
1

Learning Monopoly Gameplay: A Hybrid
Model-Free Deep Reinforcement Learning and

Imitation Learning Approach
Marina Haliem1∗, Trevor Bonjour1∗, Aala Alsalem1, Shilpa Thomas2, Hongyu Li2, Vaneet Aggarwal1,

Bharat Bhargava1, and Mayank Kejriwal2

Abstract—Learning how to adapt and make real-time
informed decisions in dynamic and complex environments
is a challenging problem. To learn this task, Reinforce-
ment Learning (RL) relies on an agent interacting with
an environment and learning through trial and error to
maximize the cumulative sum of rewards received by it.
In multi-player Monopoly game, players have to make
several decisions every turn which involves complex actions,
such as making trades. This makes the decision-making
harder and thus, introduces a highly complicated task for
an RL agent to play and learn its winning strategies. In
this paper, we introduce a Hybrid Model-Free Deep RL
(DRL) approach that is capable of playing and learning
winning strategies of the popular board game, Monopoly.
To achieve this, our DRL agent (1) starts its learning
process by imitating a rule-based agent (that resembles the
human logic) to initialize its policy, (2) learns the successful
actions, and improves its policy using DRL. Experimental
results demonstrate an intelligent behavior of our proposed
agent as it shows high win rates against different types of
agent-players.

Index Terms—Monopoly, Deep Reinforcement Learning,
Rule-Based Agent, Imitation Learning

I. INTRODUCTION

Despite numerous advances in deep reinforcement
learning, the majority of successes have been in two-
player, zero-sum games, where it is guaranteed to con-
verge to an optimal policy [1], such as Chess and Go
[2]. Rare (and relatively recent) exceptions include Blade
& Soul [3], no-press diplomacy [4], Poker1 [6], and
StarCraft [7]. There is already some evidence emerging
that pure deep reinforcement learning may not always
be the only (or even best) solution for multi-player
games with a distinctly game-theoretic component. For
example, the system used in [6] for multi-player Poker
games, relied on improved Monte Carlo counterfactual
regret minimization.

In particular, there has been little work on agent devel-
opment for the full 4-player game of Monopoly, despite

1 Purdue University, 2 University of Southern California, ∗ Equal
contribution

1We note that, even in this case, a two-player version of Texas Hold
’em was initially assumed [5] but later superseded by a multi-player
system.

it being one of the most popular strategic board games
in the last 85 years. Exceptions include [8] and [9], but
even in these, the authors consider an overly simplified
version of the game, and neither work considers trades
between players.

Monopoly is a turn-based game, where players take
turns by rolling two six-faced dice and act according
to the square they land on. In Monopoly, players come
across as landowners who seek to buy and sell a set of
properties. The winner is the one who forces every other
player into bankruptcy and thus, achieving a monopoly
over the real estate market.

Mainly, due to the complications involved in the
nature of the multi-player monopoly game where players
have to make several decisions every turn, it imposes sev-
eral challenges when it comes to representing Monopoly
as a Markov Decision Process (MDP). First of all, it
imposes a vast state space and a highly stochastic transi-
tion function. It also involves randomness, as players roll
the dice, occasionally draw cards and act accordingly. In
addition, it is an imperfect information game [10] [11]
- the order of the chance and community chest cards
is unknown, and incomplete information - the opponent
strategies are not known to the player. Monopoly also
involves complex actions, such as: making trades, which
makes the decision-making harder - what to offer up for
a trade, whom to offer it to, which offers to accept/reject,
etc. Thus, Monopoly introduces a highly complicated
task for an RL agent to play and learn its winning
strategies [12].

In this paper, we implement strong rule-based
agents that reflect successful tournament-level strate-
gies adopted by actual human players, including (i) a
preference for purchasing (or acquiring through trad-
ing) all four railroads, (ii) a preference for acquiring
the Oriental Avenue, Vermont Avenue, and Connecticut
Avenue (i.e., ‘Sky Blue’ and most rewarding to own)
properties, as well as (iii) a preference for purchasing
certain other high-reward property groups (especially, the
orange property group).

Besides, in this work, we utilize the RL approach for
modeling Monopoly as an MDP, allowing RL agent-

ar
X

iv
:2

10
3.

00
68

3v
1

 [
cs

.A
I]

 1
 M

ar
 2

02
1

2

players to learn to play and win. We present a hybrid
deep reinforcement learning agent that is capable of
(1) imitating the strong rule-based agent, to initial-
ize its strategy and start the learning process with a
strong policy. (2) improving its policy using deep Q-
learning that enables it to learn the successful actions and
thus, develops a winning strategy against four baseline
agent-players, one using a random policy, two with a
fixed, rule-based approach, and one using traditional Q-
learning.

The key contributions of this paper can be summarized
as follows:
• Modelling Monopoly as an MDP problem including

most of the universally adopted game-play rules for
Monopoly.

• Implementing three rule-based agents that reflect
successful human logic strategies for winning
Monopoly.

• Developing a hybrid RL agent that initializes its
policy by imitating a strong rule-based agent that
resembles human logic. This step helps our agent
to converge to the optimal policy faster than the
case if it starts its learning from scratch.

• Then, our RL agent improves its policy using deep
Q-learning to learn a winning strategy of playing
Monopoly.

• Our evaluation results show that our RL agent beats
the baselines of several settings. It outperforms the
smart baselines (that mimics the human logic) by
a margin of 15-25% in the percentage of game-
wins and about 40% - 60% in the percentage of
tournament-wins.

The rest of this paper is organized as follows: Section
II discusses the work in literature related to Monopoly
and multi-agent games. In Section III, we describe the
rules of the Monopoly game enforced in our simulator.
Then, Section IV explains our proposed three rule-based
agents for playing Monopoly. Section V describes our
proposed hybrid approach for learning to play and win
Monopoly. In Section VI, we discuss our experimental
settings and results. Finally, Section VII concludes our
paper.

II. RELATED WORK

Despite the all-time popularity of the game, an RL
approach for agents learning to play Monopoly has not
been sufficiently studied in literature. To the best of our
knowledge, there is very little related work in this regard.
In [8], authors proposed a novel representation of the
famous board game Monopoly as a Markov Decision
Process (MDP). There are some older attempts to model
Monopoly as Markov Process including [13]. However,
these attempts only considered a very simplified set
of actions that players can perform (e.g., buy, sell, do
nothing). In [8], an RL agent is trained and tested

with two different players, and a Q-learning strategy is
employed along with a neural network. In recent work
[9], authors apply a feed-forward neural network with the
concept of experience replay to learn to play the game.
However, their approach supports the idea that there is
no one strategy that will always win against any other
strategy while maintaining high win-rates.

Starting from its initial state until the end, all possible
moves of any game, especially turn-based games (e.g.,
board games) can be represented in a directed graph.
Nodes of the graph represent a specific possible state
of the game, and edges represent the transition from
one state to another. This structure is called a game
tree. Game trees could be used to find the best moves
in a game, but they would get large very quickly.
Hence the search operations become quite slow which is
undesirable. In [12], Monte Carlo Search Tree method
is applied to the game tree of Monopoly. The same
method is used in the software program AlphaGo to
play the board game Go [2]. Monte Carlo methods
rely on random sampling, where a game is played out
many times from start to end with random moves to
discover the best possible moves. This way the game
tree could be minimized as much as possible for speed-
up and lesser memory usage. However, in Monopoly, the
distribution of actions is skewed where certain actions
tend to occur more frequently than others, which results
in an unbalanced game tree.

In the Monopoly game, a move consists of differ-
ent action types such as: buying, selling, mortgaging,
improving, offering a property, as well as skipping a
player’s turn, and using cards or money to get out of
jail. While the action type “skip turn” has no further
details, a “buy” operation consists of many parameters
such as: who to buy from, how much to pay, and
which property to buy. Because of this, Monte Carlo
algorithm encounters actions with multiple parameters
more than those with lesser parameters within the whole
possible action space. Thus, the idea represented in [12]
is to separate the choice of action types (e.g., buy,
sell, skip turn) and the actual action parameters (e.g.,
options of chosen action type) from each other. So, the
Monte Carlo Search Tree method collects chosen action
types and actions separately from the randomly played
games, which results in a more balanced game tree. In
[12], authors claim that following this methodology has
made the Monopoly playing faster, allowed to remove
restrictions applied in the algorithm to get a decent
performance in the single-step methodology, and get
better game results. In [14], the same methodology is
applied for the game Settlers of Catan board game, and
similar successful results are indicated.

To mitigate the issue of unbalanced action distribution,
our proposed approach does not adopt random sampling
for exploration; instead, we initialize our agent’s policy

3

using a strong rule-based agent to provide a deterministic
option discovery to aid exploration.

Furthermore, unlike previous work [9], [8], we do not
limit the action space in Monopoly to buy, sell and do
nothing. Instead, we consider all possible actions (Table
I), including trades, to make the game as realistic as
possible. This makes the task more challenging since we
now need to deal with a high-dimensional action space.
To handle a larger action space, we propose a novel
hybrid approach that combines a rule-based strategy with
deep Q-learning. This hybrid agent, is trained with and
then tested against four other baseline players. Each
opponent uses a different strategy to play its game.
Thus, the novelties in this paper include the definition
of the state and action spaces of the game, the reward
function, the number of players as challengers, and the
use of a strategy that stabilize the learning scheme
while establishing a strong initial policy using imitation
learning. In addition to this, we propose three rule-based
agents (explained in Section IV) that reflect winning
strategies adopted by real human players. One of these
strong rule-based agents will, then, serve as the initial
strategy for our RL agent. Using imitation learning, our
DRL agent establishes a strong start policy instead of
learning from scratch (explained in Section V).

III. MONOPOLY GAME

Monopoly is a turn-based board-game where four
players take turns by rolling a pair of unbiased dice
and make decisions based on the square they land on.
Figure 1 shows the conventional Monopoly game board
that consists of 40 square locations. These include 28
property locations, distributed among 8 color groups (22
“Real Estate” properties), 4 railroads, and 2 utilities,
that players can buy, sell, and trade. Additionally, there
are two tax locations that charge players a tax upon
landing on them, six card locations that require players
to pick a card from either the community chest card
deck or the chance card deck [12], the jail location,
the go to jail location, the go location, and the free
parking location. Our game schema also specifies all
assets, their corresponding purchase prices, rents, and
color. The purchase prices are shown in every square
that corresponds to an asset in Fig. 1.

The rules of the game are very similar to the conven-
tional Monopoly game rules 2. A brief of these rules
is included in the Appendix. At startup, each player
gets $1500 in cash, and all remaining cash and other
equipment go to the Bank. On a player’s turn, the player
must roll the dice and move his/her token forward the
number of spaces as rolled on the dice. Players can do
a number of trades (e.g. building improvements, etc.) at
the start of their turn before rolling the dice. Some of

2https://www.hasbro.com/common/instruct/monins.pdf

Fig. 1: Monopoly Game Board

the rules lead to increased complexity and stochasticity
while others lead to race conditions. To control for these,
the following modifications have been made to the rules
of the games:
• Game Phases: The game is divided into three

phases: pre-roll, post-roll, and out-of-turn. These
are elaborated in more detail in section III-A.

• Doubles: The rules associated with rolling doubles
as in the US version of the board game have not
been considered. Doubles are treated similar to any
other dice roll since they do not have any effect on
any of the game aspects.

• Get out of Jail: If a player ends up in jail, it may
use the Get out of Jail Free card (if it has one), pay
a jail fine of $50 to get out of jail, or may decide
to skip the turn and remain in jail for that round of
the game. As previously mentioned, rolling doubles
are not treated differently, and cannot be used to get
out of jail as in a default US version of the board
game.

A. Game Phases

In an ordinary game of Monopoly, all active players
(i.e., players that have not lost) are allowed to take cer-
tain actions like mortgaging their property or improving
their property even when it is not their turn to roll dice.
If multiple players take actions simultaneously, the game
can become unstable. To avoid this and to be able to keep
track of all the dynamic changes involved in the game,
the game has been divided into three phases: pre-roll,
post-roll, and out-of-turn.

The player whose turn it is to roll the dice might want
to take some actions before the dice roll. These actions
are taken in the pre-roll phase. Once the pre-roll phase
has concluded for the player whose turn it is to roll the

4

dice, the other players are given the opportunity to take
actions before this player rolls the dice. This phase is
called the out of turn phase. Every player is allowed to
take actions in a round-robin manner in this phase until
all players decide to skip the turn, i.e., does not want to
take actions in that phase, or a pre-defined number of out
of turn rounds have been completed. The player whose
turn it is to roll the dice has to now roll the dice. The
player’s position is updated to the sum of the number
on the dice and this player enters the post-roll phase
where it can take actions based on its new position after
the dice roll. This phase is exclusive to the player who
rolled the dice.

Below, we specify the action choice associated with
each game phase:

• Pre-roll Phase: mortgage property, improve property,
use get out of jail card, pay jail fine, skip turn, free
mortgage, sell property, sell house or hotel, accept sell
property offer, roll die, make trade offer, accept trade
offer.

• Post-roll Phase: mortgage property, buy property, sell
property, sell house or hotel.

• Out-of-turn Phase: free mortgage, sell property, sell
house or hotel, accept sell property offer, make trade
offer, accept trade offer, skip turn, mortgage property,
improve property.

If a player has a negative cash balance at the end of
their post-roll phase, they get a chance to amend it. If
they are unsuccessful in restoring their cash balance to
0 or positive, bankruptcy procedure will begin and the
player loses the game.

B. Trading

Trading is a very important action that players can
use to exchange properties and/or cash to one or more
players. The following are the rules of trading:

• Players can trade only un-improved and un-
mortgaged properties.

• Players can make trade offers simultaneously to
multiple players. The player to whom the trade offer
is made is free to accept or reject the offer. The
trade transaction gets processed only if the player
accepts the trade offer. Once a trade transaction is
processed, all other simultaneous trade offers for
the same property are terminated.

• Any player can have only one outstanding trade
offer at a time, and no other player can make an
offer till the pending offer is accepted/rejected. In
other words, an existing pending offer has to be
accepted or rejected before another trade offer can
be made to this player.

IV. PROPOSED RULE-BASED APPROACH FOR
MONOPOLY

We propose rule-based agents that, in addition to
buying or selling properties, are also capable of making
trades. The rules are based on successful tournament-
level strategies adopted by actual human players, includ-
ing (i) a preference for purchasing (or acquiring through
trading) all four railroads, (ii) a preference for acquiring
the Oriental Avenue, Vermont Avenue, and Connecticut
Avenue (i.e., ‘Sky Blue’ and most expensive) properties,
and (iii) a preference for purchasing certain other high-
reward property groups (especially, the orange prop-
erty group). Several informal sources on the Web have
documented these strategies though they do not always
agree3. A full academic study on which strategies yield
the highest probabilities of winning has been lacking,
perhaps because the complex rules of the game have
made it difficult to analytically formalize.

In the following sections, we present the details of two
strong rule-based agents along with the details of another
simple rule-based agent that we use as a baseline in our
experiments.

A. Simple Baseline Agent

This is a very simple agent that does not think too
much before making a decision. During the pre-roll
phase, the agent ideally skips its turn. In the event that
its associated player is in jail, then the agent tries to
free that player from jail by either using the Get out
of jail free card if it has one or by paying the jail fine.
During the post-roll phase, the agent decides if its player
should buy an un-owned property upon landing on it or
not. The agent strategizes the most during the out of
turn phase. In this phase, the agent makes and accepts
one way trade offers, i.e., those that involve only one
property in exchange for cash. It accepts an open trade
offer that involves buying a property from another player
in return for cash if accepting the offer results in a
monopoly. It also tries to make a trade offer to another
player by offering a property in return for cash when
its cash balance is low. However, it is not capable of
making trade offers that involve exchange of properties.
The agent also makes the decision to free a mortgage or
improve a property by building houses and hotels if the
player has enough cash balance required to do so.

The agent is also capable of bidding when the bank
puts up a property for auction. The agent has to bid an
amount greater than the current bid in order to stay in
the auction. If the current bid b is lower than the price
of the property pi, then the new bid amount b̂ is set
to: b + pi−b

2 . If he current bid b satisfies b ≥ pi, the

3Two resources include http://www.amnesta.net/
monopoly/ and https://www.vice.com/en/article/mgbzaq/
10-essential-tips-from-a-monopoly-world-champion.

http://www.amnesta.net/monopoly/
http://www.amnesta.net/monopoly/
https://www.vice.com/en/article/mgbzaq/10-essential-tips-from-a-monopoly-world-champion
https://www.vice.com/en/article/mgbzaq/10-essential-tips-from-a-monopoly-world-champion

5

agent bids at a price greater than b, only if by obtaining
that particular property, the agent gets all the properties
in that color group and thus acquire a monopoly. If the
player has a negative cash balance, the agent attempts to
handle it by taking actions in the following order: selling
improvements back to the bank, mortgaging properties,
or selling properties back to the bank. If none of these
actions result in a non-negative cash balance, the player
goes bankrupt and loses the game.

B. Sophisticated Rule-based Agent

By designing this agent, we adopt a human-in-the-
loop concept where we utilize the human-player logic
towards winning this game to be our RL agent’s initial
strategy.

This agent has been built on top of the Simple
Baseline Agent with more sophisticated heuristics and
strategies. These are rules tried and tested by players
when playing monopoly tournaments. Trading has been
found to be a very effective strategy in improving player
performance if strategized well. Besides one way trade
offers, this agent is capable of making two way trade of-
fers that involve the exchange of properties with/without
the involvement of cash between players. It is also capa-
ble of rolling out trade offers simultaneously to multiple
players. By doing so, the agent increases the probability
of a successful trade, so it can acquire properties that
lead to monopolies of a specific color group more easily.
To yield a higher cash balance, the agent aggressively
seeks to improve its monopolized properties (by building
houses and hotels). Making thoughtful simultaneous
trade offers that involve offering properties of low value
to the player who is making the trade offer but of high
value to the player to whom the offer is being made
and vice versa while requesting properties in the trade
offer has a high offer acceptance rate. This has shown
to significantly improve performance compared to v1-
agent. In the event that its associated player ends up with
low or negative cash balance, this agent adopts better
heuristics to save its player from bankruptcy. This agent
makes stronger checks before mortgaging and selling
properties and/or improvements to ensure that the sale
helps it improve its cash balance.

C. Smarter Rule-based Agent

This agent adopts all the logic described in the previ-
ous sophisticated agent (Section IV-B). On top of that,
this agent would aggressively buy/bid/trade for all four
railroads and any properties in the Orange color set (St.
James Place, Tennessee Avenue, New York Avenue) or
in the Sky Blue color set (Oriental Avenue, Vermont
Avenue, Connecticut Avenue) that are the most rewarding
on the board. Once this agent lands on one of these
locations and no other player owns it, it would try to

Algorithm 1 Deep Q-learning with experience replay

1: Initialize replay buffer D, policy Q-network param-
eters θ and target Q-network parameters θ̂.

2: for e = 1 : Episodes do
3: Initialize the game board with arbitrary order for

player turns.
4: Get initial state s0
5: for t = 1 : T do
6: With probability. ε, select action at by imi-

tating rule-based agent
7: Else at ← argmaxaQ(st, a; θ)
8: Execute action based on at
9: Calculate reward rt and get new state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample random batch from D.
12: Set zi = ri + γ argmaxâQ̂(si+1, âi; θ̂)
13: Minimize (zi −Q(si, ai; θ)) w.r.t. θ.
14: θ̂ ← θ every N steps.
15: end for
16: end for

buy it, even if the agent has to sell some other properties
that it currently owns. If the bank auctions any of these
locations, this agent would attempt to buy it for the
lowest price possible by making minimal increments
to the current bid. This agent also prioritizes buying
properties that would lead to monopolizing any color
group, if/when it lands on them. Furthermore, this agent
persistently makes a trade offer to other players that
currently own one of the four railroads, or any of the
properties in the Orange or Sky Blue color set. Also,
this agent targets to monopolize two color sets at the
same time (Orange and Sky Blue) and will prioritize
acquiring properties that belong to these color groups
(Orange group is given a higher priority).

V. PROPOSED DEEP REINFORCEMENT LEARNING
APPROACH FOR MONOPOLY

The rule-based agents described in the previous sec-
tion are fixed-policy agents. We propose a model-free
agent that is capable of learning an optimal policy based
on its interactions with the Monopoly environment. For
this purpose, we adopt a deep reinforcement learning
(DRL) approach: Deep Q-Network (DQN) [15] trained
using experience replay [16]. The agent, instead of
random exploration, starts off by imitating one of the
strong rule-based agents, in order to guarantee a good
initialization and a faster convergence to an optimal
policy. As the learning proceeds and the agent learns
successful actions, its exploration rate decreases in favor
of more exploitation of what it has learnt. This results in
a hybrid agent that not only utilizes its own experience
memory but also leverages the intelligent behavior of

6

Fig. 2: Deep Reinforcement Learning Approach for Monopoly

a smart rule-based agent that mimics human logic. The
overall flow of our approach is presented in Fig. 2.

At each time-step t, the DRL agent selects an action
at ∈ A(st) based on the current state of the environment
st ∈ S, where S is the set of possible states and
A(st) is the finite set of possible actions in state st.
Similar to [15], we make use of the ε-greedy exploration
policy to select actions. However, instead of selecting
random actions during exploration, we utilize smart rule-
based agents to aid exploration. This results in our agent
being more decisive than the dithering behavior common
to random exploration. The agent imitates the policy
of a strong rule-based agent to select an action with
probability ε ∈ [0, 1] and the policy network to select an
action otherwise, i.e., during exploitation. This is further
explained in Section VI-A.

After an action is executed, the agent receives a
reward, rt ∈ R, and state of the environment is updated
to st+1. The transitions of the form (st, at, rt, st+1) are
stored in a cyclic buffer, known as the replay buffer.
This buffer enables the agent to randomly sample from
and train on prior observations. We make use of a target
network to calculate the temporal difference error. The
target network parameters θ̂ are set to the policy network
parameters θ every fixed number of steps. The procedure
is described in Algorithm 1. Each episode represents a
complete game and each time-step is every instance that
the DRL agent needs to take an action within the game.
Below, we describe the state space, action space, and
reward function of our DRL agent.

A. State Space

We base the state space on the one used in [8]. The
state vector contains three different parts:

1) Owned Properties
2) Current Position

3) Financial State
The properties are divided into 10 groups, 8 Monopoly

color groups, railroad group, and utilities group. To
represent the properties, we use a 10x2 matrix, where the
first column contains the percentage of the group owned
by the current player and the second column contains the
percentage of the group owned by all the other players
combined.

The current position of the player is represented
relative to a property group. The value ranges from 0
to 1 depending on the property group, the agent is on.
For example, if the agent is on an orange property, which
is at index 3, the position value would be 3 / (10-1) =
0.33. Similarly, this value would be 1, if the agent is on
a utility group (index = 9).

The financial state of the current player has two parts:
1) Current Cash, and 2) Owned Assets. Since the cash
value can be either positive or negative throughout the
game, we represent the current cash of a player using a
Sigmoid function: current cash

1+|current cash| . We represent owned
assets as a ratio of the number of assets owned by the
current player to that of the number of assets owned by
other players. This value becomes 1, when the current
player owns all the assets.

We get a 23-dimensional vector to represent the state
space – 20 values representing the properties, 1 for the
position information, and 2 values for the financial state
representation.

B. Action Space

To constrain the action space for Monopoly, we break
down the actions into two groups - 1) Property-group
actions, and 2) Non-group actions. As the name suggests,
a property group action is associated with a property,
for example, buy, sell, mortgage, etc. A non-group
action does not have any property associated with it, for

7

Property-group Actions Non-group actions
Free property Conclude actions

Mortgage property Skip turn
Sell property Pay jail fine
Buy property Use ‘Get out of jail’ card

Improve property Accept trade offer
Make a trade offer

TABLE I: Possible actions in the Monopoly Simulator

example, skipping a turn, getting out of jail, etc. We have
eleven distinct actions, six of which require a property
group. The set of possible actions is given in table I.

A property group comprises of 8 color groups (22
“Real Estate” locations), 4 railroads, and 2 utilities. Out
of the property group actions, “improve property” is
associated with only Real Estate locations, the rest are
applicable to any property. The action space is repre-
sented as a 63-dimensional vector - 8 values representing
the “improve property” action, 50 values representing
the 5 remaining actions associated with the 10 property
groups, and 5 non-group actions.

Each property group action (except “Buy Property”)
has multiple parameters that need to be specified. For
“Buy Property” action: a player is only allowed to buy a
property if it is owned by the bank. When the player
lands on a such a property, they have the option of
buying it. Note that “asset” and “property” are being
used interchangeably in this paper. Once the DRL agent
selects an action, at, we use the following auxiliary
functions to map parameters to the selected action:

Free mortgage: To determine which asset to free
from mortgage, this function returns the asset that has
the highest mortgage.

Mortgage property: Out of all un-mortgaged assets
of the player, this function returns the asset that has the
lowest mortgage value to be mortgaged.

Sell property: To decide on which property to sell,
this function returns, in order of preference, a hotel, a
house or the property itself as the parameter.

Improve property: A property can only be improved,
if it is an un-mortgaged “Real Estate” and no hotel exists
on it. If improvement is possible and the current player
has enough money to build a new house (or a hotel), then
house (or hotel) is returned by the mapping function as
a parameter for this action.

Make Trade Offer: The purpose of this action is
to make an exchange trade offer to other players. To
determine which player to trade with, and which asset
to offer, we create a priority list. This list consists of
all possible trade combinations of the assets of each
active player in the game and the current player’s assets.
The highest priority is given to the assets that allow the
current player to acquire a monopoly (own all assets in a
color group) and the lowest priority is given to assets that
would allow an opponent to monopolize a color group.
Otherwise, the priority is determined by the price of the

respective properties.
We note that the other actions in Table I have clear

meanings since there is only one option to skip turn, pay
jail fine, etc., and a specific modification on choosing
such an action is not needed, and thus the details are
omitted. We note that our choice of action space helps
reduce the overall complexity; since without grouping
of actions, the overall action space would become much
larger limiting efficient training of a learning algorithm.

C. Reward Function

We use a combination of a dense and a sparse reward
function (Eq. (1)). In order to reward/penalize a player
for the overall policy at the end of each game, we use a
constant value of ±10 for a win/loss respectively.

r =

+10 for a win
−10 for a loss
rx if the game is not over

(1)

where rx is the in-game reward for player x.
During a single game, we use a reward function (Eq. (3))
defined as the ratio of the current players’ net-worth (Eq.
(2)) to the sum of the net-worth of other active players.
The net worth of each active player is calculated after
the agent takes an action. This reward value is bounded
between [0,1] and helps in distinguishing the relative
value of each state-action pair within a game.

nwx = cx +
∑
a∈Ax

pa (2)

where nwx is the net worth of player x, cx is the current
cash with player x, pa is the price of asset a and Ax is
the set of assets owned by player x.

rx =
nwx∑

y∈Xi\xnwy
(3)

where rx is the in-game reward for player x and X is
the set of all active players.

D. DQN Architecture and Parameters

We use a fully connected feedforward network to
approximate Q(st, at) for the policy network. The input
to the network is the current state of the environment,
st, represented as a 23-dimensional vector as seen in the
previous section. We make use of 2 hidden layers, that
consist 1024 and 512 neurons respectively, each with a
rectified linear unit (ReLU) as the activation function:

f(x) =

{
x for x ≥ 0

0 otherwise
(4)

The output layer has a dimension of 63, where each
element represents the Q-value for each of the actions
the agent can take. For training the network, we use

8

Fig. 3: Average Q Values during Training

Fig. 4: Win Rate of DRL agent during Training

the Adam optimizer [17] and mean-square error as the
loss function. As stated earlier, we initialize the target
network with the same architecture and parameters as the
policy network. The parameters of the target network
are updated to that of the policy network every 1000
episodes and kept constant otherwise. We tuned the
DQN, and achieved the best results using the following
parameters: γ = 0.99 , learning rate α = 10−3 , batch
size = 128, and a memory size = 105.

VI. EXPERIMENTAL RESULTS

A. DQN Training and Testing

Training: We develop a Monopoly game simula-
tor using Python and Pytorch, available on GitHub4.
Our simulator enforces all the game rules explained in
Section III. We, then, train our RL agent using Deep
Q-learning for 2.3 million episodes, where we set 3

4https://github.com/mayankkejriwal/GNOME-p3

players adopting the policy of the smarter rule-based
agent (described in Section IV-C) as our opponents. The
training for our DRL agent starts with ε0 = 1, in tth game
for the player, we choose εt = .01+ .99×exp(−10−6t).
Unlike the common random ε - greedy exploration, our
DRL agent utilizes the policies of strong rule-based
agents to achieve a strong initialization of its policy.

In order to train the policy, we used a smarter rule-
based agent (described in Section IV-C) for the explo-
ration in the first 1.2 million steps (i.e., episodes). After
1.2 million steps, we observe that the win rate of our
agent starts to decline as shown in Fig. 4. This decline
is attributed to the fierce competition between all four
players, following the same policy of the smarter rule-
based agent (in Section IV-C) to take ownership of the
same set of assets. However, if a player learns this
and instead competes for a different set of properties,
it can still outperform the other players. To mitigate
this issue, for the next 1.1 million steps, our DRL
agent sets εt = .01 + .49 × exp(−10−6t) for game
t > 1.2M , and starts to imitate the sophisticated rule-
based agent (described in Section IV-B) by following its
policy to select an action with probability εt, and the
policy network to select an action with probability 1-
εt. This significantly improves the performance of our
agent against the other three players (which could adopt
the same or different policies) as will be shown through
experimental results in sections VI-B and VI-C.

Figure 3 shows the convergence of Q-values at around
1.8 million steps, whereas Fig. 4 shows how the winning
rate of our agent improves as learning proceeds. We can
observe that our agent recovers from the decline that
occurs between 1 and 1.2 million steps, and starts to
show a consistent increase in both the average Q-values
and the win rate until it converges at around 1.8 million
episodes (i.e., games).

Testing: For testing, we use our pre-trained agent in
each of the evaluation settings described in Section VI-B.
During testing, our hybrid DRL agent not only exploits
its learnt policy, but it also imitates the sophisticated rule-
based agent (in Section IV-B) with probability 0.2. This
hybrid execution results in improved performance for our
DRL agent, especially in more competitive settings with
multiple sophisticated-policy (Section IV-B) or smarter-
policy (Section IV-C) opponents.

B. Baselines and Evaluation Metrics

For evaluations, our Hybrid DRL agent plays against
three other players, who potentially adopt different poli-
cies, for 50 tournaments of 50 games each. We com-
pare our Hybrid Deep Reinforcement Learning approach
against three players of different combinations from the
baselines explained below:

1) Standard DQN Player: that follows an ε-greedy
exploration policy to select actions during training,

9

Basic DQN
(P1)

Simple Baseline
(P2)

Sophisticated Baseline
(P3)

Smarter Baseline
(P4)

Hybrid DRL
(Ours)

Opponent
Types

Evaluation
Settings

Game
Win
Rate

Tour-
nament

Win
Rate

Game
Win
Rate

Tour-
nament

Win
Rate

Game
Win
Rate

Tour-
nament

Win
Rate

Game
Win
Rate

Tour-
nament

Win
Rate

Game
Win
Rate

Tournament
Win
Rate

H
om

og
en

eo
us

O
pp

on
en

ts

3 P1s 24.2 24 42.7 94 45 100 42.6 100 54.5 100

3 P2s 17.5 4 24 20 58.4 100 54 100 73 100

3 P3s 3.4 0 9 0 25.5 24 25.8 22 41 88

3 P4s 1.2 0 10 0 26 22 25.5 20 40 84

H
et

er
og

en
eo

us
O

pp
on

en
ts

2 P1s + 1 P2 19.1 0 33.7 46 57 100 52.4 100 66 100

2 P1s + 1 P3 16.5 2 22.4 1 42.6 40 46.5 68 53 90

2 P1s + 1 P4 17.5 4 25 2 39.3 24 42.2 48 57.3 96

1 P1 + 2 P2s 17 4 28 28 60.8 100 55 100 71.3 100

1 P1 + 2 P3s 7.5 0 12 0 33 38 45.2 91 47 98

1 P1 + 2 P4s 5.1 0 15.2 0 28.4 14 33 32 48.2 100

1 P1 + 1 P2 +
1 P3

8.9 0 17.3 0 41.8 54 44 70 55.3 94

1 P1 + 1 P2 +
1 P4

10.9 0 17.2 0 37.6 20 41.5 70 56.4 98

1 P1 + 1 P3 +
1 P4

7.6 0 13.3 0 26 5 35 52 44 86

2 P2s + 1 P3 6.5 0 13.6 0 36.5 42 33.5 22 53 94

2 P2s + 1 P4s 7.4 0 16.7 0 41.6 72 36.6 30 56 100

1 P2 + 1 P3 +
1 P4

2.8 0 10.8 0 31.6 40 28 18 43.5 86

2 P3s + 1 P2 3.3 0 9.6 0 29 32 26.7 21 44.5 92

2 P3s + 1 P4 1.2 0 9.2 0 23.9 18 24 19 35 38

2 P4s + 1 P2 3.3 0 11.2 0 33.3 42 29.4 22 42 84

2 P4s + 1 P3 2.3 0 9.3 0 24.5 26 24 21 37 76

TABLE II: Evaluation Settings with homogeneous and heterogeneous opponent types and the corresponding win rates (%) of
four baselines Vs. our proposed Hybrid DRL agent

where it picks randomly one of the allowable ac-
tions to perform at time step τ with probability
ε ∈ [0, 1] and exploits its experience memory and its
policy network to select an action with probability
1 − ε. However, it does not adopt any imitation
learning, it starts learning from scratch without
initializing its strategy. We have trained this agent
for 1.5 million episodes. We will denote this player
P1 henceforth.

2) Simple rule-based player: that is explained in
Section IV-A, will be denoted P2 henceforth.

3) Sophisticated rule-based player: that adopts ad-
ditional human logic in handling more complex
situations during the game, explained in Section
IV-B and will be denoted P3 henceforth.

4) Smarter rule-based player: that adopts the com-
plex logic of the P3 in addition to aggressively
bidding and targeting more expensive assets to own,

as explained in Section IV-C. We denote this player
P4.

Table II shows the different settings (i.e., compositions
of three opponents) utilized for evaluations against our
DRL player. For each one of these settings, we calculated
the average win rate of our Hybrid DRL agent over
50 tournaments, each of 50 games. We investigate both
the game win rate (percentage of game-wins out of all
2500 games), and the tournament win rate (percentage
of tournament-wins out of all 50 tournaments). Note
that, the player with the most game wins in a given
tournament is considered the tournament winner, and ties
are not counted towards the tournament win rate.

We hypothesize that our DRL agent will be able to
beat all settings that are composed only of P1 and
P2 opponents by a large margin, due to learning the
strong policy of the smarter rule-based agent (in Section
IV-C). In addition, it will also outperform in settings

10

that involve several P3 opponents as it is trained to
beat the smarter rule-based agent. However, it becomes
more challenging when there is more than one P4 in the
opponents, as their policies start to fire back on each
other as they compete for the same set of properties. In
that case, a strong rule-based agent that might not be
as smart can win over. We hypothesize that our hybrid
DRL will still outperform in this case, because it not
only exploits its learnt policy that started off by imitating
the smarter rule-based agent (in Section IV-C, but it
also utilizes the policy of the sophisticated rule-based
agent (in Section IV-B). We will also show that even in
the most competitive settings where the opponents are
composed of strong players (i.e., P3s and P4), our DRL
agent outperforms by a significantly large margin in both
performance measures.

C. Results Discussion

We test our proposed DRL agent against homogeneous
opponents, where all the opponents adopt the same
policy for playing; as well as against heterogeneous
opponents, where the opponents adopt varying policies.
From our simulation, we observe that the hypothesis for
each baseline comparison has been supported for the
most part by our experimental results. In Table II, we
investigate the performance of our proposed framework
in comparison to all other baselines, where we show
the game and tournament win rates of each of the four
baselines as well as those of our proposed hybrid DRL
agent. The highest game win rate among all baselines is
highlighted in purple, while the highest tournament win
rate is highlighted in violet.

We can observe that in homogeneous settings, both P3

and P4 wins against all 3 P3s or P4s by ≈ 25%; while
our proposed DRL agent exceeds by 15% to win ≈ 40%
of the games and achieves 4 times their tournament
win rate reaching > 80%. For heterogeneous settings,
we conclude that the smarter baseline P4 is able to
outperform other baselines in almost all settings that
has ≤ 1 P3 or P4 opponent players. However, when
this increases to involve 2 or more P3s or P4s, the
sophisticated baseline P3 tends to outperform the other
baseline. This is attributed to the fact that the higher the
number of players adopting the same policy, the more it
becomes a disadvantage to all of them as the competition
becomes more fierce on the set of properties they are
targeting.

However, our hybrid DRL approach is able to achieve
the balance, and performs winning actions in all settings
that enable it to outperform all baselines. The hybrid
execution of our agent as it exploits its learnt policy
with probability 0.8, and utilizes the policy of the so-
phisticated rule-based agent with probability 0.2, allows
it to reach this balance. Our experimental results support
this hypothesis, as we can observe that our approach

exceeds the best baseline performance in the game win
rate by at least a margin of 15 − 25%, and > 40% in
the tournament win rate in all the previously mentioned
settings. In addition, in the completely heterogeneous
settings, where none of the opponents adopt the same
policy, our proposed hybrid agent excels against all other
baselines, by showing a 10% increase in the game win
rate, and > 25% increase in the tournament win rate over
the best baseline results. Besides, in the most competitive
settings, where the set of opponents is composed entirely
of strong agents (i.e., P3 and P4 only), our proposed
baseline shows an improvement of 10−15% in the game
win rate, and 20− 50% in the tournament win rate.

VII. CONCLUSION

In this paper, we utilize a deep reinforcement learning
(DRL) approach to model Monopoly as an MDP. Our
hybrid DRL approach starts its learning procedure by
imitating a strong rule-based agent (that mimics human
logic) to initialize its policy and to obtain decisive
options that aid its exploration. Then, our agent improves
its policy using deep Q-learning that converges, after
around 1.8 million episodes, to a winning strategy. In
addition, we propose three strong rule-based agents that
reflect successful strategies adopted by actual human
players. Finally, our evaluation results show the effec-
tiveness of our approach in outperforming all baselines,
in both homogeneous and heterogeneous settings, by a
large margin (above 15% in the game win rate, and
above 40% in the tournament win rate). Extension of
this work to train multiple agents using Multi-Agent
Reinforcement Learning (MARL) is left as future work.

REFERENCES

[1] A. Celli, A. Marchesi, T. Bianchi, and N. Gatti, “Learning
to correlate in multi-player general-sum sequential games,” in
Advances in Neural Information Processing Systems, 2019, pp.
13 076–13 086.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershel-
vam, M. Lanctot et al., “Mastering the game of go with deep
neural networks and tree search,” nature, vol. 529, no. 7587, pp.
484–489, 2016.

[3] I. Oh, S. Rho, S. Moon, S. Son, H. Lee, and J. Chung, “Creating
pro-level ai for a real-time fighting game using deep reinforce-
ment learning,” IEEE Transactions on Games, 2021.

[4] P. Paquette, Y. Lu, S. S. Bocco, M. Smith, O. G. Satya, J. K.
Kummerfeld, J. Pineau, S. Singh, and A. C. Courville, “No press
diplomacy: Modeling multi agent gameplay,” in Advances in
Neural Information Processing Systems, 2019, p. 4474 4485.

[5] M. Moravčı́k, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard,
T. Davis, K. Waugh, M. Johanson, and M. Bowling, “Deepstack:
Expert level artificial intelligence in heads up no limit poker,”
Science, vol. 356, no. 6337, p. 508 513, 2017.

[6] N. Brown and T. Sandholm, “Superhuman ai for multiplayer
poker,” Science, vol. 365, no. 6456, p. 885 890, 2019.

[7] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds,
P. Georgiev et al., “Grandmaster level in starcraft ii using multi
agent reinforcement learning,” Nature, vol. 575, no. 7782, p. 350
354, 2019.

11

[8] P. Bailis, A. Fachantidis, and I. Vlahavas, “Learning to play
monopoly: A reinforcement learning approach,” in Proceedings
of the 50th Anniversary Convention of The Society for the Study of
Artificial Intelligence and Simulation of Behaviour. AISB, 2014.

[9] E. Arun, H. Rajesh, D. Chakrabarti, H. Cherala, and K. George,
“Monopoly using reinforcement learning,” in TENCON 2019 -
2019 IEEE Region 10 Conference (TENCON), 2019, pp. 858–
862.

[10] F. Cacciamani, “State of the art on: Efficient solutions for
adversarial team games,” 2019.

[11] A. Celli, M. Ciccone, R. Bongo, and N. Gatti, “Coordination
in adversarial sequential team games via multi-agent deep rein-
forcement learning,” arXiv preprint arXiv:1912.07712, 2019.

[12] S. Sammul, “Learning to play monopoly with monte carlo tree
search,” Computer science bachelor thesis, School of Informatics,
University of Edinburgh, 2018.

[13] R. B. Ash and R. L. Bishop, “Monopoly as a markov process,”
Mathematics Magazine, vol. 45, no. 1, pp. 26–29, 1972.

[14] M. S. Dobre and A. Lascarides, “Exploiting action categories in
learning complex games,” in 2017 Intelligent Systems Conference
(IntelliSys). IEEE, 2017, pp. 729–737.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Os-
trovski et al., “Human-level control through deep reinforcement
learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[16] L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Machine learning, vol. 8, no.
3-4, pp. 293–321, 1992.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

1

APPENDIX

A. General Rules

• During the start of the game, each player gets $1500 in
cash while the Bank holds on to the remaining cash
and ownership of properties. The player must roll a
pair of dice during its turn and move forward by the
sum of the number on the dice.

• If the player lands on an un-owned property, the player
may buy it for the price listed on that property’s space.
If he/she agrees to buy it, he/she pays the Bank that
amount and receives the deed for that property. If
he/she refuses to buy the property for the amount
stated, the property is auctioned. Players must bid an
amount greater than the existing bid in order to remain
in the in the auction. The player that bid the highest
amount wins the auction. Railroads and utilities are
also considered properties.

• If the player lands on an un-mortgaged property owned
by another player, he/she pays rent to that person, as
specified on the property’s deed.

• If the player lands on the Luxury Tax or Income Tax
locations, it must pay an the stated tax amount to the
Bank.

• If the player lands on a Chance or Community Chest,
the player takes a card from the top of the respective
pack and performs the instruction given on the card.

• The player may sell property and improvements
(houses and hotels) back to the Bank at half the
purchase price

• In this paper, doubles do not receive any special
treatment.

• When in jail, a player may use the “get out of jail”
free card or pay the $50 jail fine or can skip one
turn. Players in jail are still allowed to collect rent
and perform other out of turn and pre-roll actions.

B. Construction Rules

• Once a player owns all properties of a colour group,
i.e., it has acquired a “Monopoly”, the rent on all
unimproved properties of that color group are doubled,
even if any of the properties in that color group are
mortgaged.

• The upper limit for the maximum number of houses
available with the bank for purchase during a game
is 32. If all the 32 houses are bought by the players,
then no more houses can be purchased from the bank
until one or more houses are returned to the bank.
The upper limit for the maximum number of hotels
available with the bank for purchase during a game is
12.

• Properties must follow the uniform improvement rule,
i.e., each house must be built on the property with the
least number of houses in that color group. A hotel
may be setup only after all the properties in that color

group have been improved with four houses each. A
hotel can be setup by paying the price of an additional
house and by returning the four houses back to the
Bank.

• At any time a player may, to raise cash, sell hotels
and houses back to the Bank for half the purchase
price of the houses or hotels. Also, properties with
no houses or hotels may be mortgaged for half of
the property price. A property does not collect rent
while mortgaged and may not be developed. To de-
mortgage a property a player must pay interest of
10% in addition to the mortgage price. Whenever a
mortgaged property changes hands between players,
either through a trade, sale or by bankruptcy, the
new owner must immediately pay 10% interest on the
mortgage and at their option may pay the principal
or hold the property. If the player holds the property
and later wishes to lift the mortgage they must pay an
additional 10% interest at that time.

• RailRoads: The rent a player charges for landing on
a railroad varies with the number of railroads that are
also owned by a player. The rent is as follows: Charge
$25 if one is owned, $50 if two are owned, $100 if
three are owned, $200 if all four are owned.

• Utilities: After a player lands on one utility to owe
rent, the rent is 4 times the amount rolled, if the other
player owns one utility. If the other player possesses
both utilities, the rent is 10 times the amount rolled.

	I Introduction
	II Related Work
	III Monopoly Game
	III-A Game Phases
	III-B Trading

	IV Proposed Rule-Based Approach for Monopoly
	IV-A Simple Baseline Agent
	IV-B Sophisticated Rule-based Agent
	IV-C Smarter Rule-based Agent

	V Proposed Deep Reinforcement Learning Approach for Monopoly
	V-A State Space
	V-B Action Space
	V-C Reward Function
	V-D DQN Architecture and Parameters

	VI Experimental Results
	VI-A DQN Training and Testing
	VI-B Baselines and Evaluation Metrics
	VI-C Results Discussion

	VII Conclusion
	References
	VII-A General Rules
	VII-B Construction Rules

