
Access Control and Authorization Constraints for WS-BPEL

Elisa Bertino
Cerias and Computer Science Department

Purdue University
West Lafayette, IN

bertino@cerias.purdue.edu

Jason Crampton
Information Security Group

Royal Holloway, University of London
Egham, United Kingdom

jason.crampton@rhul.ac.uk

Federica Paci
Dipartimento di Informatica e Comunicazione

Universita’ degli Studi di Milano
Milano, Italy

paci@dico.unimi.it

Abstract

Computerized workflow systems have attracted consid-
erable research interest in the last fifteen years. More re-
cently, there have been several XML-based languages pro-
posed for specifying and orchestrating business processes,
culminating in WS-BPEL. A significant omission from WS-
BPEL is the ability to specify authorization information as-
sociating users with activities in the business process and
authorization constraints on the execution of activities such
as separation of duty. In this paper, we address these defi-
ciencies by developing the RBAC-WS-BPEL and BPCL lan-
guages. The first of these provides for the specification of
authorization information associated with a business pro-
cess specified in WS-BPEL, while BPCL provides for the
articulation of authorization constraints.

1. Introduction

Recent advances in web services, associated technology
and standards, such as XML, and recent research on web
service semantics are enabling new, high-level approaches
to programming the web. The main idea of such approaches
is that business processes or workflows can be built by com-
bining web services through the use of a process specifica-
tion language. Such languages basically allow one to spec-
ify which tasks have to be executed and the order in which
those tasks should be executed. Because of their impor-
tance, process specification languages have been widely in-
vestigated and a number of languages have been developed.
One such language is WS-BPEL (Web Services Business

Process Execution Language), an XML-based workflow
process language, which provides a syntax for specifying
business processes based on web services [12]. WS-BPEL
is a synthesis of two rival workflow languages, WSFL [9]
and XLANG [14], and adopts the best features from these
two. The language is layered on top of several XML spec-
ifications, including WSDL 1.1 [6], XML Schema 1.0 [16]
and XPath 1.0 [15], but of these, the WSDL has had the
most influence on WS-BPEL.

However, there remain significant challenges to be re-
solved before we see the widespread use of workflow tech-
nology in distributed computer systems and web services.
Of particular interest to the security community is the prob-
lem of authorizing users to execute tasks within a workflow
while enforcing constraints such as separation of duty on
the execution of those tasks [2, 3, 4, 5, 17].

The WS-BPEL language does not provide any support
for the specification of either authorization policies or au-
thorization constraints on the execution of activities com-
posing a business process. We believe, therefore, that it is
important to couple WS-BPEL with a model for expressing
such authorization policies and constraints, and a mecha-
nism to enforce them. It is important that such an authoriza-
tion model be high-level and expressed in terms of entities
that are relevant from the organizational perspective. In this
paper, we propose an approach to extend WS-BPEL syntax
with an authorization model that also supports the specifi-
cation of a large number of different types of constraints.
Role-based access control (RBAC) is a natural paradigm
to apply to authorization in workflow systems because of
the correspondence between tasks and permissions. In re-
cent years, a considerable amount of work has been done
on the use of RBAC to support access control in workflow

systems [1, 3, 17]. We make use of this work in defining
RBAC-WS-BPEL, a language for authorization policies for
business processes defined in WS-BPEL.

However, a role-based model alone is not sufficient to
meet all the authorization requirements of workflow sys-
tems such as separation of duty constraints and binding
of duty constraints. Separation of duty requirements exist
to prevent conflicts of interest and to make fraudulent acts
more difficult to commit. A simple example of a separation
of duty constraint would be to require two different signa-
tures on a cheque. Binding of duty constraints require that if
a certain user executed a particular task then that user must
also execute a second task in the workflow. In this paper,
we introduce BPCL (business process constraint language),
which can be used to articulate authorization constraints for
business processes. This language is influenced by the sem-
inal work of Bertino et al on authorization constraints in
workflow systems [3] and more recent work on constraint
specification and enforcement [7].

In the next section we provide an overview of WS-BPEL
and introduce an example that we will use throughout the
paper for illustrative purposes. In Section 3 we define the
components of RBAC-WS-BPEL, including authorization
policies and authorization constraints. In the subsequent
section we provide an example of an RBAC policy for a
purchase order workflow, specified in XACML [11]. In
Section 5 we describe the BPCL language and how it imple-
ments the authorization constraints described in Section 3.
We then complete the specification of our example purchase
order workflow. Finally, we conclude with suggestions for
future work.

2 Introduction to WS-BPEL

WS-BPEL is an XML-based language to specify busi-
ness processes. The top level element in the specification is
<process>. It has a number of attributes, which spec-
ify the process name, the namespaces being referred to,
and whether the process is an abstract process or an exe-
cutable process. The <partnerLinks> element is used
to identify the external web services invoked from within
the process. The <variables> element defines the data
that flows within the process. The <correlationSets>
element is used to bind a set of operations to a service in-
stance.

Most importantly from our point of view, the actual busi-
ness logic is represented as a group of activities, which
are executed in a structured way. Activities are executed
by invoking web services. The business logic includes ba-
sic control structures: the <sequence> element contains
one or more activities that are performed sequentially; the
<switch> element is used to specify conditional branch-
ing execution; the <while> element supports iterative exe-

cution of an activity; the <pick> element is used to trigger
an activity following a specified event; and the <flow>
element is used to specify concurrent execution of a set
of activities. These activities, in turn, may contain basic
activities, which are specified using one of the following
elements: the <invoke> element, that allows the busi-
ness process to invoke a one-way or request-response op-
eration on a communications channel offered by a partner;
the <receive> element that allows the business process
to wait in a blocking mode for a matching message to arrive;
and the <reply> element that allows the business process
to send a message in reply to a message that was received
via a <receive> activity.

The creation of a business process instance in WS-BPEL
is always implicit; activities that receive messages (that is,
<receive> activities and <pick> activities) can be an-
notated to indicate that the occurrence of that activity causes
a new instance of the business process to be created. A busi-
ness process instance is terminated when one of the follow-
ing conditions hold: the last activity in the process termi-
nates; a fault occurs, and it is not handled appropriately; or
a process is terminated explicitly by a terminate activity.

To provide concrete examples of the proposed extensions
to the WS-BPEL language, we introduce a purchase order-
ing process as a running example. Consider a simple pro-
cess forming part of a purchase ordering and financial sys-
tem.

Example 1 There are six activities involved in ordering
and paying for goods:

• the creation of a purchase order requesting goods from
a supplier (crtPO);

• the approval of the purchase order prior to despatch to
the supplier (apprPO);

• the acknowledgement of delivery of the goods by sign-
ing a goods received note (signGRN);

• the acknowledgement of delivery by countersigning the
goods received note (ctrsignGRN);

• the creation of a payment file on receipt of the sup-
plier’s invoice for the goods (crtPay);

• the approval of the payment to the supplier (subject to
receipt of goods) (apprPay).

An informal specification of the process is shown in Fig-
ure 1: an arc from one activity to another means that the first
activity must be executed before the other. Hence, the exe-
cution of the crtPO activity must precede that of apprPO,
while signGRN and crtPay can be executed in parallel
because no order of execution is specified.

signGRN

crtPay apprPay

ctrsignGRN

crtPO apprPO

Figure 1. A purchase order process specifi-
cation

Figure 2 shows the purchase order process rendered in
WS-BPEL. The <process> element is the root element
of the document and represents the whole business process
specification. The structure of the main processing section
is defined by the outer <sequence> element, which states
that the contained activities are sequentially executed.

The <sequence> element contains, in the following
order: two <invoke> elements, representing, respec-
tively, the activities crtPO and apprPO; an <assign>
element; a <flow> element; and another <invoke> ele-
ment representing the activity apprPay.

The <flow> element contains three activities:
signGRN, ctrsignGRN and crtPay. The activities in
the <flow> element are concurrently executed, except
for signGRN and ctrsignGRN since the execution of
signGRN must precede the one of ctrsignGRN. The
execution dependency between the activities signGRN
and ctrsignGRN is expressed using the <links>
element: signGRN is the source activity of the links, while
ctrsignGRN is the target activity.

The <while> element is used to specify that the
signGRN activity should be performed twice. The value of
CT attribute is set to 0 by the <assign> activity before the
<flow> element. It is incremented by 1 following each ex-
ecution of the signGRN activity, as specified in the second
<assign> element.

3. RBAC-WS-BPEL – A Language for Busi-
ness Processes with Constrained Autho-
rization

A WS-BPEL process is a representation of an organiza-
tional or business process and is typically specified as a set
of activities and a set of dependencies between the activi-
ties. The dependencies fall into two broad categories: those
determined by the application logic of the process such as
the order of execution of the activities [13], and those deter-
mined by security requirements. WS-BPEL addresses the
first of these categories.

In this paper we deal with the second category and we
focus on developing authorization extensions to WS-BPEL.

<process name="purchaseOrderProcess"
targetNamespace="http://acme.com/ws-bp/purchase"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns="http://manufacturing.org/wsdl/purchase"/>

<variables>
<variable name="PO" messageType="POMessage"/>
<variable name="GRN" messageType="GRNMessage"/>
<variable name="PF" messageType="PFMessage"/>
<variable name="CT" type="xsd:integer"/>

</variables>

<sequence>
<invoke partnerLink="" portType="crtPOPT"

operation="crtPO" outputVariable="PO"/>
<invoke partnerLink="" portType="approvePOPT"

operation="apprPO" inputVariable="PO"/>

<assign>
<copy><from expression="0"/><to variable="CT"/></copy>

</assign>
<flow>

<links>
<link name="multipleexecsignGRN-to-ctrsignGRN"/>

</links>
<while condition="CT < 2">

<sequence>
<invoke partnerLink="" portType="signGRNPT"

operation="signGRN" inputVariable="GRN"/>
<assign>
<copy>

<from expression="bpws:getVariableData(‘CT’) + 1"/>
<to variable="CT"/>

</copy>
</assign>

</sequence>
<source linkName="multipleexecsignGRN-to-ctrsignGRN"/>

</while>
<invoke partnerLink="" portType="ctrsignGRNPT"

operation="ctrsignGRN" inputVariable="GRN">
<target linkName="multipleexecsignGRN-to-ctrsignGRN"/>

</invoke>
<invoke partnerLink="" portType="ctrPayPT"

operation="ctrPay" outputVariable="PF"/>
</flow>
<invoke partnerLink="" portType="apprPayPT"

operation="apprPay" inputVariable="PF"/>
</sequence>

</process>

Figure 2. The purchase order business pro-
cess expressed in WS-BPEL

The proposed extensions include the specification of au-
thorization information and authorization constraints. Au-
thorization information associates activities with authorized
users and enables a reference monitor to reach a decision
about the legitimacy of a user request to execute an activ-
ity. Authorization constraints include separation of duty re-
quirements, where two different users must execute two dif-
ferent activities, and binding of duty constraints, in which
the same user is required to perform two different activities.
In what follows, we formally define the main components
of the RBAC-WS-BPEL language.

These components support the specification of a busi-
ness process and the specification and enforcement of an
RBAC authorization policy for the activities composing

FinClerk

FinAdmin

POClerk

POAdmin

Manager

(a) The role hierarchy

P

P1 (crtPO, execute)
P2 (apprPO, execute)
P3 (signGRN, execute)
P4 (ctrsignGRN, execute)
P5 (crtPay, execute)
P6 (apprPay, execute)

(b) Permissions

RA

FinClerk P5

FinAdmin P3

FinAdmin P6

POClerk P1

POClerk P3

POAdmin P2

POAdmin P4

(c) Role-permission as-
signment

C1 (U, crtPO, signGRN, =)
C2 (U, signGRN, ctrsignGRN, 6=)
C3 (U, crtPO, crtPay, 6=)
C4 (R, crtPO, apprPO, <)
C5 (R, crtPay, apprPay, <)

(d) Authorization constraints

Figure 3. RBAC-WS-BPEL authorization schema and authorization constraints for the purchase order
process

the business process. First, we provide the formal defi-
nition of RBAC-WS-BPEL permission, defining an action
that can be performed on an activity in a business process
and the definition of RBAC-WS-BPEL role hierarchy spec-
ifying the partial order relation between the roles associ-
ated with a business process; then, we introduce the defi-
nition of RBAC-WS-BPEL authorization schema collecting
all the authorization information related to a business pro-
cess. After that, we introduce the definition of RBAC-WS-
BPEL authorization constraints, that place restrictions on
the role and user assignment to activities in a business pro-
cess. Finally, we define an RBAC-WS-BPEL authorization
specification, which incorporates a WS-BPEL business pro-
cess, an RBAC-WS-BPEL authorization schema and a set of
RBAC-WS-BPEL authorization constraints.

Definition 1 (RBAC-WS-BPEL permission) Let BP be
a WS-BPEL business process. An RBAC-WS-BPEL per-
mission is a tuple (Ai, Action) where Ai is the identifier of
an activity in BP and Action identifies the type of action
can be performed on activity Ai.

To render our specification open to future extensions, we
do not specify which are the types of actions that can be
performed on an activity. In the following examples, we
will consider the type of action execute, that allows a
subject to carry out an activity of the business process.

Definition 2 (RBAC-WS-BPEL role hierarchy) Let R be
a partially ordered set of roles. A role hierarchy defined
over R is the graph of the partial order relation between the
roles in R. If r, r′ ∈ R and r < r′, then we say r′ dominates
r.

Definition 3 (RBAC-WS-BPEL authorization schema)
Let BP be a WS-BPEL business process. A RBAC-WS-
BPEL authorization schema for BP is a tuple (R, P, RA)
where R is a partially ordered set of roles associated with
BP , P is the set of permissions defined for the activities
in BP and RA ⊆ R × P is a role-permission assignment
relation.

One advantage of the role-based paradigm is that more
senior roles inherit permissions assigned to more junior
roles. This significantly reduces the number of permission-
role assignments.

The above authorization model is complemented by a
language supporting the specification of constraints. In par-
ticular, RBAC-WS-BPEL allows the specification of two
different types of authorization constraints: role authoriza-
tion constraints and user authorization constraints. We now
formally introduce these two types of constraint.

Definition 4 (RBAC-WS-BPEL authorization
constraints) Let U be a set of users and let be R a

partially ordered set of roles. A role authorization con-
straint is a tuple (D, (A1, A2), ρ), where D ⊆ R is
the domain of the constraint and ρ ⊆ R × R. A user
authorization constraint is a tuple (D, (A1, A2), ρ), where
D ⊆ U is the domain of the constraint and ρ ⊆ U × U . A
constraint (D, (A1, A2), ρ) is satisfied if, whenever x ∈ D

performs A1 and y performs A2, (x, y) ∈ ρ. Given a
constraint C ≡ (D, (A1, A2), ρ), we say that C applies to
A2.

An authorization constraint places some restrictions on
the users/roles who can perform A2 (the consequent

activity) given that the user u ∈ D or the role r ∈

D has executed A1 (the antecedent activity). Us-
ing this formalization for representing authorization con-
straints, (D, (A1, A2), 6=) defines a separation of duty con-
straint and (D, (A1, A2), =) defines a binding of duty con-
straint. Moreover, we can specify constraints that re-
strict the execution of two activities by users or roles,
where that restriction can be expressed as a binary rela-
tion on the set of users or roles. Such relations could
include “belongs-to-same-department-as” or
“is-line-manager-of”.

Example 2 Figure 3 illustrates the various components of
an RBAC-WS-BPEL authorization schema and the autho-
rization constraints for the purchase order example. Fig-
ure 3(a) illustrates the role hierarchy and defines 5 differ-
ent roles. The most senior role is Manager, which dom-
inates the roles FinAdmin and POAdmin; FinAdmin
and POAdmin, in turn, dominate, respectively, roles
FinClerk and POClerk. The set of permissions com-
prises the ability to execute each of the activities in the
purchase order process and is shown in Figure 3(b). Fig-
ure 3(c) illustrates a typical permission-role assignment re-
lation. Note that no permissions are explicitly assigned to
the Manager role, although the role does implicitly have
the rights to execute all activities in the process. Simi-
larly, the FinAdmin role has the permission to execute
the crtPay activity. Finally, Figure 3(d) shows how the
authorization constraints associated to the purchase order
process are represented according to Definition 4. C1 is a
binding of duty constraint, requiring that the user that cre-
ates a purchase order must sign for the goods. C2 and C3

are separation of duty constraints. C2 imposes that the user
that countersigns the GRN must be different from the user
that signed the GRN, while C3 assesses that the user that
creates the purchase order cannot create the payment for
the goods. Finally, C4 and C5 are seniority constraints. C4

states that the role that approves a purchase order must be
more senior than the role that creates it, while C5 requires
that the role that approves the payment must be more senior
than the role that creates it.

Action

Activity

Permissions

RBAC XACML
Permission

<Policy>

Authorization
Constraints

BPCL

RBAC XACML
Role

<PolicySet>

Role-Permission
Assignament

RBAC XACML
PermissionAssignament

<PolicySet>

RolesUsers

Activities

Business Process

UsersAssignament

WS-BPEL

Action

Activity

Permissions

RBAC XACML
Permission

<Policy>

Action

Activity

Permissions

RBAC XACML
Permission

<Policy>

Authorization
Constraints

BPCL

RBAC XACML
Role

<PolicySet>

Role-Permission
Assignament

RBAC XACML
PermissionAssignament

<PolicySet>

RolesUsers

Activities

Business Process

UsersAssignament

WS-BPEL

Figure 4. RBAC-WS-BPEL component repre-
sentation

We can now formally introduce the notion of RBAC-
WS-BPEL authorization specification that combines all the
previous notions.

Definition 5 (RBAC-WS-BPEL authorization
specification) A RBAC-WS-BPEL authorization specifica-
tion is a tuple (BP, AS, AC) where BP is a WS-BPEL
business process, AS is the authorization schema defined
for BP and AC is the set of authorization constraints that
apply to the activities in BP .

In the following sections we illustrate how the RBAC-
WS-BPEL authorization schema and RBAC-WS-BPEL au-
thorization constraints are incorporated into a WS-BPEL
process definition. In Section 4 we describe the repre-
sentation of RBAC-WS-BPEL authorization schema using
XACML. In Section 5, we describe a new XML schema we
have developed for specifying authorization constraints in
business processes, which we call BPCL (business process
constraint language). Figure 4 illustrates the components of
the RBAC-WS-BPEL language and the relations existing
between them.

4. RBAC XACML

The first extension we propose to the WS-BPEL lan-
guage is the specification of the RBAC-WS-BPEL autho-
rization schema associated with a WS-BPEL business pro-
cess. In our approach this component of the language is
specified using the RBAC XACML policy language [8] re-
cently proposed as an alternative to the RBAC profile for
XACML [10]. Figure 5 shows how the RBAC-WS-BPEL

authorization schema reported in Figure 3 can be encoded
in XACML.

<!-- Role set -->
<PolicySet ... PolicySetId="set:roles" ... >
<PolicySet ... PolicySetId="role:Manager" ... >
<Target>Any user with role attribute = "Manager"
</Target>
<PolicySetIdReference>permissions:Manager
</PolicySetIdReference>
<PolicySetIdReference>role:FinAdmin
</PolicySetIdReference>
<PolicySetIdReference>role:POAdmin
</PolicySetIdReference>

</PolicySet>
<PolicySet ... PolicySetId="role:FinAdmin" ... >

<Target>Any user with role attribute = "FinAdmin"
</Target>

<PolicySetIdReference>permissions:FinAdmin
</PolicySetIdReference>
<PolicySetIdReference>role:FinClerk
</PolicySetIdReference>

</PolicySet>
<PolicySet ... PolicySetId="role:FinClerk" ... >

<Target>Any user with role attribute = "FinClerk"
</Target>

<PolicySetIdReference>permissions:FinClerk
</PolicySetIdReference>

</PolicySet>
.
.
.

</PolicySet>

<!-- Role-permission assignment relation -->
<PolicySet ... PolicySetId="relation:ra" ... >

<PolicySet ... PolicySetId="permissions:FinAdmin" ... >
<PolicySetIdReference>permission:pay:approve
</PolicySetIdReference>
<PolicySetIdReference>permission:sign:grn
</PolicySetIdReference>

</PolicySet>
.
.
.

</PolicySet>

<!-- Permission set -->
<PolicySet ... PolicySetId="set:permissions" ... >

<Target>Any subject, any resource, any action
</Target>

<Policy ... PolicyId="permission:po:create" ... >
<Rule ... >

<Target> execute create purchase order activity
</Target>

</Rule>
</Policy>

.

.

.
</PolicySet>

Figure 5. RBAC-WS-BPEL authorization
schema expressed in pseudo-XACML

The authorization policy uses three different kinds
of XACML policies, each one represented by a
<PolicySet> element. The set P of permissions
associated with a WS-BPEL business process is repre-
sented by a Permission <PolicySet> containing
a Permission <Policy> element for each per-

mission in P . The RA role-permission assignment
relation is represented by a PermissionAssignment
<PolicySet> element: it includes a <PolicySet>
subelement for each role to which the relation RA

assigns a permission. Each <PolicySet> subele-
ment contains a <PolicySetIdReference>
child node for each permission assigned to the
role. <PolicySetIdReference> refers to the
Permission <Policy> element that represents the
permission. Finally, a Role <PolicySet> element rep-
resents a role in the hierarchy. For example, the Manager
role is represented by the Role <PolicySet> el-
ement having <PolicySetId> attribute equal to
role:Manager. The <Target> subelement lim-
its the applicability of the Role <PolicySet> to
users holding the associated role attribute and value.
<PolicySetIdReference> subelements are used to
refer to the PermissionAssignment <PolicySet>
element containing the set of permissions associated
with the Manager role. In addition, they are used to
represent the role hierarchy, by referencing immediate
junior roles. The Manager role, for example, references
the Role <PolicySet> elements for roles FinAdmin
and POAdmin.

5. BCPL – Business Process Constraint Lan-
guage

Now we introduce the second extension to WS-BPEL,
that is, an XML-based language for the specification of au-
thorization constraints such as separation of duty and bind-
ing of duty. We call this language BPCL (business process
constraint language).

In BPCL, an <AuthorizationConstraints> el-
ement contains all the authorization constraints that ap-
ply to the activities in a WS-BPEL business process.
Each constraint C ≡ (D, (A1, A2), ρ) is represented by
a <Constraint> element having an Id attribute by
which it is referenced. The <Constraint> element
has three subelements: <Domain>, <Activities> and
<Predicate>.

The <Domain> element represents the domain D of
the constraint C. It has two subelements, <Type> and
<Subject>. The <Type> data content specifies the type
of the constraint C: it contains the value “role” if C is a
role authorization constraint, and the value “user” if C is a
user authorization constraint. The contents of <Subject>
element will either be a set of roles or a set of users and will
depend on the contents of the <Type> element.

The <Activities> element specifies the two ac-
tivities A1 and A2 to which the constraint C is
applied. In particular, <Activities> has two
child nodes, <AntecedentActivityReference>

and <ConsequentActivityReference>, contain-
ing, respectively, an XLink reference to the XML element
representing activities A1 and A2 in the WS-BPEL specifi-
cation.

Finally, the <Predicate> element data content identi-
fies the relation ρ in C: for example the string “equal” iden-
tifies the relation =, while the string “not equal” identifies
the relation 6=.

<AuthorizationConstraints>
<Constraint Id="C1">

<Domain>
<Type>User</Type>
<Subject/>

</Domain>
<Activities>
<AntecedentActivityReference xlink:type="simple"

xlink:href="..............................
#xpointer(//*[@operation="crtPO"])"/>

<ConsequentActivityReference xlink:type="simple"
xlink:href="..............................

#xpointer(//*[@operation="signGRN"])"/>
</Activities>
<Predicate>equal</Predicate>

</Constraint>
.
.
.
<Constraint Id="C5">

<Domain>
<Type>Role</Type>
<Subject/>

</Domain>
<Activities>
<AntecedentActivityReference xlink:type="simple"

xlink:href="...........................
#xpointer(//*[@operation="crtPay"])"/>

<ConsequentActivityReference xlink:type="simple"
xlink:href="...........................

#xpointer(//*[@operation="apprPay"])"/>
</Activities>
<Predicate>seniority</Predicate>

</Constraint>
</AuthorizationConstraints>

Figure 6. BPCL representation of the con-
straints in Table 6

Figure 6 illustrates the use of BPCL in defin-
ing the authorization constraints associated with
the purchase order process. For example, the con-
straint (R, crtPay, apprPay, <) is represented by
the <Constraint> element with Id attribute
“C5”. Notice that the <Subject> can be empty,
as in both C1 and C5, in which case all elements
in the appropriate domain are considered. In C5,
the <AntecedentAtivityReference> and
<ConsequentActivityReference> elements,
respectively, refer to the crtPay and apprPay activities
(in the purchase order WS-BPEL specification) to which
the constraint is applied. The relation < is represented by
the string “seniority” in the <Predicate> element data
content. Further, since (R, crtPay, apprPay, <) is a role

authorization constraint, the <Type> data content element
is equal to “role”.

6. Illustrating RBAC-WS-BPEL authorization
specification

In this section we illustrate how our extensions are incor-
porated into the purchase order process specification intro-
duced in Section 2. Figure 2, represents the business logic
of the process. In Figure 7, in accordance with Definition
5, we include (references to) the authorization information
necessary to state which roles or users are allowed to ex-
ecute the activities, and the authorization constraints that
apply to the activities in the process.

Notice that the specification of the business logic
remains unchanged. We believe that it is important that
our authorization extensions should not require significant
changes to WS-BPEL syntax. Accordingly, we only
add two new child nodes to the <process> element:
<authorization information reference> and
<authorization constraints reference>.
The <authorization information reference>
element contains an XLink reference to the XML document
defining the RBAC policy associated with the purchase
order process. Again, note the use of XACML, an existing
standard, to articulate the RBAC policy, rather than the
definition of another XML-based policy language. The
<authorization constraints reference>
element contains a XLink reference to the BPCL repre-
sentation of the authorization constraints applied to the
activities in the business process order.

<process name="purchaseOrderProcess" ... >

<authorization_information_reference xlink:type="simple"
xlink:href="role_hierarchy.xml"/>

<authorization_constraints_reference xlink:type="simple"
xlink:href="authorization_constraints.xml"/>

<variables>
<variable name="PO" messageType="POMessage"/>
<variable name="GRN" messageType="GRNMessage"/>
<variable name="PF" messageType="PFMessage"/>
<variable name="CT" type="xsd:integer"/>

</variables>

<sequence>
<invoke partnerLink="" portType="crtPOPT"

operation="crtPO" outputVariable="PO">
</invoke>
.
.
.

</sequence>
</process>

Figure 7. Incorporating authorization infor-
mation into WS-BPEL

RBAC-WS-BPEL engine

WS-BPEL
enginePEP

PDP

BPCL
Spec

XACML
Policy

ResponseRequest

RBAC-WS-BPEL
Specification

Access Granted

Access Control System

Access Request

Invoke

Invoke

Web service

Web service

User

Figure 8. RBAC-WS-BPEL architecture

As we can see from the RBAC-WS-BPEL specification
of the purchase order, our approach for associating autho-
rization information and authorization constraints with a
business process is characterized by some interesting fea-
tures. First, the specification of authorization information
and authorization constraints in the WS-BPEL specifica-
tion does not require a significant modification to the syn-
tax of the language. We simply require the inclusion of
two new XML elements in the WS-BPEL syntax, which
provide references to the authorization information and the
authorization constraints. Hence, the specification of a WS-
BPEL business process that includes authorization informa-
tion and authorization constraints is modular. Furthermore,
with this approach it is easy to modify the authorization in-
formation and authorization constraints associated with the
business process since it only needs to modify the refer-
ences to them. Second, the language we have proposed
for the specification of authorization constraints is very ex-
pressive. It supports the specification of binding of duty
constraints, separation of duty constraints and constraints
that restrict the execution of two activities by users or roles,
where that restriction can be expressed as a binary relation
on the set of users or roles.

7. RBAC-WS-BPEL system architecture

In this section, we briefly discuss the RBAC-WS-BPEL
engine, which manages the execution of business processes
subject to the authorization policy and constraints. The en-
gine extends a conventional WS-BPEL engine with an ac-
cess control system. The architecture of the engine is shown

in Figure 8.

The WS-BPEL engine is responsible for scheduling and
synchronizing the various activities within the business pro-
cess, in accordance with specified activity dependencies,
and for invoking web service operations associated with ac-
tivities. The engine receives the RBAC-WS-BPEL process
specification as input and creates a representation of WS-
BPEL process.

The access control system, according to the XACML
paradigm, is composed of a PEP (Policy Enforcement
Point) and a PDP (Policy Decision Point). When a sub-
ject Sj submits a request to perform an activity Ai, the
PEP traps the request and creates an XACML request based
on the subject’s attributes, the requested activity, the type
of action, and other information pertaining to the request.
Then, it forwards it to the PDP. The PDP, having received
the request, retrieves the XACML authorization schema and
BCPL constraints referenced in the RBAC-WS-BPEL pro-
cess specification, and decides if the subject is authorized
or not.

In order to make a decision, the PDP must ensure that
granting the request does not violate the authorization con-
straints and does not prevent the business process from com-
pleting. The strategy is to initialize the set of users that are
authorized to perform activity Ai with Sj and to compute
for each pair of activities (Ak, Am) in the RBAC-WS-BPEL
specification, the set of subjects that can execute Ak and Am

applying all possible BCPL constraints defined for Ak and
Am, including those derived from XACML authorization
schema. If one of these sets is empty, Sj cannot execute ac-
tivity Ai, since it means that for one pair of activities, there

does not exist a pair of authorized users that comply with
the constraints. Hence, there does not exist a valid user as-
signment ensuring the completion of the business process.

Having made a decision, the PDP transmits it to the PEP.
If the access is granted, the PEP communicates the decision
to the WS-BPEL engine, which invokes the web service op-
eration associated with the activity Ai.

One of the advantages of the proposed architecture is that
is modular and allows an easy integration of the access con-
trol system with existing WS-BPEL engines. A second ad-
vantage is that the decision-making algorithm implemented
by the PDP does not require any binding of roles or users
to activities before process execution, unlike previous ap-
proaches [3]. Moreover, the algorithm runs in time polyno-
mial in the number of activities and users [7](rather than
exponential [3]). Further, this strategy allows the PDP to
take a decision in a time polynomial in the number of activ-
ities and users.

8. Conclusions

In this paper we have proposed RBAC-WS-BPEL, an ex-
tended version of the WS-BPEL language, that supports the
specification of business processes and the specification of
authorization information necessary to state if a role or a
user is allowed to execute the activities composing the pro-
cesses. The authorization information comprises a role hier-
archy reflecting the organizational structure, a permission-
role assignment relation and a set of permissions which rep-
resent the ability to execute activities. The authorization in-
formation is encoded using XACML.

We have also defined a schema for BPCL, a new XML-
based language for describing authorization constraints.
Such constraints place restrictions on the roles and users
who can perform the activities in the business process. Fur-
ther, we have illustrated how these components can be in-
cluded in the business process specification. Finally, we
have proposed the RBAC-WS-BPEL engine, which man-
ages business process execution respecting authorization
constraints. One of the advantages of our approach is that
the resulting specification including a WS-BPEL business
process specification, authorization information and autho-
rization constraints is modular. In particular, it is possible
for the same business process specification to have different
authorization information: different organizations may de-
fine different roles and different assignment of activities to
roles. Moreover, different organizations may have different
security policies and controls, which require the articulation
of different authorization constraints. A further advantage
is the rich expressiveness of the BPCL language, which en-
ables us to articulate constraints that go beyond basic sepa-
ration and binding of duty constraints.

We are currently extending this work in several direc-

tions. The first extension deals with the introduction of a
new type of authorization constraints. Currently, the con-
straint (D, (A1, A2), ρ) the execution of activity A2 is con-
strained by the execution of a single antecedent activity A1.
We plan to extend our language so that the execution of A2

may be dependent on the execution of several antecedent
activities. Another direction on which we will focus is the
development of more sophisticated algorithms for the as-
signment of users and roles to the activities that satisfies au-
thorization constraints. A final possibility for future work
would be to consider the use of BPCL as a general autho-
rization constraint language and how it could inter operate
with XML-based authorization languages such as XACML.

9. Acknowledgments

The work of Elisa Bertino is partially supported by the
US National Science Foundation under Grant No. 0430274
and by the sponsors of CERIAS. The work of Federica Paci
is partly funded by the European Commission under the
Contract 001945, Integrated Project TRUSTCOM.

References

[1] G.-J. Ahn, R. Sandhu, M. Kang, and J. Park. Injecting
RBAC to secure a web-based workflow system. In Pro-
ceedings of the 5th ACM Workshop on Role-Based Access
Control, pages 1–10, 2000.

[2] V. Atluri and W. Huang. An authorization model for work-
flows. In Proceedings of the 4th European Symposium on
Research in Computer Security, pages 44–64, 1996.

[3] E. Bertino, E. Ferrari, and V. Atluri. The specification and
enforcement of authorization constraints in workflow man-
agement systems. ACM Transactions on Information and
System Security, 2(1):65–104, 1999.

[4] R. Botha and J. Eloff. Separation of duties for access con-
trol enforcement in workflow environments. IBM Systems
Journal, 40(3):666–682, 2001.

[5] F. Casati, S. Castano, and M. Fugini. Managing workflow
authorization constraints through active database technol-
ogy. Information Systems Frontiers, 3(3):319–338, 2001.
Also available as Technical Report HPL-2000-156, Hewlett
Packard Laboratories.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language 1.1. W3C,
2001. Available at http://www.w3.org/TR/wsdl.

[7] J. Crampton. A reference monitor for workflow systems
with constrained task execution. In Proceedings of the 10th
ACM Symposium on Access Control Models and Technolo-
gies, 2005.

[8] J. Crampton. XACML and role-based access control, 2005.
Presentation at DIMACS Workshop on Security of Web Ser-
vices and e-Commerce.

[9] F. Leymann. Web services flow language (WSFL
1.0). IBM Software Group, 2001. Available at

http://www-306.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf.

[10] OASIS. Core and Hierarchical Role Based Access Con-
trol (RBAC) Profile of XACML, Version 2.0, 2004. OA-
SIS Committee Draft (A. Anderson, editor). Available at
http://www.oasis-open.org/committees/
documents.php?wg abbrev=xacml.

[11] OASIS. eXtensible Access Control Markup Lan-
guage (XACML) Version 2.0, 2005. OASIS Com-
mittee Specification (T. Moses, editor). Available from
http://www.oasis-open.org/committees/
documents.php?wg abbrev=xacml.

[12] OASIS. Web Services Business Process Ex-
ecution Language Version 2.0, 2005. OA-
SIS Committee Working Draft. Available at
http://www.oasis-open.org/committees/
documents.php?wg abbrev=wsbpel.

[13] M. Rusinkiewicz and A. Sheth. Specification and execution
of transactional workflows. In Modern Database Systems:
The Object Model, Interoperability, and Beyond, pages 592–
620. Addison-Wesley, 1995.

[14] S. Thatte. XLANG – Web Services for Business Pro-
cess Design. Microsoft Corporation, 2001. Available at
http://www.gotdotnet.com/team/
xml wsspecs/xlang-c/default.htm.

[15] W3C. XML Path Language (XPath) Version 1.0, 1999. W3C
Recommendation (J. Clark and S. DeRose, editors). Avail-
able at http://www.w3.org/TR/xpath.

[16] W3C. XML Schema, 2004. Available at
http://www.w3.org/XML/Schema.

[17] J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC – A
workflow security model incorporating controlled overrid-
ing of constraints. International Journal of Cooperative In-
formation Systems, 12(4):455–486, 2003.

