
An Obligation Model Bridging Access Control Policies and
Privacy Policies

Qun Ni
Purdue University, USA
ni@cs.purdue.edu

Elisa Bertino
Purdue University, USA

bertino@cs.purdue.edu

Jorge Lobo
IBM T.J. Watson, USA
jlobo@us.ibm.com

ABSTRACT

In this paper, we present a novel obligation model for the
Core Privacy-aware Role Based Access Control (P-RBAC),
and discuss some design issues in detail. Pre-obligations,
post-obligations, conditional obligations, and repeating obli-
gations are supported by the obligation model. Interaction
between permissions and obligations is discussed, and ef-
ficient algorithms are provided to detect undesired effects.
Core P-RBAC is extended to support both access control
policies and privacy policies simultaneously. We believe that
a full-fledged obligation solution based on RBAC may have
a great potential because it could be easily deployed in sys-
tems already adopting RBAC and would thus allow one to
seamlessly introduce policies with obligation requirements,
either for access control purposes or for privacy purposes.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General—
security and protection; D.4.6 [Operating Systems]: Secu-
rity and Protection—Access Controls; K.6.5 [Management
of Computing and Information Systems]: Security and
Protection

General Terms

Management, Security, Standardization

Keywords

Obligation, Role Based Access Control, Privacy, Policy

1. INTRODUCTION
Access control policies are widely used for controlling ac-

cess to sensitive information and valuable resources in vari-
ous environments. Privacy policies are specifically designed
to protect privacy when collecting, using, and disclosing per-
sonal identifiable information. Both access control policies
and privacy policies mainly focus on the specification and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.
SACMAT'08 June 11-13, Estes Park, CO 80517
Copyright 2008 ACM 978-1-59593-745-2/07/0007 ...$5.00.

management of access control requirements, that is, which
subjects are allowed to access which objects and when, how,
and why. In addition to requirements concerning access con-
trol, modern corporation regulations, operation rules, and
privacy laws often impose obligation requirements specify-
ing some other actions that must be performed sometime in
order to allow a certain action to be executed now. For in-
stance, COPPA [12] requires that “Before collecting, using
or disclosing personal information from a child, an opera-
tor must obtain verifiable parental consent from the child’s
parent.”.

Because traditional access control policy languages cannot
express these obligation requirements, these requirements
are often hard-coded in policy enforcement engines or even
in applications. Obviously such approach is not the best for
enforcing obligation requirements. First, obligations end up
being expressed as code and therefore there is no high-level
specification of the obligations actually enforced. Second,
it lacks flexibility. For instance, if obligations have to be
changed, perhaps because of errors, the policy enforcement
engine or the application has to be modified. Since the main
benefit of a policy-based access control management system
is its flexibility in responding to changes without requiring
modifications to systems or applications, why not support-
ing the obligation in policy languages? A policy-based ap-
proach to obligations could allow an organization to quickly
change obligation requirements when flaws in existing poli-
cies are found, to promptly react to new circumstances, and
to accurately enforce complex obligation requirements. In
recent years, several policy languages have been proposed
to support obligations [22, 16, 10, 30, 19, 21]. Approaches
have also been developed for monitoring the fulfillment of
obligations [6, 5, 17].

The introduction of obligation in policies is not however as
straightforward as it looks like at first glance. First, unlike
traditional policies, obligations usually have a time inter-
val within which they have to be fulfilled. Some obligations
must be fulfilled before a certain action, referred to as pre-
obligations, and others must be fulfilled after the action,
referred to as post-obligations. There are cases in which an
obligation has to be repeated. For instance, the GLB act
requires that “Customers must receive a notice every year
for as long as the customer relationship lasts.” Therefore, a
flexible temporal constraint model is a necessary component.
Second, some obligations are conditional. For instance, “as
long as the customer relationship lasts” is a condition for
a financial organization to send a notice to its customers.
Third, obligations are actions. In order to fulfill an obliga-

1



tion, some privileges are required as well. If the privileges
needed are not available, such obligation is not fulfillable.
The problem can become more complex because policies re-
lated to these privileges may further require execution of
other obligations. Therefore, techniques used for analyzing
the interactions between obligations and policies should be
devised in order to detect invalid policies due to unfulfillable
obligations.

In this paper, we propose a novel obligation model that
satisfies the aforementioned requirements. The model is part
of the Privacy-aware Role Based Access Control (P-RBAC)
models [21, 20], which extend the Role-based Access Control
Models [26, 13] to support privacy policies. Core P-RBAC,
the base model of the P-RBAC model family, is character-
ized by a good balance between expressivity and complex-
ity, which in turn provides an ideal platform to support a
new obligation model. Furthermore, we believe that a full-
fledged obligation solution based on RBAC may have a great
potential because it could be easily deployed in systems al-
ready adopting RBAC and would thus allow one to seam-
lessly introduce policies with obligation requirements either
for access control purposes or for privacy purposes. Major
contributions of this paper are as follows.

• A terse yet highly expressive obligation model that
supports pre-obligations, post-obligations, conditional
obligations, and repeating obligations.

• A natural extension to Core P-RBAC to support both
access control policies and privacy policies simultane-
ously.

• The seamless integration of the new obligation model
and RBAC permissions without destroying the spirit of
RBAC where no direct user-permission relation exists.

• The investigation of the interaction between permis-
sions and obligations, and the development of efficient
algorithms for detecting undesired effects, like infinite
obligation cascading, resulting from this interaction.

• The introduction of the concept of the coverage of obli-
gations, and its application to reduce the number of
obligations returned for the fulfillment on an access
request.

The rest of this paper is organized as follows. Section
2 discusses related work. Section 3 briefly introduces P-
RBAC, focusing on Core P-RBAC which is the base of the
work presented in this paper. Section 4 presents the new
obligation model and discusses in detail relevant require-
ments for an obligation model and design choices. Section
5 focuses on two interesting issues in policy analysis and
presents efficient solutions to these issues. Section 6 con-
cludes the paper and outlines future research directions.

2. RELATEDWORK
Several approaches to model and analyze obligations have

been recently proposed [7, 8, 6, 15, 17, 11].
Bettini et al. [7, 8] have formalized policies as Horn clauses

with additional provision and obligation formulas and inves-
tigated the problem of choosing the best policy rules to min-
imize the provisions and obligations that a user has to fulfill
in order to execute certain actions. Bettini et al. [6] have
further extended their policy model to express the handling

of obligation violations. However, predicates on action, pro-
visions, and obligations [7, 8] are disjoint sets that break
the natural connection among them. Moreover, their ap-
proach lacks a mechanism to specify fine-grained temporal
constraints and can thus only model a limited set of obliga-
tions.

Hilty et al. [15] have proposed a formal model for data
protection policies using Distributed Temporal Logics. Pro-
visional formulas that contain no future time temporal op-
erators represent provisions and obligational formulas that
contain no past time temporal operators represent obliga-
tions. They have investigated the observability of obliga-
tions, that is, the existence of evidence that the reference
monitor has been informed about the fulfillment of obliga-
tions, and discussed several possible ways of transforming
non-observable obligations into observable obligations. Our
work investigates a different problem, that is, the undesir-
able interactions between permissions and obligations. In
some cases, obligations in a policy cannot be fulfilled given
the current permissions, e.g., the subject has no permission
to perform the obligation, the permission conditions con-
tradict the obligation conditions, or cascading obligations
occur. Moreover, we also carefully investigate the timeline
restrictions concerning pre-obligations and post-obligations,
while Hilty et al. address this topic by a too simplistic ap-
proach [15].

Irwin et al. [17] have modeled the notion of obligation as a
tuple of subject, action, objects, and a time window. They
have defined system states based on obligations and time
ticks, and investigated the obligation accountability problem
based on different assumptions. However, their approach is
limited by their less expressive obligation model. It does
not support pre-obligations, repeating obligations, and con-
ditional obligations, which are required by privacy acts and
policies by financial institutions.

Barth et al. [2] have formulated privacy policies as Linear
Temporal Logic formulas and have addressed policy compli-
ance and refinement by translating these notions into the
logical concepts of satisfiability and entailment. The dis-
tinct feature of their work is the focus on the transmission of
personal identifiable information (PII) instead of the access
control for PII. Moreover they have investigated the problem
from a very general view (a top down view) that inevitably
makes their solutions very complex, that is, with a PSPACE
complexity or even worse. Our approach instead focuses on
the access control for PII and adopts a bottom up approach
by identifying the most necessary and basic components to
express privacy policies first and gradually expanding the
model to better capture the semantics of privacy laws while
keeping policy analysis tractable.

Dougherty et al. [11] have presented an abstract model
treating obligations as constraints on the program execu-
tion path. An obligation is considered fullfilled if every run
of the program satisfies the constraint, and the obligation
is violated if no run of the program satisfies the constraint.
The model further supports an independent state space for
obligations that is separated from program states in or-
der to handle issues resulting from the interaction between
programs and obligations. Static analysis and obligation
monitoring have been handled by standard algorithms using
Büshi automata. In constrast, we propose a concrete obliga-
tion model based on RBAC, and we develop an analysis for
obligations which is efficient under reasonable assumptions.

2



Compared to our work, the model by Dougherty et al. [11]
cannot express pre-obligations nor conditional obligations,
and the analysis of policies it can express can be very ex-
pensive due to its general assumptions. Further, enforcing
policies, especially obligations, in modern operating systems
and database systems may be challenging because it is not
straightforward to translate constraints on execution paths
into executable policies or vice versa.

Gama et al. [14] have proposed a prototype obligation
monitoring framework which tracks the fulfillment of pend-
ing obligations. Sailer et al.[24] have discussed a method
that allows a third party to monitor obligation compliance
in web services context. Skene et al. [27] have proposed
a model and an analysis technique for reasoning about the
monitorability of systems of service level agreements (SLAs)
that is closely related to the monitorability of obligations.
Our paper, on the other hand, formally defines a more ex-
pressive obligation model based on P-RBAC, an extension
to a widely accepted access control model, and investigates
the interaction between actions and obligations. Therefore,
our work is complementary to aforementioned approaches.

Bertino et al. [3] have proposed an access control model in
which periodic temporal intervals are associated with autho-
rizations. An authorization is automatically granted in the
specified intervals and revoked when such intervals expire.
Deductive temporal rules with periodicity and order con-
straints are provided to derive new authorizations based on
the presence or absence of other authorizations in specific pe-
riods of time. Later, Bertino et al. [4] have extended RBAC
to support periodic role enabling and disabling and temporal
dependencies among actions, which is the base of a Gener-
alized Temporal Role-Based Access Control Model [18] that
further enables a wider range of temporal constraints, e.g.
periodic as well as duration constraints on roles, user-role as-
signments, and role-permission assignments. Compared to
those temporal constraint models, the temporal constraint
model introduced in this paper has a different goal, that is,
to investigate properties of time restrictions with respect to
the fulfillment of obligations which requires to look at tem-
poral constraints from a different angle.

Prakken et al. [23] have investigated the proper repre-
sentation of contrary-to-duty structures in deontic logics,
and situations in which there is a primary obligation and
a secondary obligation, which comes into effect when the
primary obligation is violated. Brown et al. [9] have inves-
tigated the semantic treatment of conditional obligations,
permissions, and prohibitions based on models with agents
and branched time. In general, these theoretical approaches
investigate some interesting behaviors of obligations, per-
missions and their relations and improve deontic logics to
better represent them and reason on them. The problems
investigated by those approaches and ideas that partially
solve these problems can be incorporated into future exten-
sions to the approach reported in our paper.

Last but not least, obligations that have been introduced
in some modern policy languages, such as XACML [22],
EPAL [16], KAoS [30], Ponder [10] and Rei [19], are rather
limited. XACML, EPAL, and KAoS only support system
obligations because no other subject can be indicated in
their obligation language. Although Ponder and Rei en-
able user obligations, all of aforementioned languages do
not provide an explicit placeholder supporting the specifica-
tion of temporal constraints, and they do not support pre-

Privacy Data Permissions

Data Permissions

Purposes

DataRolesUsers

Actions

Conditions

Obligations

UA PA

Purpose Binding

Figure 1: Core P-RBAC model

obligations, conditional obligations, repeating obligations ei-
ther. Some policy algebras [1, 25] supporting obligations
have been proposed for composing enterprise privacy poli-
cies like EPAL. Unfortunately, obligation models in such
algebras suffer from the same drawbacks of EPAL.

3. A BRIEF INTRODUCTIONABOUTP-RBAC
Because the obligation model presented in this paper is

based on P-RBAC, in this section we briefly introduce rele-
vant concepts about P-RBAC. P-RBAC is a family of Privacy-
aware RBAC models that extend RBAC with support for
privacy policies [21]. Core P-RBAC, the base model, is at
bottom. There is a tradeoff between expressivity and com-
plexity in the design of Core P-RBAC. On the one hand,
Core P-RBAC has limited expressive power which is, how-
ever, sufficient for representing public privacy policies, pri-
vacy statements and privacy notices in Web sites, and poli-
cies based on privacy related acts, such as HIPPA [28], COPPA [12],
and GLBA [29], in the US. On the other hand, conflicts
detection in Core P-RBAC remains tractable. Advanced
models in the family extend Core P-RBAC with additional
modeling constructs.

Core P-RBAC is illustrated in Figure 1. The model in-
cludes several sets of entities: Users(U ), Roles(R), Data(D),
Actions(A), Purposes(Pu), Obligations(Ob), and conditions
(C ) expressed by using a customized language, referred to
as LC0.

A user in our model is human being, and a role repre-
sents a job function or job title within the organization with
some associated semantics regarding the authority and re-
sponsibility conferred on a member of the role. Data in
our model means any information related to an identified or
identifiable individual. An action is an executable image of
a program, which upon invocation executes some function
for the user. The types of action and data object that P-
RBAC controls depend on the type of system in which they
are implemented.

In Core P-RBAC, as in classical RBAC, permissions are
assigned to roles and users obtain such permissions by be-
ing assigned to roles. The distinctive feature of Core P-
RBAC lies in the complex structure of privacy permissions,
which reflects the highly structured ways of expressing pri-

3



vacy rules. The model captures the essence of OECD princi-
ples and privacy acts. Therefore, aside from the data and the
action to be performed on it, a privacy permission explicitly
states the intended purpose, along with the conditions un-
der which the permission can be given, and the obligations
that are to be finally performed if permission is granted.

Core P-RBAC conditions should not be confused with
the constraints of the classic RBAC model. Constraints are
a powerful mechanism for specifying higher-level organiza-
tional policies that cross over several roles, while conditions
are a mechanism to precisely define a permission of a sin-
gle role. A common example of constraints is separation of
duties. Handling separately privacy-related conditions and
constraints allows us to focus on how to effectively and pre-
cisely model the necessary prerequisites for validating and
enforcing privacy policies. We defer the treatment of con-
straints to our future work.

Core P-RBAC includes a simple language for express-
ing conditions; they are expressed using context variables.
Such variables record privacy-relevant information that is
to be taken into account when enforcing privacy permis-
sions. Even though the LC0 condition language has limited
expressive power, it is able to model several conditions usu-
ally found in privacy permissions. The conditions that can
be expressed by LC0 are defined in what follows.

Definition 1. [21] Let CV be a set of context variables;
each variable x ∈ CV has a finite domain of possible val-
ues, denoted as Dx; every domain is equipped with a pair
of corresponding relational operators = and 6=. ⊥(false) and
⊤(true) are constant conditions. An atomic condition ac

defined over CV has the form (x opr v) where x ∈ CV, v ∈
Dx, opr ∈ {=, 6=}. The conditions of LC0 (over CV) are de-
fined as follows:

• A constant condition is a condition of LC0.

• An atomic condition is a condition of LC0.

• Let ci and cj be conditions of LC0. ci ∧cj is a condition
of LC0. ✷

Two typical context variables and their domains are as
follows:

• oc: Owner Consent, domain={yes, no, na}; it rep-
resents data owner’s consent for collecting, using, or
disclosing his personal identifiable information.

• vpc: Verifiable Parental Consent, domain={yes, no,
na}; it represents a parent’s consent for collecting, us-
ing, or disclosing his child information.

Because the set of context variables is finite, each context
variable has a finite domain, and only equality and inequality
operators are supported, it is straightforward to see that the
set of all possible conditions (module logical equivalence)
that can be expressed in LC0 is finite. We denote such set
as C.

4. AN OBLIGATION MODEL
Typical obligations in privacy policies specify what actions

a subject must perform at certain time in order to allow
certain actions to be taken at present. Before presenting our
obligation model, we first investigate the usage of obligations
in privacy policies using a few case studies. We design our
obligation model based on the analysis of these scenarios.

4.1 Desiderata
One of the regulations in COPPA requires that “Before

collecting, using or disclosing personal information from a
child, an operator must obtain verifiable parental consent
from the child’s parent. This means that an operator must
make reasonable efforts (taking into consideration available
technology) to ensure that before personal information is
collected from a child, a parent of the child receives notice
of the operator’s information practices and consents to those
practices.” Thus, an obligation, “notifying a parent and ob-
taining verifiable parental consent”, may have to be fulfilled
before access to the children information. Another interest-
ing point here is that we may need a conditional obligation.
Once we have fulfilled the obligations and obtained some re-
sults, either consent or rejection, from a specific parent, we
usually should not ask the parent the same question again.
Therefore, before fulfilling the obligation, we may want to
check whether we have already asked the question. Another
example that requires a conditional obligation is: “An oper-
ator is required to send a new notice and request for consent
to parents if there are material changes in the collection, use
or disclosure practices to which the parent had previously
agreed.” Sending a new notice and requesting for consent
can be considered as conditional obligations after collecting
children information.

COPPA also says that “At any time, a parent may re-
voke his/her consent, refuse to allow an operator to further
use or collect their child’s personal information, and direct
the operator to delete the information.”. Our understand-
ing of this statement is that once operators obtain parental
consent and collect children information, they should imme-
diately assign parents permissions such as “revoke consent”,
“refuse further use or collection”, or “request deletion”. One
way to specify those permissions in formal policies is to con-
sider them as obligations that should be fulfilled without
delay after children information collection. Therefore, obli-
gations may include actions like“grant permissions”, “revoke
permissions” and “delete data”.

The GLB act says that “Consumers are entitled to receive
a privacy notice from a financial institution only if the com-
pany shares the consumers’ information with companies not
affiliated with it, with some exceptions. Customers must re-
ceive a notice every year for as long as the customer relation-
ship lasts.”. An obligation, “sending consumers a privacy no-
tice”, should be fulfilled after the first time consumers’ infor-
mation is disclosed. Another obligation, “sending customers
privacy notices”, must be fulfilled periodically. Moreover,
the latter, “sending customers privacy notices”, seems not to
be related to any action, e.g. collecting, using, and disclos-
ing, on customers’ information. However, such an obligation
is related to an attribute of information providers. The at-
tribute specifies that these providers are not only consumers,
but also customers1. Therefore, the latter obligation is ac-
tually related to an action that changes a consumer to a
customer.

Based on aforementioned cases of obligations, we sum-
marize the following features that we consider relevant for
obligations.

1In the GLB act, a consumer is an individual who obtains
or has obtained a financial product or service from a finan-
cial institution for personal, family or household reasons. A
customer is a consumer with a continuing relationship with
a financial institution.

4



• Generally, obligations are associated with some action
request2, i.e., a subject promises to fulfill some obli-
gations sometime in order to perform a specific action
on some objects now. There are cases in which spe-
cific obligations are only associated with some special
objects in the policies without reference to an action.
However, a corresponding action can still be identified
in practice because usually the action making these
objects special is the action causing these obligations.

• Obligations have usually some specific temporal con-
straints. Some obligations should be fulfilled before
an access is allowed and the result from the obligation
fulfillment may affect the decision about an action re-
quest. We call this kind of obligations pre-obligations.
Other obligations should be fulfilled after the action in
the action request is performed. We call this kind of
obligations post-obligations. Intuitively, there should
be some time window allocated for each obligation.
Otherwise, a policy enforcement engine does not know
when it can start evaluating policy conditions, and
subjects in a post-obligation can legally avoid obliga-
tions by simply saying “I will do it in the future”. In
some cases, temporal constraints require obligations to
be fulfilled repeatedly until some condition becomes
true.

• A subject’s obligation may result from another sub-
ject’s action, i.e., the subject of an obligation may be
different from the subject who caused the obligation.
For instance, when an operator discloses some children
information to third parties, third parties may be re-
quired to fulfill similar obligations the operator has to
fulfill. In some situations, the subject of an obligation
may be the system itself, e.g., logging access history.

• Some obligations may be conditional, that is, condi-
tional obligations are only required to be fulfilled if
some related condition becomes true. For instance,
COPPA says that “An operator is required to send a
new notice and request for consent to parents if there
are material changes in the collection, use or disclosure
practices to which the parent had previously agreed.”.
Here, the material changes are the conditions that trig-
ger the execution of the obligations“send a new notice”
and “request for consent”.

4.2 The Model
In this section, we present a formal obligation model for

privacy policies that encompasses the features we discussed
in the previous section. The model serves as the theoretical
foundation for our later discussion on the analysis of obliga-
tions. Since obligations are actions that some subjects have
to fulfill during some time interval, the obligation model in-
troduces a temporal constraint component that clearly spec-
ifies such a time interval. As mentioned in the previous
section, we are striving for a simple yet flexible mechanism
to specify these temporal constraints. Two important re-
quirements for such mechanism are that it should be able

2In the access control literature, the term “access request”
is usually used instead of “action request”. However, in pri-
vacy policy, actions like “collect” and “disclose” are not an
“access”, therefore, we use a more appropriate term “action
request” to replace “access request” thereafter in this paper.

to support the specification of the most common temporal
constraints and an efficient analysis of these constraints.

As we mentioned in the previous section, the initiator of
an obligation may differ from the user who causes the obliga-
tion; therefore a component used to indicate the initiator of
an obligation is also added to the permission. Such a compo-
nent makes it possible to identify a subject for an obligation
that could be different from the subject in the P-RBAC per-
mission to which the obligation applies. This should not be
interpreted as giving a blank permission to the subject of
the obligation to execute the action imposed by the obliga-
tion. Independently of the obligation, the obligation subject
should have a permission to execute the action in the time
interval which the obligation must be fulfilled; otherwise the
obligation will be violated.

It is quite common that when defining a permission assign-
ment, the subject of the obligation is not fully identified. In
some cases it is assumed that the user that submitted the
action request is the subject of the obligation. There are
other cases in which the subject is expected to be from a
set of users assigned to a particular role. In those cases the
P-RBAC permission explicitly identifies the subject of the
obligation using a special set of context variables listed in
Table 1. The set of those special context variables is a sub-
set of set CV of context variables of LC0. These variables
are mainly used in conditions and as subjects of obligations.
Their use avoids the introduction of new notation in the
model to identify obligation subjects. Details of how they
are used will be apparent after we formally introduce the
model.

Our temporal constraint model is based on a simple notion
of time domain, that is, the pair (Z;6). In our context, each
element of Z is referred to as a time instant and 6 is a total
order on Z. In what follows, given t, t ′ ∈ Z, [t, t ′] denotes the
time interval starting at time instant t and ending at time
instant t ′. Next definition introduces a terse yet flexible
definition for temporal constraints which is the key notion
in our temporal constraint model.

Definition 2. A temporal constraint tc is a tuple (ts, te, cnt),
where ts, te ∈ Z, and cnt ∈ N∗. tc denotes a sequence of time
intervals defined as follows:

• [ts, te], [te + 1, 2te − ts + 1], ..., [ts + (cnt − 1)(te − ts +

1), te + (cnt − 1)(te − ts + 1)] if te > ts > 0;

• [ts−(cnt−1)(te−ts+1), te−(cnt−1)(te−ts+1)], ..., [2ts−

te + 1, ts − 1], [ts, te] if 0 > te > ts. ✷

For instance, a temporal constraint (3,7,3) represents a
sequence of time intervals: [3,7],[8,12],[13,17]. For a time
interval [ts, te], the time instants of the time interval are
ts, ts + 1, ..., te − 1, te. For instance, the time instants in
[3,7] are 3, 4, 5, 6, 7. For simplicity, we further assume
in this paper that time is relative, and we model it as an
integer representing the number of basic time instants from
a predetermined time instant, denoted by 0, which is related
to an action request. We identify two special time instants
that are related to the predetermined time instant 0: 1) a
time instant, referred to as decision time, that is equal to the
time instant at which the decision of granting the permission
to execute the action is made; 2) a time instant, referred to
as completion time, that is the time instant of the completion
of the action execution. For a time instant t, if t > 0, then t

represents |t| time instants after a completion time. If t < 0,

5



Table 1: The ICV Set
Name Domain Representing
self the set of users the user who submits the action request
auser the set of users a possible user
ra the set of roles the role of the user whom the variable auser represents
users the powerset of the set of users all possible users
rs the set of roles the role of users whom the variable users represents

then t represents |t| time instants before a decision time. For
a temporal constraint (ts, te, cnt) 3, if te 6 0, the temporal
constraint indicates that the executed obligation is a pre-
obligation and should be fulfilled during the time interval
between the request time and the decision time. If ts > 0, the
temporal constraint indicates that the associated obligation
is an post-obligation that should be fulfilled sometime after
completion time. As a special case, te = ts = 0 indicates a
post-obligation that should be fulfilled right after the action
has been executed.

The distinction between the time before granting permis-
sion and the time after the execution of the action gives
t = 0 a different meaning depending on whether t represents
a starting time ts or an ending time te. In classical ac-
cess control policies without obligations, the time at which
an action request occurs, the time at which to evaluate the
condition of applicable permission assignments, the time at
which o authorize the action, and the time when the action is
performed, are considered to be the same. In practice how-
ever these times are different especially when obligations and
temporal constraints are introduced. The following exam-
ple, with reference to Figure 2, illustrates the difference.

1. An employee submits a request to collect a child infor-
mation on 1/6/2008.

2. Because the verifiable parental consent w.r.t. the child
is not available, an applicable permission assignment
requires the employee to obtain a verifiable parental
consent within 6 days before making a decision for the
request. Since a time interval of 6 days is allocated
to the employee to obtain the consent, the decision
process about the action request is suspended until
1/12/2008.

3. The decision process is resumed and the conditions in
the permission start being evaluated from 1/12/2008.
A policy enforcement engine may need some additional
time, say 3 days, before authoring the action request,
for example to verify the validity of the parental con-
sent received and to verify whether applicable post-
obligations can be fulfilled in the near future.

4. The action request is authorized at 1/15/2008 assum-
ing all applicable post-obligations are fulfillable and
the condition in the permission is evaluated to be true.

5. Once the employee obtains a clearance to collect the
information, he/she may need some additional time,
say 2 days, to decide whether he really wants to per-
form the action or prepares for obligations that should
be performed immediately after the action.

3It is obvious that ts 6 te must hold.

6. The collecting action is performed on 1/17/2008. The
timer for post-obligations starts counting.

In a temporal constraint, when te = 0 and ts < 0, the
constraint requires that the evaluation of the pre-obligation
be completed before the evaluation of the permission con-
dition can start. Such requirements ensures that the exe-
cution of actions within the pre-obligation that affect the
value of context variables in permission conditions is com-
pleted before the permission condition is evaluated. For in-
stance, in the example policy “Before collecting, using or
disclosing personal information from a child, an operator
must obtain verifiable parental consent from the child’s par-
ent.”, the obligation to “obtain verifiable parental consent”
may affect a context variable vpc’s value by assigning to it
a value from the set { “yes”, “no” , and “na”}. The vpc’s
value in turn affects the evaluation of the conditions in the
policy that are used to decide whether children information
can be collected, used, or disclosed. ts = 0 represents a
different situation. If an action request is granted, it is pos-
sible that the subject who submits the request decides not
to execute the action because of the burden imposed by the
post-obligations. Therefore, it is reasonable that only after
the action has been performed the timer recording the time
interval allocated to post-obligations starts counting.

The key aspect of pre-obligations is that their fulfillment
affects decisions about access requests. In a temporal con-
straints (ts, te, cnt), te > 0 means that the fulfillment of the
obligation is not required to precede the decision. Thus,
the fulfillment has no real effect on the decision. Therefore,
it is not a “meaningful” pre-obligation and it is actually a
post-obligation because of te > 0. For such an obligation,
it is counter intuitive for a subject to fulfill the obligation
before the decision is made even though the temporal con-
straint allows this situation, because the decision could be
“deny”. Even if the decision is “permit” the subject may
refuse to carry on the action requested due to reasons like
heavy obligations. Therefore, in this situation, ts < 0 seems
not to make sense. In what follows, we assume (ts, te, cnt)

to be (0, te, cnt) if ts < 0 and will not discuss this situation
separately again.

The following examples show how some common temporal
constraints are expressed according to above definition. In
the following examples, we assume “day” as the basic unit
of each time instant, i.e. a time instant 1 represents 1 day.

• (−6, 0, 1): this temporal constraint requires that an
obligation be fulfilled within 7 days after an action
request and before the decision time, that is, before
making a decision on the action request, a 7-day time
period is allocated to fulfill the obligation.

• (−6, 0, 2): this temporal constraint requires an obliga-
tion to be fulfilled two times with 14 days after an

6



1/4/2008 2/4/2008

2/1/2008

1/6/2008

An action request is submitted

1/6/2008 - 1/12/2008

The time interval for pre-obligations

1/17/2008

The action is performed

ts = 0

1/15/2008

The action is authorized

1/12/2008

Condition evaluation is started

te = 0

1/17/2008 - 1/29/2008

The time interval for post-obligations

Figure 2: Important time instants on the timeline for the decision making on an action request

action request and before the decision time. One exe-
cution of the obligation happens at some time instant
in a time interval [-13,-7], and another execution hap-
pens at some time instant in a time interval [-6,0].

• (0, 181, 1): this temporal constraint requires that an
obligation be fulfilled within half a year after an action
is performed (the completion time).

• (0, 181,∞): this temporal constraint requires that an
obligation be fulfilled every half a year after an ac-
tion is performed, that is, after the action requested is
performed, an infinite number of 182-day time periods
are allocated to fulfill the obligation repeatedly, that
is, one obligation in each time period.

It should be noted that the fact that a conditional obliga-
tion should be fulfilled within a time period does not mean
that the obligation will be fulfilled within the time period.
For instance, if the condition in a conditional obligation can-
not be satisfied within its time period, the obligation will not
be fulfilled. However, the condition may be evaluated again
during the time period if the condition does not hold in pre-
vious attempts4. If cnt is equal to a positive integer n, the
corresponding obligation will be fulfilled at most n times
because the obligation condition may not always hold.

Readers may have noticed that in the last example it
seems that the obligation would be repeated an infinite num-
ber of times. In order to prevent a possible infinite obligation
fulfillments, we require that before starting a new obligation
cycle the policy enforcement engine checks the condition of
the obligation again. Only if the condition is still valid, the
new obligation cycle can be started. By adopting this ap-
proach, policy authors can set other constraints for repeat-
ing obligations other than repeating numbers. For instance,
by requiring the subject of an obligation with infinite cycles
to be in a special role, the obligation is actually suspended
after removing the subject from the role.

Definition 3. Let C be a set of all possible conditions ex-
pressible in LC0, U be a set of users, ICV be a set of special
context variables, A be a set of actions, O be a set of objects,
and TC be a set of temporal constraints. An obligation is
a tuple (c, s,a, ō, tc), where c ∈ C, s ∈ U ∪ ICV, a ∈ A,
ō ∈ P(O)(the powerset of O), and tc ∈ TC. ✷

4The maximal number of tries depends on implementation.

U represents both human subject and any other subject
who can initiate an action. To be clear, we call any object
who can initiate an action a user in this paper. O contains
any other component introduced in the definition, e.g. U,
ICV, and TC. Moreover, the set of data D, that is introduced
in original P-RBAC definition [21], is a subset of O as well.
It should be noted that in theory TC could be an infinite
set. Nonetheless, it is reasonable for us to assume that for
each deployment of Core P-RBAC there is only a finite set of
temporal constraints applicable. Based on this assumption,
we further conclude that the number of possible obligations
is finite as well. Some obligation examples using context
variables are as follows:

• (c, self,a, {o}, tc): if condition c is true, the subject who
submits the action request activating the obligation,
performs the action a on object o under the temporal
constraint tc.

• (ra = r,auser,a, {o}, tc): a user with role r is obligated
to perform the action a on object o under the temporal
constraint tc.

• (rs = r,users,a, {o}, tc): all users of role r are obligated
to perform the action a on object o under the temporal
constraint tc.

4.3 Revised Core P-RBAC Model
In the original definition of Core P-RBAC, we focused on

the privacy sensitive data only, which was reflected by the
fact that we only defined a data set D as the only possi-
ble objects for actions in our models. Our long term goal is,
however, to develop a unified RBAC model that directly sup-
ports both access control policies and privacy policies and
consequently to investigate the interactions between access
control policies and privacy policies. Since obligations are
special actions that some subjects are obligated to execute
in order to allow a subject to perform an action now, obliga-
tions in privacy policies require that access control policies
and privacy policies be integrated. For instance, in order
to perform an obligation, a policy enforcement engine may
have to check whether there is an access control policy al-
lowing the subject of the obligation to perform the action in
the obligation. Therefore, a revised definition of P-RBAC is
required to reflect such connection and directly model both
privacy and access control policies.

7



Definition 4. The revised Core P-RBAC model is com-
posed of the following components:

• A set D of data, a set U of users, a set R of roles, a
set Pu of purposes, a set A of actions, a set C of all
conditions expressible in LC0, and a set O of objects
such that D ∪U ∪ R ∪ Pu ∪A ∪ CV ⊂ O.

• A finite set TC of temporal constraints defined accord-
ing to Definition 2, when TC ⊂ O.

• A set Ob of obligations on O defined according to Def-
inition 3.

• A set P ⊆ C×A×P(O)×P(Pu)×P(Ob) of permissions.

• A set PA ⊆ R× P of permission assignments: a many-
to-many permission to role assignment relation.

• A set UA ⊆ U×R of user assignments: a many-to-many
user to role assignment relation. ✷

Sessions, a component of the RBAC standard [13], are
omitted here for simplicity. The concept of sessions could
be integrated in our model, but its details and the analysis
of the interaction between sessions and obligations are out
of the scope of this paper. As we can see, for any permission
p = (c,a, ō, p̄u, ōb), p is a regular access control permission
if c = ⊤, p̄u = ∅, and ōb = ∅. Therefore, the set of P-RBAC
permissions subsumes the set of RBAC permissions. A de-
tailed description about the differences between the revised
Core P-RBAC model and the previous model other than the
new obligation model is discussed in Appendix A.

4.4 Some Examples
We now show how privacy policies can be expressed as

Core P-RBAC permissions by using rules from COPPA and
GLB acts. In order to write concise permissions we use the
acronyms listed in Table 2.

Policy 1(COPPA): “Before collecting, using or disclosing
personal information from a child, an operator must obtain
verifiable parental consent from the child’s parent.”

We must define three permission assignments, each of
which corresponds to one of three actions: collect, use, and
disclose. Because they are similar, we only show the per-
mission related to collect. The corresponding permission as-
signment is PA1 reported in Figure 3. Because the original
policy does not specify a purpose, the purpose component is
an empty set. wd is a predefined constant number indicat-
ing the number of days to wait for the response. (−wd, 0, 2)

indicates that obtain is a pre-obligation and if there is no
reply in wd days an operator can ask again. The value na in-
dicates that the corresponding parent has never been asked
for consent before. If the value of vpc is not na, that is, it is
either yes or no, it is reasonable not to ask the parent again.

Policy 2(COPPA): “An operator is required to send a new
notice and request for consent to parents if there are material
changes in the collection, use or disclosure practices to which
the parent had previously agreed.”

This policy is a good example to show the expressivity of
our revised model. At first glance, it seems that we need
an event (material changes) to trigger the execution of some
actions by an operator. However, those actions are essen-
tially obligations required after an operator has performed
a modify action on some data. Therefore we do not need

Table 2: Acronyms Adopted in Examples

Sort Meaning
vpc context variable Verifiable Parental Consent
ci data object Children Information
pi context variable the Parent whose child Infor-

mation is collected, used,
or disclosed in permissions

cp role Children Parents
ap role Parents who share their

children information now
bp role Parents who once shared their

children information but do
NOT share now

na value Not Available
wd constant the number of Waiting Days
am data object some Agreed Material of

children information for
collection, use, or disclosure
between operators and parents

cui data object CUstomer Information
coi data object COnsumer Information
do context variable Data Owner whose information

is disclosed
nac role Companies that are Not

Affiliated with the company
that defines policies

an additional event system here. Another interesting aspect
is related to the “request for consent to parents”. Since Pol-
icy 1 has already required “verifiable parental consent” for
collecting, using or disclosing children information, we only
need to reset the value of the context variable vpc to be na in
the permission assignment related to Policy 2. After the re-
setting, the first action related to children information, e.g.
collecting, using, or disclosing, will require an operator to
obtain a new verifiable parental consent. The corresponding
permission assignment is PA2 in Figure 3.
⊤ means that the condition is always true. The reset ac-

tion resets the value of vpc to be na. A temporal constraint
(0, 0, 1) requires the corresponding obligations to be fulfilled
right after the action is performed.

It should be noticed that even though we explicitly place
an obligation to re-obtain a parent consent here, the reset

obligation is still required because the obligation“obtain ver-
ifiable consent” may take a few days to be fulfilled, and the
system should make sure that no operator can collect, use,
or disclose the children information during this period.

Policy 3(COPPA): “At any time, a parent may revoke
his/her consent, refuse to allow an operator to further use
or collect their child’s personal information, and direct the
operator to delete the information.”

Basically, the policy authorizes some permissions to a par-
ent who has allowed some operator to collect his/her chil-
dren information. In other words, permissions assigned to a
parent who has allowed operators to share his/her children
information are different from those of another parent who
has not. According to the spirit of RBAC, they are in differ-
ent roles. In order to model this policy, we have to identify
the most appropriate place to change the role of a parent.
Obviously, the best place is right after the operator receive

8



PA1 :(operator, vpc = yes, collect, {ci}, ∅, {(vpc = na, self,obtain, {vpc,pi}, (−wd, 0, 2))})

PA2 :(operator,⊤,modify, {am}, ∅, {(⊤, self, reset, {vpc}, (0, 0, 1)), (⊤, self,notify, {cp,am, change}, (0, 0, 1))})

PA3 :(ap,⊤, revoke, {vpc}, ∅, {(ra = operator,auser, revoke, {self,ap}, (0, 0, 1)), (ra = operator,auser,grant, {self,bp},

(0, 0, 1))})

PA4 :(ap,⊤, request, {operator,deletion}, ∅, {(ra = operator,auser,delete, {ci, self}, (0,wd, 1))})

PA5 :(bp,⊤, request, {operator,deletion}, ∅, {(ra = operator,auser,delete, {ci, self}, (0,wd, 1))})

PA6 :(company, ra = nac,disclose, {coi,auser}, ∅, {(⊤, self, send, {do,notice}, (0,wd, 1))})

PA7 :(company, ra1 = consumer,grant, {auser1, customer}, ∅, {(ra2 = company ∧ ra1 = customer,auser2, send,

{auser1,notice}, (0,wd,∞))})

Figure 3: Examples

the parent’s verifiable consent. In order to fully capture the
semantics of this policy, several permission assignments are
required, see PA3, PA4, and PA5 in Figure 3.

The revoke action will set vpc to no. Once a parent per-
forms the action allowed in the permission assignment, no
operators can further collect, use, or disclose his/her chil-
dren information according to Policy 1. Here we can see
the ambiguities in a natural language policy. The sentence
“refuse to allow an operator to further use or collect their
child’s personal information” does not seem to impose lim-
itations on the disclose action. If a policy only denies the
operator to further collect and use children information but
do not forbid the operator to further disclose children infor-
mation collected, the policy seems to be incomplete. Once a
parent revokes his/her consent, his/her role will be changed
from ap to bp. Since for parents in both ap and bp roles,
their children information may have been collected, we as-
sign them permissions to request some operator to delete
their children information.

Policy 4(GLB act ): “Consumers are entitled to receive a
privacy notice from a financial institution only if the com-
pany shares the consumers’ information with companies not
affiliated with it, with some exceptions. Customers must
receive a notice every year for as long as the customer rela-
tionship lasts.”

Consumers and customers are obviously different roles.
In order to grasp the essence of Policy 4, we need to specify
a repeating obligation for customers. At a first glance, it
is not obvious with which permission we can associate the
obligation. However, since one of the key differences between
customers and consumers is the repeating obligation, one
natural place for the obligation to appear is the permission
assigning a user to the role customer.

We do not use the role nac to replace auser in the objects
of action disclose, because the role represents all companies
in nac, and we believe that Policy 4 means if the company
discloses a consumer information to any company in role
nac it should notify the consumer. In the latter permission,
we do not use self in the obligation because for a repeat-
ing obligation, its initiator usually is not the initiator of the
action that causes the obligation. Even more interesting,
different obligation cycles may have different initiators even
though all of these initiators should belong to a same role:
company5. In other words, the employee who deals with

5In practice, we expect a more fine-grained role like
customer service to replace company.

a customer at the beginning may not be the employee who
will send privacy notices to the customer repeatedly. Be-
cause our obligation model requires that before starting a
new obligation cycle, the policy enforcement engine should
check the condition of the obligation again, the send obli-
gation will be stopped once the user loses his/her customer

role.

5. POLICY ANALYSIS
Large scale environments, such as enterprises, usually have

to comply with complex access control policies and privacy
policies. The more complex these policies are, the higher is
the possibility that policies contain mistakes. Such situation
can arise because of new requirements, new regulations, or
just human mistakes. Therefore, there is a need for tech-
niques to detect incorrect policies before they are deployed.

For convenience in defining concepts in this section, we
refer to an action together with the objects to which the
action applies as an action pair.

Definition 5. Let A be a set of actions, O be a set of
objects, (a, ō1) and (a, ō2), where a ∈ A and ō1, ō2 ∈ P(O),
be action pairs. (a, ō1) contains (a, ō2) if and only if ō2 ⊆ ō1,
written as (a, ō2) ⊆ (a, ō1). ✷

For instance, the action pair (correlate, {o1,o2,o3}) con-
tains the action pair (correlate, {o1,o2}). The containment
relation between action pairs is important when we define
the relation between permissions and obligations. For in-
stance, if (correlate, {o1,o2,o3}) is assigned to a role r, we can
safely infer that a user with role r can perform (correlate, {o1,o2})

as well. By contrast, if a role r only has a permission to per-
form action pairs (correlate, {o1,o2}) and (correlate, {o1,o3}),
r does not have sufficient privilege to perform (correlate, {o1,o2,o3}).

5.1 Invalid Permissions
In the proposed obligation model, the execution of an obli-

gation can trigger the execution of another obligation. We
refer to such phenomenon as obligation cascading. A user
that performs an obligation also needs a permission. The
permission may require the execution of some other obliga-
tions. The new obligations, in turn, may require the ex-
ecution of more obligations. We refer to the action pairs
involved in the obligation cascading for a permission as the
cascading bag 6 of the permission.

6The difference between a bag and a set is a bag can contain
repeating elements.

9



Definition 6. Let C be a set of all conditions expressible in
LC0, A be a set of actions, O be a set of objects, Ob be a set
of obligations, Pu be a set of purposes, p = (c,a, ō, p̄u, ōb),
where c ∈ C, a ∈ A, ō ∈ P(O), p̄u ∈ P(Pu), ōb ∈ P(Ob), be a
permission. p is an invalid permission if one of the following
conditions holds:

1. c is not satisfiable.

2. ob ′ = {c ′, s ′,a ′, ō ′, (t ′s, t
′
e, cnt ′)} ∈ ōb exists such that

one of the following conditions holds:

(a) c ′ is unsatisfiable.

(b) c ∧ c ′ is unsatisfiable.

(c) s ′ has no permission to perform action a ′ on ō ′.

(d) c ′ is equal to ⊤ and cnt ′ is ∞.

3. an action pair, which exists in the cascading bag of
permission p, requires p. ✷

If a condition in a permission or an obligation is not satisfi-
able, the permission or the obligation is useless (conditions 1,
2(a), and 2(b)). If an obligation requires a non-existing per-
mission, the obligation cannot be fulfilled (condition 2(c)).
Conditions 2(d) and 3 are used to prevent infinite obliga-
tions caused by a permission. Conditions 1-2(d) are easy to
check. We now present an algorithm to detect condition 3
(refer to Algorithm 1).

Lemma 1. Let Σ be a set of Core P-RBAC permissions.
If no invalid permission exists in Σ, given any permission p

in Σ, the cascading bag of p is finite. ✷

Proof. (Sketch) Since the set of actions is finite and the
set of objects is finite, the set of all action pairs is finite. Be-
cause no invalid permission exists, each action pair can only
appear once in the cascading bag. Therefore, the number
of action pairs in the cascading bag of p at most equals the
number of all action pairs.

Algorithm 1 Condition 3 detection

1: function C6Detection(p, cb) ⊲ p:
the permission to be checked; cb: the list of obligations,
initial value are the obligations in p

2: if cb == null then
3: return false
4: end if
5: ob← removehead(cb)
6: if p.actionpair ⊇ ob.actionpair then
7: return true
8: end if
9: pl← permissions required for ob

10: for all p ′ in pl do
11: concat cb with the obligation list in p ′

12: end for
13: return C3Detection(p, cb)
14: end function

The key idea of the algorithm is to build a list to store
the cascading obligations, and then recursively execute the
following steps: 1) retrieve an obligation from the list (the
obligation is removed from the list); 2) check the obligation;
3) retrieve the permissions required for the obligation; 4)

add all obligations in these permissions to the list. Assum-
ing the number of different action pairs to be n, the worst
case complexity is in O(n). The reason for such complexity
is that during the recursive calls, each action pair at most
appears once. Lines 6 and 9 may require some additional
time. However, given reasonable assumptions, such as the
maximal number of objects in an action pair to be a con-
stant, the maximal number of permissions of a role to be
a constant, and the maximal number of users of a role to
be constant, Lines 6 and 9 run in constant time. It should
be noted the algorithm is just for illustrating the basic idea
and is not optimized to detect condition 6 for all permissions.
The complexity of a naive application of this algorithm to
detect condition 3 for all permissions is O(mn) assuming
the number of permissions to be m. However, it is easy to
define an O(m + n) algorithm able to detect all invalid per-
missions caused by condition 3. One possible approach with
an O(m + n) complexity is to apply dynamic programming
by creating an array to record the intermediate results of
action pairs having been checked. The details are omitted
for space reason.

5.2 Coverage of Obligations
In Core P-RBAC, given an action request, pre-obligations

in all permissions that contain the action pair in the re-
quest have to be fulfilled before evaluating the conditions,
and post-obligations in all applicable permissions have to be
fulfilled in order to perform the action. Therefore, we can
expect that some action request could lead to a large number
of obligations returned, especially from ill-written policies.
Therefore reducing the number of obligations to be executed
may have significant practical impact. Obviously, the re-
maining obligations should not decrease the duty required
by the original policies. On the other hand, we can imagine
that many of these obligations are similar to each other since
they are obligations associated with similar permissions. If
the similarity can lead to some obligation relation like set
containment, we may safely remove some obligations.

In order to better understand the possibility before en-
tering into details, we first discuss one example. Given two
post-obligations, one requiring to send a privacy notice to
both children and a parent within one week, and another re-
quiring to send the same privacy notice to the parent within
two weeks, if both of them are in the post-obligation set re-
turned upon a user action request, it is reasonable that the
user only needs to fulfill the former one because the duty
represented in the latter one is “covered” by the former one.
In this paper, we use the term coverage to represent this
relation, that is, the former obligation covers the latter one.
There are several factors affecting the coverage relation of
obligations, and the first of them to be investigated is the
temporal constraint.

Definition 7. Let tc1 = (ts1, te1, cnt1) and tc2 = (ts2, te2, cnt2),
ts1, te1, ts2, te2 ∈ Z and cnt1, cnt2 ∈ N∗, be two temporal con-
straints. tc2 is stricter than tc1, written as tc2 ✄ tc1, if and
only if one of the following conditions hold:

• ts1 > ts2 > 0 and (te1 − ts1) > (te2 − ts2) and cnt2 >
cnt1.

• te2 6 te1 6 0 and (te1 − ts1) > (te2 − ts2) and cnt1 >
cnt2. ✷

10



For instance, given the post-obligation temporal constraints
(0, 5, 2) and (0, 4, 3), it is obvious that (0, 4, 3) is stricter
than (0, 5, 2) because (0, 4, 3) requires that the fulfillment
of a corresponding obligation be started right after an ac-
tion is performed, and completed in 5 days. Moreover this
obligation fulfillment cycle should be repeated 3 times. On
the other hand, (0, 5, 2) requires that the fulfillment of a
corresponding obligation be completed in 6 days and only
to be repeated 2 times. Post-obligations are duties; there-
fore the smaller the repeating number is, the less strict the
temporal constraint is.

Given the pre-obligation temporal constraints (-5,0,2) and
(-3,0,1), (-3,0,1) is stricter than (-5,0,2) because only one
chance, one 4-day time period, is given to fulfill a pre-obligation
by (-3,0,1) and two chances, two 6-day time periods, are
given to fulfill a pre-obligation by (-5,0,2). In order to un-
derstand the strictness of a temporal constraint in a pre-
obligation, we have to first realize the difference between pre-
obligations and post-obligations. Unlike post-obligations,
pre-obligations are actions that must be fulfilled before the
requested action can be allowed and the result of the ful-
fillment can determine whether the requested action is exe-
cutable or not7. For instance, the result of (obtain, {pi, vpc})

affects the value of vpc that further determines whether col-
lection of children information is allowed in COPPA policy 1.
Therefore, the smaller the count number in a pre-obligation
temporal constraint is, the stricter the temporal constraint
is. In other words, the bigger the count number in a pre-
obligation temporal constraint is, the more chances are that
the condition of the permission be satisfied. The careful
reader may argue that in practice a parent may give his
consent in the first time and revoke his consent the second
time. However, on the one hand, this situation is a result
of human factors that are out of the scope of our model
and therefore is not related to temporal constraints. On
the other hand, this situation can be avoided somewhat by
the condition of an obligation. For instance, the condition
vpc = na in the obligation actually prevents an operator
from asking vpc again once the operator obtains a positive
answer in his/her first attempt.

Definition 8. Let ob1 = (c1, s1,a1, ō1, tc1) and ob2 = (c2, s2,
a2, ō2, tc2), where c1, c2 ∈ C, s1, s2 ∈ CV ∪ U, a1,a2 ∈ A,
ō1, ō2 ∈ P(O), and tc1, tc2 ∈ TC, be obligations.

• a post-obligation ob2 covers a post-obligation ob1 if c1

implies c2, s1 = s2, (a1, ō1) ⊆ (a2, ō2), and tc2 ✄ tc1,
written as ob2 ✄ ob1.

• a pre-obligation ob2 covers a pre-obligation ob1 if c2

implies c1, s1 = s2, (a2, ō2) ⊆ (a1, ō1), and tc2 ✄ tc1,
written as ob2 ✄ ob1. ✷

Likewise, to understand the difference between the cov-
erage of pre-obligations and that of post-obligations, we
first have to understand some tricky but important differ-
ences between pre-obligations and post-obligations. A pre-
obligation is an action to be fulfilled in order to satisfy some
condition before the current action is taken. In order to im-
prove the success rate, sometime some alternatives are pro-
vided in addition to the mandatory objects in the action pair

7If a pre-obligation has no effect on the condition associ-
ated with a permission, the pre-obligation should be a post-
obligation.

of the obligations. The more alternatives provided by the
pre-obligation, the higher the possibilities for the condition
to be satisfied. Taking this (obtain, {pi, vpc}) obligation as
an example, if this obligation is combined with some incen-
tive, say a free children magazine subscription, rewarded to
the user giving his consent, it is easier to succeed. Therefore,
(obtain, {pi, vpc}) as a pre-obligation covers (obtain, {pi, vpc,
stimulus}), i.e. if (obtain, {pi, vpc}) succeeds, (obtain, {pi, vpc,
stimulus}) succeeds as well.

On the contrary, (obtain, {pi, vpc, stimulus}) as a post-
obligation covers (obtain, {pi, vpc}) because after the action
has been performed, these post-obligations become duties.
“c1 implies c2” means if c1 is true then c2 is true as well. If
a post-obligation pob covers another post-obligation pob ′,
pob has more chances to be invoked. If a pre-obligation eob

covers another pre-obligation eob ′, eob has less chance to be
invoked. A pre-obligation eob makes it less probable that
a condition be satisfied because of less “alternatives”, and
a post-obligation pob guarantees the answer to an action
request is in accordance to the stricter policies. Based the
definition of the coverage of obligations, we define rules to
safely reduce the number of obligations:

• If a pre-obligation eob covers another pre-obligation
eob ′, eob is removed because eob ′ actually increases
the probability that an action request is allowed with-
out violating policies.

• If a post-obligation pob covers another post-obligation
pob ′, pob ′ is removed because the duties of pob ′ are
fully covered by heavier post-obligations.

Based on the aforementioned definitions, now we present
Algorithm 2 to compare the coverage between two post-
obligations. The algorithm directly follows the definition.
It should be noted that to detect the implication relation
between two conditions, we directly apply the scope func-
tion which was introduced by Ni et al.[21], for computing the
set of context variable assignments to satisfy a condition. If
we reasonably assume the maximal number of atomic con-
ditions in each condition to be constant and the maximal
number of elements in each domain to be constant, line 19
runs in constant time. If we reasonably assume the maximal
number of objects in an action pair to be constant, lines 6
and 11 run in constant time as well. Since there is no line
that can run worse than in constant time, the algorithm runs
in constant time. Such complexity result is important be-
cause the need of reducing the number of obligations arises
when answering action requests. The coverage comparison
is the base of some other policy analysis, e.g., consistency
analysis, which is beyond the scope of this paper.

6. CONCLUSIONS
In this paper, we present a novel obligation model for P-

RBAC and elaborate its design choices. Two efficient algo-
rithms, one for minimizing invalid permissions and another
for comparing the coverage of two obligations, are proposed
as well. Due to the complexity of obligations in privacy
policies, the work reported in this paper is at its initial
stage. Many interesting problems are still left open. For
instance, the interactions between obligations and the ex-
ecution sequence of obligations need further investigation;
compensation and reward mechanisms regarding the status
of the fulfillment of obligations may be necessary for some

11



Algorithm 2 Coverage Detection

1: function Coverage(ob1,ob2) ⊲ ob1,ob2: two
obligations

2: rtn← 0
3: if ob1.s 6= ob2.s then
4: return 0 ⊲ 0 represents non-comparable
5: end if
6: if ob1.actionpair ⊆ ob2.actionpair then
7: lob← ob1
8: hob← ob2
9: rtn← 2 ⊲ 2 represents that ob2 covers ob1

10: end if
11: if ob1.actionpair ⊇ ob2.actionpair then
12: lob← ob2
13: hob← ob1
14: rtn← 1 ⊲ 1 represents that ob1 covers ob2

15: end if
16: if rtn = 0 or lob.tc 6 ✄hob.tc then
17: return 0
18: end if
19: if Scope(lob.c) 6⊆ Scope(hob.c) then
20: return 0
21: end if
22: return rtn

23: end function

cases; mechanisms for monitoring the fulfillment of pending
obligations and optimizing the sequence of the fulfillment of
pending obligations need to be devised; a solution to the
accountability problem [17] under P-RBAC context is inter-
esting as well.

7. ACKNOWLEDGEMENT
The work reported here has been supported by the IBM

OCR project “Privacy and Security Policy Management”
and the NSF grant 0712846“IPS: Security Services for Health-
care Applications”.

8. REFERENCES
[1] M. Backes, B. Pfitzmann, and M. Schunter. A toolkit

for managing enterprise privacy policies. In ESORICS,
pages 162–180, 2003.

[2] A. Barth, A. Datta, J. C. Mitchell, and
H. Nissenbaum. Privacy and contextual integrity:
Framework and applications. In S&P, pages 184–198.
IEEE Computer Society, 2006.

[3] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An
access control model supporting periodicity
constraints and temporal reasoning. ACM Trans.
Database Syst., 23(3):231–285, 1998.

[4] E. Bertino, P. A. Bonatti, and E. Ferrari. Trbac: A
temporal role-based access control model. ACM Trans.
Inf. Syst. Secur., 4(3):191–233, 2001.

[5] C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera.
Obligation monitoring in policy management. In
POLICY ’02: Proceedings of the 3rd International
Workshop on Policies for Distributed Systems and
Networks (POLICY’02), page 2, Washington, DC,
USA, 2002. IEEE Computer Society.

[6] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera.
Provisions and obligations in policy management and

security applications. In VLDB ’02: Proceedings of the
28th international conference on Very Large Data
Bases, pages 502–513. VLDB Endowment, 2002.

[7] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera.
Provisions and obligations in policy management and
security applications. In VLDB, pages 502–513.
Morgan Kaufmann, 2002.

[8] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera.
Provisions and obligations in policy rule management.
J. Network Syst. Manage., 11(3), 2003.

[9] M. A. Brown. Conditional obligation and positive
permission for agents in time. Nordic Journal of
Philosophical Logic, 5(2):83–112, 2000.

[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The ponder policy specification language. In
M. Sloman, J. Lobo, and E. Lupu, editors, POLICY,
volume 1995 of Lecture Notes in Computer Science,
pages 18–38. Springer, 2001.

[11] D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
Obligations and their interaction with programs. In
J. Biskup and J. Lopez, editors, ESORICS, volume
4734 of Lecture Notes in Computer Science, pages
375–389. Springer, 2007.

[12] Federal Trade Commision. Children’s online privacy
protection act of 1998. Available at
http://www.cdt.org/legislation/105th/privacy/coppa.html.

[13] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed nist standard for
role-based access control. ACM Trans. Inf. Syst.
Secur., 4(3):224–274, 2001.

[14] P. Gama and P. Ferreira. Obligation policies: An
enforcement platform. In POLICY, pages 203–212.
IEEE Computer Society, 2005.

[15] M. Hilty, D. A. Basin, and A. Pretschner. On
obligations. In S. D. C. di Vimercati, P. F. Syverson,
and D. Gollmann, editors, ESORICS, volume 3679 of
Lecture Notes in Computer Science, pages 98–117.
Springer, 2005.

[16] IBM Zurich Research Laboratory,Switzerland. The
enterprise privacy authorization language(epal 1.1).
Available at
http://www.zurich.ibm.com/security/enterprise-
privacy/epal/.

[17] K. Irwin, T. Yu, and W. H. Winsborough. On the
modeling and analysis of obligations. In CCS ’06:
Proceedings of the 13th ACM conference on Computer
and communications security, pages 134–143, New
York, NY, USA, 2006. ACM.

[18] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A
generalized temporal role-based access control model.
IEEE Trans. Knowl. Data Eng., 17(1):4–23, 2005.

[19] L. Kagal, T. Finin, and A. Joshi. A policy language
for a pervasive computing environment. In POLICY
’03: Proceedings of the 4th IEEE International
Workshop on Policies for Distributed Systems and
Networks, page 63, Washington, DC, USA, 2003.
IEEE Computer Society.

[20] Q. Ni, D. Lin, E. Bertino, and J. Lobo. Conditional
privacy-aware role based access control. In ESORICS
’07: Proceedings of the 12th European Symposium On
Research In Computer Security, pages 72–89. Springer,
2007.

12



[21] Q. Ni, A. Trombetta, E. Bertino, and J. Lobo. Privcy
aware role based access control. In SACMAT ’07:
Proceedings of the 12th ACM symposium on Access
control models and technologies, New York, NY, USA,
2007. ACM Press.

[22] OASIS. extensible access control markup language
(xacml) 2.0. Available at http://www.oasis-open.org/.

[23] H. Prakken and M. J. Sergot. Contrary-to-duty
obligations. Studia Logica, 57(1):91–115, 1996.

[24] M. Sailer and M. Morciniec. Monitoring and execution
for contract compliance. HPL-2001-261R1, HP LAB,
HP. Available at
http://www.hpl.hp.com/techreports/2001/HPL-2001-
261R1.html.

[25] P. Samarati, P. Y. A. Ryan, D. Gollmann, and
R. Molva, editors. Computer Security - ESORICS
2004, 9th European Symposium on Research Computer
Security, Sophia Antipolis, France, September 13-15,
2004, Proceedings, volume 3193 of Lecture Notes in
Computer Science. Springer, 2004.

[26] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[27] J. Skene, A. Skene, J. Crampton, and W. Emmerich.
The monitorability of service-level agreements for
application-service provision. In V. Cortellessa,
S. Uchitel, and D. Yankelevich, editors, WOSP, pages
3–14. ACM, 2007.

[28] United State Department of Health. Health insurance
portability and accountability act of 1996. Available
at http://www.hhs.gov/ocr/hipaa/.

[29] U.S. Senate Committee on Banking, Housing, and
Urban Affairs. Information regarding the
gramm-leach-bliley act of 1999. Available at
http://banking.senate.gov/conf/.

[30] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes,
M. Breedy, L. Bunch, M. Johnson, S. Kulkarni, and
J. Lott. Kaos policy and domain services: Toward a
description-logic approach to policy representation,
deconfliction, and enforcement. policy, 00:93, 2003.

APPENDIX

A. OTHER DIFFERENCES
The differences between the revised Core P-RBAC model

and the previous model other than the new obligation model
are as follows:

• Actions are performed on objects in our revised model
rather than a data item in previous model. The data
set D is a subset of O. Moreover, an action could be
performed on a set of objects. The new permission can
not only support regular access control policies, but
also establish a natural connection between actions in
permissions and actions in obligations. This topic will
be discussed in next section.

• Zero or multiple purposes can be indicated rather than
only a single purpose as in the previous model. If there
is no purpose in a permission, the permission is a regu-
lar one. If there are several purposes, say n, the permis-
sion is semantically equivalent to n permissions each of
which has one of these n purposes.

We use an example to illustrate the differences between
these two models and some interesting effects resulting from
these differences. Consider the following policy data set: C =

{c},A = {a},O = {o1,o2},Pu = {pu1,pu2},Ob = {ob1,ob2} and
permission: p = (c,a, {o1,o2}, {pu1,pu2}, {ob1,ob2}). Then p

is semantically equivalent to the following two permissions:
p1 = (c,a, {o1,o2}, {pu1}, {ob1,ob2}) and p2 = (c,a, {o1,o2},
{pu2}, {ob1,ob2}). In other words, the new purpose compo-
nent can be considered as a syntactic sugar for an efficient
representation of purposes in permissions. The rationale be-
hind this choice is easily understood.

However, p is not semantically equivalent to the following
two permissions: p3 = (c,a, {o1}, {pu1,pu2}, {ob1,ob2}) and
p4 = (c,a, {o2}, {pu1,pu2}, {ob1,ob2}). Once a permission p is
assigned to a role r, permission p3 and p4 can be treated as
if they were assigned to the role r as well. If a user assigned
to a role is allowed to perform an action on objects o1 and
o2, it is natural that the user should be allowed to perform
the action on an object o1 or on an object o2 separately.
Nevertheless, if a role is assigned both permissions p3 and
p4, users assigned to the role cannot perform an action a on
objects o1 and o2 simultaneously. For instance, a permission
p assigned to a role r1 is running a data mining application
dm on tables customer and orders, a permission p3 assigned
to a role r2 is running dm on customer, and a permission
p4 assigned to a role r2 is running dm on order. A user
u1 assigned to r1 usually can obtain more information that
another user u2 assigned to r2 because there is no way for u2

to infer more information by connecting the internal mining
results from these tables.

13


