (oper-

ations) and the coverage of that strongly connected compo-

nent respectively. These numbers are then used to calculate

all the k-trustworthiness levels of all states in the transi-

tion system. For example, the k-trustworthiness levels as-

signed to S1 are {2, 4, 5, 7, 9}. The longest conversation be-

ing c·g·c·e·h·c·e·i·l.

Now that for each state we computed all potential
k-trustworthiness levels and corresponding conversations
(from which to derive conversation policies), the access con-
trol enforcement system can proceed through the following
phases:

• Bootstrapping phase – This phase occurs when the sub-
ject has its first contact with the Web service. The
enforcement system assigns the initial level of trust-
worthiness k, amongst all possible ones (as computed
previously), based on the set of initial credentials pro-
vided by the client (e.g., the IP address of the client)
and the trust policies of the Web service. If the initial
credentials are not sufficient, the access control sys-
tem assigns to the client the smallest trustworthiness
level, or a default level ⊥ (meaning step-by-step access
control), or refuses the access, depending on the trust
policies.

• Once the access control enforcement system assigns a
trustworthiness level k to the client, it will ask the
client to provide all the required credentials based on
the associated access policies computed by the previ-
ous algorithm.

• If the subject provides the requested credentials, it can
invoke all operations on paths less or equal to k that
lead to final states.

• If from a given state, the client decides to continue its
interaction with the Web service through a path differ-
ent from those assigned by its k-trustworthiness level,
then a new k-level of trust needs to be computed and
assigned to the client. The process will then continue
as before until the client decides to stop.

5. ARCHITECTURE OF THE ENFORCE-
MENT SYSTEM

This section describes how the proposed access control
model for conversation-based Web services can be imple-
mented in Web service environments. The system archi-
tecture is depicted in Figure 3. To be compliant with the
XACML standard, the access control enforcement system is
composed of a Policy Enforcement Point (PEP), a Policy
Decision Point (PDP) and a Policy Administration Point
(PAP). The PEP realizes the interface with clients and with
the Execution Controller System (ECS) [2]. The ECS is
not part of the enforcement system: it maintains a copy
of the transition system to keep track of the state of the
conversation between the client and the service. Further,
at deployment time, it generates a table reporting for each
state the k-trustworthiness levels.

The PEP intercepts all the access requests submitted by
clients, specifying the name of an operation the client wants
to perform and/or a set of credentials.

The first request that a client sends to the PEP contains
both a name of an operation and a set of credentials (step
1). Once received, the PEP contacts the ECS to provide it
information about the operation requested, so it can update
the state of the conversation and can return it to the PEP
with the table (steps 2-3). Then, the PEP reformulates the
access request adding information about the current state
of the conversation and the table and sends it to the PDP
(step 4). The PDP’s k-Trustworthiness Level Assignment
(TLA) Module, having received from the PEP the infor-
mation about the current state of the conversation and the
table, queries the table to select the trustworthiness levels
k1, . . . , kn. Hence, the TLA module interacts with the PAP
which manages the policies, to retrieve the k-trust policies
associated with trustworthiness levels k1, . . . , kn (step 5-6)
and evaluates if the credentials provided by the client in the
request satisfy one of the policies. If this is the case, the
client is assigned to the trustworthiness level ki associated
with the ki-trust policy he is compliant with. Once assigned
the trustworthiness level ki, the TLA sends it with the as-
sociated conversations to the PDP’s Policy Selection (PS)
module (step 7). The PS module asks the PAP for the access
control policies related to the operations constituting the
conversations, that the client may engage with the service
on the basis of the assigned trustworthiness level ki (steps
8-9). Then, the PS module combines the selected policies to
obtain the corresponding conversation access control policy.
Hence, it returns the policies to the PEP with ki (step 10).
At this point, the PEP asks to the client to provide the cre-
dentials required by the policies and evaluates them against
the policies (steps 11-12). If the check is positive, the client
can perform any operation in the conversations related to
the trustworthiness level ki. Since the PEP stores a copy of
the table of trustworthiness levels and the level ki assigned
to the client, when it submits a request to perform an oper-
ation, which does not belong to the allowed conversations,

1. Access Request
(Operation /Credentials)

PEP

PAP

WEB SERVICE INFRASTRUCTURE

ACCESS

POLICIES

K-TRUST

POLICIES

ACCESS CONTROL ENFORCEMENT SYSTEM

PDP

6. K-Trust
Policies

9. Access
Policies

5. Request

8. Request

K-Trustworthiness
Level

Assignment
Module

Policy

Selection

Module

7. K-Trust Level+
Conversations11. Request for Credentials

12. Credentials

10. Policies +
K-Trust Level13. Access Granted/Denied

EXECUTION CONTROLLER SYSTEM

Table of K-Trustworthiness LevelsTransition System (TS)

3. State + Table

2. Request State
+ Forward Op
requested

4. Access Request +
State+ Table

Figure 3: System Architecture

the PEP contacts the PDP, which assigns a new trustwor-
thiness level to the client. In this case, the PEP does not
send again the table of trustworthiness levels, but only the
state of the conversation with the client, which is necessary
to select from the table the trustworthiness levels associated
with that state.

The main advantage of the proposed architecture is that is
in conformity with the reference standard for access control
in distributed systems, XACML. Further, it is modular and
allows an easy integration of the access control system in
Web service frameworks. Finally, the enforcement system is
independent from the language used to express k-trust and
access control policies. Both WS-Policy and the XACML
Profile for Web services can be used to represent the policies
characterizing our model.

6. DISCUSSION AND FUTURE WORK
In this paper, we presented a novel approach to deal with

access control in conversation-based Web services. Our first
contribution is to consider access control in Web services
as transition systems instead of systems that present sets
of independent operations. As we mentioned earlier, most
existing access control approaches assume a single operation
model for Web services where the invocation of operations
are independent from each other.

Moreover, as mentioned previously, two extreme ap-
proaches regarding the disclosure of access policies are pos-
sible: (1) requesting all the credentials needed for all the
operations, and (2) requesting credentials related to each
operation the client is interested in invoking. In this con-
text, our second objective was to strike a balance between
the need to reveal only part of the Web service access policy
and the need to offer enough assurance to clients that they
can reach a final state.

In order to support such claims, we develop a very simple
model for measuring the two parameters risk and disclosure.
Given a Web service operation a, we consider Pa as the
probability that the client does not have the credential(s)
satisfying the access control policy guarding the operation.

In general, the risk associated to an event is the product
of the probability that the event happens and the damage
produced by the event. In simple terms, the damage of
having the client dropping off due to lack of authorization
is the number of executed operations. Indeed, executing
an operation requires resources to the service provider, and
if the conversation is suddenly interrupted in a non-final
state, all these resources have been “wasted”. In addition,
the leakage in terms of disclosure of access control policies
is proportional to the operations already executed. We now
evaluate these two simple metrics risk and leakage faced by
a service provider during a conversation conv = a1 · . . . an.

In a step-by-step enforcement, the risk faced before in-
volving the i-th operation (ai being the next operation for
which the client may not posses the required credential to
access to) is:

Ri = Pai · (i − 1) i = 1 . . . n (1)

Similarly, the leakage after executing the i-th operation in-
vocation (ai+1 being the next operation) is:

Li = Pai+1 · i i = 1 . . . n (2)

In this case, the client may be an attacker that voluntarily
drop-off the conversation after accessing the previous poli-
cies.

In our conversation-based enforcement, assuming that the
conversation conv is the one for which the service provider
has requested all the credentials, we have:

Ri = Πn
i=1Pai · 0 = 0 i = 1 . . . n (3)

Metric Step-by-step Conversation

Risk : Σn
i=1Ri P n·(n−1)

2 0

Leakage : Ln n n

Table 1: Risk and Leakage Evaluation

d

a

bc

e

Figure 4: A simple transition system

Indeed during the conversation, the various invocations of
Web service operations are somehow independent. Thus, the
probability that a client has all the credential(s) needed to
access all the operations is simply Πn

i=1Pai = Pa1 · . . . · Pan .
However, the service provider has requested credentials for
this conversation, the damage is always 0. The system is safe
about the client having the requirements to reach the end of
the conversation. This is not necessary since the client can
choose a different operation.

Since the enforcement system has required all the creden-
tials at the beginning, the leakage is:

Li = Pai · n i = 1 . . . n (4)

Table 1 summarizes the risk and leakage, after the con-
versation conv, for our approach and for a step-by-step ap-
proach assuming that all Pai are equals, i.e, ∀i : Pai = P.

Let us now compare the possible approaches to access con-
trol enforcement on a simple Web service having the behav-
ior represented as in Figure 4.

Table 2 shows the results for the step-by-step enforcement,
the conversation-based (with the 2 possible k-levels, 2 and
4), and the request-all approach. We consider both possible
conversations. Specifically, in the case of the conversation
acde, with the client assigned a k-level of 2, if after one step
the client chooses an operation it has not been authorized
yet, and it is assigned a k-level of 4 – the only possible,
the risk is given by the damage – 1 step – for 3 ·P (the
probability of not having the credential for the remaining 3
steps).

Hence, it becomes clear that the k-trustworthiness level
model is a trade-off between the request-all approach, that

Metric step-by-

step

k-level:

2

k-level:

4

request-

all

ab

Risk 2 · P 0 0 0

Leakage 2 2 5 5

acde

Risk 6 · P 0 + 3 · P 0 0

Leakage 4 5 5 5

Table 2: Comparison of the various approaches on

a simple Web service

always minimizes the risk by maximizing the disclosure,
and the step-by-step, which minimizes the disclosure by
maximizing the risk. If good client profiles (obtained by
logs, etc.) are available, the trust policies can be fine
tuned to have most of the clients assigned to the correct k-
trustworthiness level, i.e., the one that effectively the client
will follow, thus obtaining the best of the two extreme ap-
proaches.

Table 3 summarizes the advantages and disadvantages of
the different approaches regarding access control and disclo-
sure of access policies. It shows that our solution takes a
more balanced approach and provides more flexibility. On
one hand, it gives some guarantees to the client that once it
provides the requested credentials, it will eventually reach
a final state. On the other hand, the Web service retains
some control on the disclosure of its access policy.

Policy Dis-

closure

Advantages Disadvantages

Disclose the

entire access

policy

The client can reach

any final state if

it possesses the re-

quired credentials

The client has access

to the entire policy

Disclose only

the portion as-

sociated with

the requested

operation

The client has very

limited knowledge

on the access policy

The client is so-

licited frequently

and may reach a

state in which it

cannot progress

Disclose only

the portion as-

sociated with

k-trust level

Only a small por-

tion of the policy is

disclosed. It maxi-

mizes the likelihood

the client reaches a

final state

The client may still

take a path different

from the authorized

ones

Table 3: Access control strategies

As part of our future work we would like to integrate
our approach with an exception-based mechanism tailored
to support access control enforcement. In particular, in a
step-by-step approach, whenever a client cannot complete a
conversation because of the lack of authorization, some alter-
native actions and operations are taken by the Web service.
A typical action would be to suspend the execution of the
conversation, ask the user to acquire the missing credentials,
and then resume the execution of the conversation; such a
process would require investigating a number of issues, such
as determining the state information that need to be main-
tained, and whether revalidation of previous authorizations
is needed when resuming the execution. A different action
would be to determine whether alternative operations can
be performed to replace the operation that the user cannot
execute because of the missing authorization. We would like
to develop a language according to which one can express
the proper handling of error situations arising from the lack
of authorization.

A natural next step for our work is to extend it to com-
posite services. We need composition when a client request
cannot be satisfied by any available service, but by suitably
combining parts of available Web services. Composition in-
volves usually two different issues [5]: synthesis is concerned
with synthesizing a specification of how to coordinate the
component services to fulfill the client request; orchestra-
tion relates to the enactment of the composite service and
the coordination among services, by executing the specifica-
tion produced by the composition synthesis.

Access control needs to be addressed at the orchestration
level to manage the client’s credentials needed to access the
different service components and the access policies of these
services. The objective is to extend the notions of conversa-
tion access control policy and k-trustworthiness to composite
services. We are still assuming a conversation-based model
for Web services. In addition, all component services sup-
port our k-trustworthiness model. Thus each service com-
pute a local k or trust level and the challenge would be to
compute a global trust level in an effective and efficient way.
We need to determine the credentials to request from the
client that will lead to a final state.

Web services may fail or ask for credentials that cannot
be provided by clients. In addition to the ideas presented
earlier on suspending the current conversation or replacing
the operations, another potential approach is to devise a
substitutability scheme [8] where the “failing” service is sub-
stituted with a new Web service that has at least the same
behavior and that is access control-compatible with the com-
posite service and the current state. This would require
addressing several challenging issues including computing a
new global trust level, deriving new credentials from exist-
ing ones, and devising techniques on how to deal with the
work done so far by the Web service being substituted.

Acknowledgments
The work of Massimo Mecella was partly supported by
the European Commission (FP6-2004-IST-4-027517 project
SemanticGov) and the Italian MIUR (RBNE0193K5 002
FIRB 2001 project mais, RBNE0358YR 003 FIRB 2003
project eg4m). The work of Mourad Ouzzani was partly
supported by Lilly Endowment, NSF-ITR 0428168 and US
DHS PURVAC. The work of Federica Paci was partly funded
by the European Commission under the Contract 001945,
Integrated Project Trustcom. The work of Elisa Bertino
was partly supported by the NSF under Grant No. 0430274
and the sponsors of CERIAS.

7. REFERENCES
[1] C. Ardagna, E. Damiani, S. De Capitani di Vimercati,

and P. Samarati. A web service architecture for
enforcing access control policies. In Proceedings of 1st
International Workshop on Views on Designing
Complex Architectures, 2004.

[2] B. Benatallah, F. Casati, H. Skogsrud, and
F. Toumani. Abstracting and enforcing web service
protocol. International Journal of Cooperative
Information Systems, 13(4), 2004.

[3] B. Benatallah, F. Casati, and F. Toumani. Web
service conversation modeling: A cornerstone for
e-business automation. IEEE Internet Computing,
8(1):46 – 54, 2004.

[4] D. Berardi, D. Calvanese, G. De Giacomo,
M. Lenzerini, and M. Mecella. Automatic service
composition based on behavioral descriptions.
International Journal of Cooperative Information
Systems, 14(4):333 – 376, 2005.

[5] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull,
and M. Mecella. Automatic composition of
transition-based semantic web services with
messaging. In Proc. VLDB 2005.

[6] E. Bertino, L. Martino, F. Paci, and A. Squicciarini.
An adaptive access control model for web services. To
appear on International Journal of Web Services
Research (JWSR), 2006.

[7] E. Bertino and R. Sandhu. Database security.
Concepts, approaches, and challenges. IEEE
Transaction on Dependable and Secure Computing,
2(1), January-March 2005.

[8] Lucas Bordeaux, Gwen Salaün, Daniela Berardi, and
Massimo Mecella. When are two web services
compatible? In Technologies for E-Services, 5th
International Workshop, TES 2004, Toronto, Canada,
August 2004.

[9] S. De Capitani di Vimercati and P. Samarati. Access
control: policies, models and mechanisms. In
R. Focardi and F. Guerrieri, editors, Foundations of
Security Analysis and Design - Tutorial Lectures,
volume 2171 of LNCS. Springer Verlag, 2001.

[10] A. Dovier, C. Piazza, and A. Policriti. An efficient
algorithm for computing bisimulation equivalence.
Theoretical Computer Science, 311(1-3):221–256, 2004.

[11] H. Koshutanski and F. Massacci. Interactive
credential negotiation for stateful business processes.
In Proc. iTrust 2005, 2005.

[12] E. Nuutila and E. Soisalon-Soininen. On finding the
strongly connected components in a directed graph.
Information Processing Letters, 49:9–14, 1993.

[13] S. Paurobally and N. R. Jennings. Protocol
engineering for web services conversations.
Engineering Applications of Artificial Intelligence, 18,
2005.

[14] Kent E. Seamons, M. Winslett, and T. Yu. Limiting
the disclosure of access control policies during
automated trust negotiation. In Proceedings of the
Network and Distributed System Security Symposium,
San Diego, California, USA, 2001.

[15] E.Gn Sirer and K. Wang. An access control language
for web services. In Proc. ACM SACMAT 2002.

[16] H. Skogsrud, B. Benatallah, and F. Casati. Trust-serv:
model-driven lifecycle management of trust
negotiation policies for web services. In Proc. WWW
2004.

[17] C. Stirling. Modal and temporal logics for processes.
In F. Moller and G.M. Birtwistle, editors, Logics for
Concurrency. Structure versus Automata (8th Banff
Higher Order Workshop, 1995, Proceedings), volume
1043 of LNCS. Springer Verlag, 1996.

[18] R.E. Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1:146–160,
1972.

[19] R. Wonohoesodo and Z. Tari. A role based access
control for web services. In Proc. SCC 2004, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

