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Abstract—With the development of cloud computing, more 

and more data owners are motivated to outsource their docu-

ments to the cloud and share them with the authorized data us-

ers securely and flexibly. To protect data privacy, the documents 

are generally encrypted before being outsourced to the cloud and 

hence their searchability decreases. Though many privacy-pre-

serving document search schemes have been proposed, they can-

not reach a proper balance among functionality, flexibility, secu-

rity and efficiency. In this paper, a new encrypted document re-

trieval system is designed and a proxy server is integrated into 

the system to alleviate data owner’s workload and improve the 

whole system’s security level. In this process, we consider a more 

practical and stronger threat model in which the cloud server 

can collude with a small number of data users. To support mul-

tiple document search patterns, we construct two AVL trees for 

the filenames and authors, and a Hierarchical Retrieval Fea-

tures tree (HRF tree) for the document vectors. A depth-first 

search algorithm is designed for the HRF tree and the Enhanced 

Asymmetric Scalar-Product-Preserving Encryption (Enhanced 

ASPE) algorithm is utilized to encrypt the HRF tree. All the 

three index trees are linked with each other to efficiently support 

the search requests with multiple parameters. Theoretical anal-

ysis and simulation results illustrate the security and efficiency 

of the proposed framework. 

Index Terms—Cloud computing, privacy-preserving, search-

able encryption, document ranked retrieval. 

I. INTRODUCTION 

LOUD computing is widely treated as a promising information 

technique (IT) infrastructure because of its powerful functional-

ities. It can collect and reorganize huge resources of storage, compu-

ting, communication and applications. This makes the cloud users 

can access the IT services in a flexible, ubiquitous, economic and 

on-demand manner [1]. Attracted by these excellent properties, more 

and more data owners tend to outsource their local document man-

agement systems to the public cloud. However, an accompanying 

challenge is how to protect the privacy of sensitive information while 

maintaining the usability of the uploaded data [2]. Clearly, all these 

documents need to be encrypted before being outsourced and hence 

it is severe to design proper mechanisms to realize basic operations 

on the encrypted document collection. In general, the basic function-

alities of a document management system include INSERT, DELETE, 

MODIFY and SEARCH. The first three operations on encrypted da-

tabase will be discussed in Section VI.C and we now mainly focus 

on document retrieval mechanism over encrypted cloud files. 

Many encrypted document retrieval schemes have been proposed 

and they can be divided into several categories based on their func-

tionalities, including single keyword Boolean search schemes [3], 

[4], [5], [6] single keyword ranked search schemes [7], [8], [9], [10], 

[11] and multi-keyword Boolean search schemes [12], [13], [14], 

[15], [16], [17], [18], [19], [20]. However, these schemes cannot 

fully satisfy the data users in terms of document retrieval. In real life, 

it is extremely common for us to use a set of keywords, such as 

“searchable”, “encryption”, “cloud” and “document”, to search the 

interested files in a particular field. Moreover, we hope that the re-

turned results should be sorted in order based on the correlations to 

the provided keywords. Unfortunately, none of the above schemes 

can completely meet these requirements. 

Recently, privacy-preserving multi-keyword ranked document 

search schemes have gained extensive attentions of researchers [21], 

[22], [23], [24], [25]. These schemes make the data users able to re-

trieve encrypted documents based on a set of keywords and the 

search processes are similar to that on the plaintext documents from 

the perspective of data users. Compared with multi-keyword Bool-

ean search, these schemes are more practical and in conformity with 

the users’ retrieval habits. However, these schemes can be further 

improved in the following aspects. 

First, most existing schemes assume that all the data users are 

trustworthy. This assumption is almost impossible in real life. In fact, 

the cloud server can easily disguise itself as a data user to whee-

dle the secret keys out from the data owner with an extremely low 

cost. Once the cloud server gets the secret keys, all the encrypted 

documents can be easily decrypted and this is indeed a great blow to 

the existing schemes. This is the most important cause of designing 

a novel and practical framework for secure document retrieval in en-

crypted cloud file systems. Another challenge is that the disguised 

data users may distribute the decrypted documents to the public. For-

tunately, many schemes [26], [27], [28] have been proposed to track 

the source of file leakage and this can effectively prevent the docu-

ments from leaking. Considering that this doesn’t fall in the scope of 

this paper, we ignore this challenge in the rest. 

Second, most existing schemes focus on only one type of docu-

ment retrieval manner and the data users’ search experience can be 

further improved. In reality, the data users may need to search a set 

of documents by providing filenames, authors, several keywords or 

any combination of them. Intuitively, we can treat the filenames and 

authors as common keywords like most existing schemes. However, 

this manner may decrease the search accuracy. For example, a data 

user wants to search all the research papers of author “Bob” who is 

a well-known computer scientist. Clearly, except for Bob’s papers, 

keyword “Bob” also appears in many other papers that reference 

Bob’s work and most of these papers should also contain keyword 

“computer”. Therefore, the data user cannot accurately obtain the in-

terested papers by searching keywords “Bob” and “computer”. An-

other possible method is integrating the multi-keyword Boolean 

query schemes [12], [13], [14], [15] to the multi-keyword ranked 

search schemes in [21], [22], [23], [24], [25]. Specifically, the key-

word-based Boolean search can first return the candidate documents 

that contain specific filenames and authors; then, multi-keyword 

ranked search schemes can rank the candidate documents and return 

the documents related with the keywords contained in the search re-

quest. However, this method is extremely time-consuming consider-

ing that the complexity of keyword-based Boolean search is linear 

to the size of the whole document collection. Therefore, we need to 

design a totally new framework to satisfy the data users rather than 

simply combine two types of existing document search schemes. 

Third, the search efficiency can be further improved. In multi-

keyword ranked document search schemes, a keyword-based index 

tree is used to search the interested documents. However, it is ex-

tremely difficult to design a keyword-based index tree which can 

perfectly balance the search efficiency and accuracy. Though the 
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keyword-balanced binary tree can provide accurate search results, its 

efficiency is sensitive to the input order of the document vectors [22]; 

in contrast, the hierarchical-clustering-based index tree provides a 

better-than-linear search efficiency but result in precision loss [23]. 

Moreover, searching a keyword tree consumes much more time 

compared with that of searching a filename tree or an author tree 

considering that the keyword tree is much more complex. 

To improve the security and user experience of encrypted docu-

ment retrieval system, we consider a stronger threat model in which 

the cloud server can collude with a small number of data users to 

collect private information of the documents and index structures. 

Then, this paper designs a new encrypted document storage and re-

trieval framework in which a proxy server is employed to act as a 

bridge between the cloud server and data users. Three index trees 

including filename tree, author tree and HRF tree, are constructed. 

In this way, the filenames, authors and common keywords in search 

requests are of different weights and they are treated differently. The 

nodes in the three trees are linked with each other based on document 

identifiers to efficiently support the search requests with multiple pa-

rameters. A methodical mechanism is designed to make full use of 

the information in a query. To support multi-keyword ranked search, 

the widely used TF-IDF model is employed to model the documents 

and queries as vectors. Then, the Enhanced Asymmetric Scalar-

Product-Preserving Encryption (Enhanced ASPE) algorithm is uti-

lized to encrypt the HRF tree and query vectors while ensuring the 

accurate relevance score calculation. In addition, a depth-first search 

algorithm for the HRF tree is also proposed. A theoretical demon-

stration is provided to illustrate that our scheme can defend against 

the chosen-plaintext attack model. Meanwhile, simulation result 

shows that our scheme also greatly outperforms existing schemes in 

terms of efficiency. 

Our contributions are mainly summarized as follows: 

 This paper considers the chosen-plaintext attack model 

which is much stronger than ciphertext-only attack model 

employed in most existing schemes. 

 A new encrypted document storage and retrieval system is 

designed to improve system security in which a proxy 

server is employed. The new framework can provide 

multi-type document search services. 

 A complete search mechanism is proposed to improve the 

search efficiency. Moreover, we propose an updated 

mechanism for the HRF tree to support dynamic document 

collection. 

 A set of analysis and experiments are conducted to evalu-

ate the performance of the proposed framework in terms 

of security and efficiency. 

The rest of this paper is organized as follows: In Section II, we 

summarize the related work. Section III states the problem of pri-

vacy-preserving multi-keyword ranked search. We present the bal-

anced binary tree and HRF tree in Section IV and V, respectively. 

The details of the secure document search framework are presented 

in Section VI. We analyze the security of our framework in Section 

VII and further evaluate its efficiency in Section VIII. At last, Sec-

tion IX concludes this paper. 

II.  RELATED WORK 

Cao et al. first propose the privacy-preserving multi-keyword 

ranked search problem in [21] and they design an initiatory scheme 

named MRSE. Each document is mapped to a document vector 

based on term frequencies of the words in the document. A query is 

transferred to a query vector based on inverse document frequencies 

of the keywords in the whole document collection. The correlation 

between a query and a document is then calculated based on the TF-

IDF model. The retrieval results of a query are the top-𝑘 relevant 

documents to the query. To protect privacy of documents, both the 

document vectors and query vectors are encrypted based on secure 

kNN algorithm [29]. Moreover, a set of strict privacy requirements 

are established for the following schemes in this field [30]. The dis-

advantage of MRSE is that all the documents need to be scanned to 

get the search results of a query and the search efficiency is linear 

with the cardinality of the document collection. Because the search 

efficiency of MRSE is low, it cannot be directly used to process ex-

tremely large document collections. 

To improve document search efficiency of MRSE, two index 

structures for the encrypted documents are proposed. Xia et al. [22] 

propose the Keyword Balanced Binary tree (KBB tree) and design a 

“Greedy Depth-First Search” algorithm for the tree. In KBB tree, 

each entry in an intermediate node is not smaller than that of all the 

child nodes. This property performs an important role in pruning re-

dundant searching paths. Moreover, they can dynamically update the 

index tree with a moderate workload. Though KBB tree greatly im-

proves the search efficiency, the document vectors in the tree are or-

ganized chaotically and some redundant paths still need to be visited 

in document search process. Clearly, the search efficiency can be 

further improved. 

To further optimize the structure of KBB tree, Chen et al. [23] 

design a novel hierarchical-clustering-based index structure in which 

the document vectors are organized based on similarities. Specifi-

cally, similar document vectors are close with each other in the tree, 

and vice versa. In this way, it is likely that the retrieval results of a 

query locate close with each other in the tree and hence most paths 

in the tree can be pruned in the search process. Simulation results 

illustrate that the scheme is of a better-than-linear search efficiency. 

In addition, a verification process is also integrated into their scheme 

to guarantee the correctness of the results. However, as discussed in 

[23], this tree cannot guarantee the optimal search accuracy and it is 

severe to get a balance between search efficiency and accuracy. 

Fu et al. [24] assume that the data users cannot select the most 

proper keywords to search the results. Therefore, they design an in-

terest model for the users to fulfill and revise the provided keywords. 

Specifically, the interest model of a data user is constructed based on 

WordNet [31]. However, the document vectors in this paper are con-

structed based on the whole document collection and hence this 

structure cannot be dynamically updated. This scheme employs the 

MDB-tree to improve the search efficiency. 

A common vulnerability of the above schemes is that they all em-

ployed the ciphertext-only attack model which is a weak threat 

model in real life. Once the cloud server colludes with a set of data 

users to conduct the chosen-plaintext attack, the cloud server can re-

cover all the plaintext documents and the vectors. This can be ex-

plained by the fact that the data users can access the secret keys. 

Recently, some privacy-preserving semantic document search 

schemes are proposed [32], [33], [34], in which the documents are 

summarized by the important and simplified sentences rather than 

the keywords. To our knowledge, semantic document search is a new 

direction in cloud computing and how to securely share the abstract 

data for resource-limited data users in cloud computing is discussed 

in [35]. Moreover, the security problems of existing searchable en-

cryption schemes are discussed in [36], [37], [38], [39]. To define 

the security clearly, four leakage profile levels are extracted from 

existing searchable encryption schemes. For different leakage pro-

files, corresponding attack models are proposed though they mainly 

focus on single keyword or multi-keyword Boolean search schemes. 

III.  PROBLEM STATEMENT 

A.  Notations 

 ℱ  – The owner’s document collection, denoted as ℱ =
{𝐹1, 𝐹2, ⋯ , 𝐹𝑁}, which is composed of 𝑁 file. Each document 

𝐹𝑖 comprises three parts: filename, authors and main body. The 

main body is treated as a sequence of keywords. Each file has 

a unique identifier. For convenience, we employ “a document” 

to represent the “the main body of a document” in the rest. 

 ℱ𝒩 – The filename collection of the documents, denoted as 

ℱ𝒩 = {𝐹𝑁1, 𝐹𝑁2, ⋯ , 𝐹𝑁𝑁}. Without loss of generality, each 
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document is assumed to have only one unique filename. 

 𝒜𝒰 –The author collection of the documents in ℱ, denoted as 

𝒜𝒰 = {𝐴𝑈1, 𝐴𝑈2, ⋯ , 𝐴𝑈𝐾} . We assume that each document 

can have several different authors and in total 𝐾 authors exist. 

 𝒞  – The encrypted document collection stored in the cloud 

server, denoted as 𝒞 = {𝐶1, 𝐶2,⋯ , 𝐶𝑁}. The ciphertexts in 𝒞 are 

obtained by encrypting the files in ℱ with independent sym-

metric secret keys 𝑠 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑁}, i.e., 𝒞 = 𝑒𝑠(ℱ). 
 𝒲  – The keyword dictionary with in total 𝑚  keywords, de-

noted as 𝒲 = {𝑤1, 𝑤2,⋯ , 𝑤𝑚}. The dictionary is used to gen-

erate the vectors of documents and search requests. 

 ℐ  – The encrypted index of ℱ , denoted as ℐ = {𝐼1, 𝐼2, 𝐼3} , 
where 𝐼1 is the index tree of filenames, 𝐼2 is the index tree of 

authors and 𝐼3 is the encrypted HRF tree of the main bodies.  

 𝒮ℛ – The search request of a data user, denoted as {𝐹𝑁, 𝐴𝑈 =
(𝐴𝑈1, ⋯ , 𝐴𝑈𝑡),𝑀𝐾}  where 𝐹𝑁  is a filename, 𝐴𝑈  is a set of 

authors and 𝑀𝐾 is a set of keywords. Note that, at least one of 

the three parameters needs to be provided and the default val-

ues are set to 𝑛𝑢𝑙𝑙. 
 𝒯𝒟  – The trapdoor of a request 𝒮ℛ , denoted as 𝒯𝒟 =

{ℎ𝐹𝑁, (ℎ𝐴𝑈1 , ⋯ , ℎ𝐴𝑈𝑡), 𝐸𝑄}. Specifically, ℎ𝐹𝑁, ℎ𝐴𝑈𝑖  are the cor-

responding random numbers of 𝐹𝑁 and 𝐴𝑈𝑖, and 𝐸𝑄 is the en-

crypted query vector of 𝑀𝐾. A trapdoor is the encrypted format 

of a search request and it can be employed by the cloud server 

to search the encrypted index ℐ. 

 ℛ – The encrypted result for a search request and it is returned 

from the cloud server to the proxy server. 

 𝒫ℛ – The plaintext of ℛ which will be returned to the data us-

ers from the proxy server. 

 𝒮𝒦 – The pre-set secret keys include two bit-vectors 𝑆1, 𝑆2, 

and two invertible matrices 𝑀1, 𝑀2. 

B.  System Model 

As shown in Fig. 1, the encrypted document retrieval system in-

volves mainly four entities: data owner, data user, proxy server and 

cloud server. 

Data owner has a collection of documents ℱ = {𝐹1, 𝐹2, ⋯ , 𝐹𝑁} 
and he is responsible for collecting newly generated files. Then, data 

owner outsources the encrypted documents to the cloud server with 

the help of the proxy server. Specifically, once a new document is 

ready to issue, the data owner directly sends it to the proxy server 

where the other steps will be completed. Moreover, the data owner 

can also delete or modify the files in the cloud by sending requests 

to proxy server. 

Proxy server is a trusted agency and it links the other three enti-

ties. Having received the files from data owner, the proxy server is 

responsible for analyzing and encrypting them. An encrypted index 

structure ℐ is constructed based on filenames, authors and the docu-

ment vectors. Both the encrypted index ℐ and encrypted document 

collection 𝒞 are sent to the cloud server. When a query request 𝒮ℛ 

is received from an authorized data user, a trapdoor 𝒯𝒟 for 𝒮ℛ will 

be generated and sent to the cloud server. At last, the received search 

results from the cloud server will be decrypted as 𝒫ℛ which is sent 

to the data user. We assume that the proxy server can securely com-

municates with data owner and data users by symmetric encryption. 

Data users are the authorized ones to access the documents. 

Once a request 𝒮ℛ is sent to the proxy server, a set of documents 

will be received from the proxy server and the search process is 

transparent to the data user. In fact, the data users do not access any 

private information of the documents directly such as the secret keys 

𝒮𝒦 and keyword distributions of ℱ. In this paper, we assume that 

the filename-based search and author-based search are accurate 

searches, i.e., the provided filename and authors must be accurate 

and only the matched documents are returned. In the multiple key-

words search, the documents are returned in order according to the 

relevance scores between the document vectors and query vectors. 

The three search patterns are complementary with each other and 

they provide a better search experience to the data users. 

Cloud server stores the encrypted documents collection 𝒞  and 

encrypted searchable index ℐ  which are generated by the proxy 

server. Once a trapdoor is received, it needs to search ℐ and send the 

search result ℛ, i.e., a set of encrypted documents that match 𝒮ℛ, to 

the proxy server. It also needs to update 𝒞 and ℐ in time according to 

the instructions provided by the proxy server. 

C.  Threat Model 

Cloud server model. Similar to the threat models in [21], [22], 

[23], [24], [25], the cloud server is considered as “honest-but-curi-

ous”, which is widely employed in the field of encrypted document 

retrieval. Specifically, the cloud server properly executes the instruc-

tions and however, it is curious to infer and analyze all the received 

data. We also assume that the cloud sever tries to pretend and bribe 

data users to get the secret information. 

Data user model. In this paper, a small number of data users are 

assumed to be unreliable and they can leak all their private infor-

mation to the cloud server. In most existing schemes [21], [22], [23], 

[24], [25] the authorized data users are assumed to be reliable. They 

need to hold the secret keys {𝑆1, 𝑆2, 𝑀1, 𝑀2}  to generate the 

trapdoors and hold the symmetric keys {𝑠1, 𝑠2, ⋯ , 𝑠𝑁} to decrypt the 

received results. Note that, the secret keys of all the data users are 

the same with each other. In this case, if a data user colludes with the 

cloud server, it is easy to calculate all the document vectors in the 

index structures based on {𝑆1, 𝑆2, 𝑀1, 𝑀2} . Moreover, if 

{𝑠1, 𝑠2, ⋯ , 𝑠𝑁} is also leaked to the cloud server, all the plaintext doc-

uments are known to the cloud server. Information leakage problem 

is an inherent threat to these schemes.  

Proxy server model. We assume that the proxy server is con-

trolled by the data owner and it is trusted. The proxy server can 

properly execute instructions and do not leak its private information 

to any other entity. 

Chosen-plaintext attack model. Considering that the cloud server 

colludes with a small set of data users, we consider a stronger attack 

model compared with that in existing schemes [21], [22], [23], [24], 

[25] i.e., the adversary conducts the chosen-plaintext attack to re-

cover the plaintext documents, filenames, authors and document 

vectors. 

D.  Design Goals 

Flexibility. The data users can flexibly provide multi-type param-

eters to search the interested documents, such as a filename, some 

authors, keywords or any combination of them. 

Accuracy. The search results are accurate according to the data 

users’ search requests and system settings. 

Efficiency. The search process achieves logarithmic search effi-

ciency in general and at least sub-linear search efficiency in the worst 

case. 

Dynamicity. The document collection and corresponding index 

structures can be updated dynamically with a small burden. 

Cloud 

server

Data 

owner

Data 

user

Proxy 

server

Updates

 
Fig. 1. Encrypted document retrieval system model 
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Security. In our scheme, we prevent the cloud server from learn-

ing the private information about the encrypted document collection. 

The detailed privacy requirements are summarized as follows: 

1) Document privacy. The plaintexts of the documents should 

be strongly protected from the adversaries. 

2) Privacy of FN-AVL tree and AU-AVL tree. Each node in 

these two trees represents a filename or an author. Given a 

node, the corresponding information about filename and au-

thor should be protected. 

3) Privacy of HRF tree. The underlying contextual information 

of the documents, such as the unencrypted document vectors 

and the TF, IDF values of keywords, should be protected 

from the adversaries. 

IV.  FILENAME/AUTHOR BALANCED BINARY SEARCH TREE    

A.   Structure of Filename AVL Tree and Author AVL Tree 

Self-balancing binary search trees, such as AVL tree [40], have 

been widely used to organize data for fast queries. In this paper, we 

first assign a unique and random number to each filename and author 

by one-way functions. Without loss of generality, we assume that the 

filenames, authors cannot be recovered based on the random num-

bers. Then we build a filename AVL tree called 𝐹𝑁 − 𝐴𝑉𝐿 tree and 

an author AVL tree called 𝐴𝑈 − 𝐴𝑉𝐿 tree based on the random num-

bers to support filename-based search and author-based search. In 

both of the trees, the left child nodes of a parent node have smaller 

numbers and the right child nodes have larger numbers. This prop-

erty significantly improves the efficiency of searching a specific 

number corresponding to a filename or an author. The time complex-

ities of inserting, deleting and searching a number in the 𝐹𝑁 − 𝐴𝑉𝐿 

tree are all 𝑂(𝑙𝑛⁡(𝑁)), where 𝑁 is the number of the filename, and 

that in 𝐴𝑈 − 𝐴𝑉𝐿 tree are all 𝑂(𝑙𝑛⁡(𝐾)), where 𝐾 is the number of 

authors. 

B.  Construction of Filename AVL Tree and Author AVL Tree 

For a filename 𝐹𝑁𝑖, the corresponding node 𝑢 in the 𝐹𝑁 − 𝐴𝑉𝐿 

tree is defined as follows: 

𝑢 = (𝐼𝐷𝐹𝑁⁡, 𝑓𝑢𝑛𝑐(𝐹𝑁𝑖), 𝑃𝑙𝑒𝑓𝑡 , 𝑃𝑟𝑖𝑔ℎ𝑡),                (1) 

where 𝐼𝐷𝐹𝑁  is the identifier of the file with 𝐹𝑁𝑖  as filename, 

𝑓𝑢𝑛𝑐(𝐹𝑁𝑖)  is the random number corresponding to the filename, 

𝑃𝑙𝑒𝑓𝑡 and 𝑃𝑟𝑖𝑔ℎ𝑡 are the pointers to the left and right child of node 𝑢.  

The default values of the pointers are set to 𝑛𝑢𝑙𝑙. 
Different from document filenames, each document may have 

several authors and it is unwise to treat all the authors for a document 

as an entirety considering that it is very difficult for the data users to 

accurately provide all the authors of a file. In the 𝐴𝑈 − 𝐴𝑉𝐿 tree, 

each author is treated as an independent entity. For an author 𝐴𝑈𝑖, 
the node 𝑣 in the tree is defined as follows: 

𝑣 = (𝑆𝐼𝐷𝐴𝑈, 𝑓𝑢𝑛𝑐(𝐴𝑈𝑖), 𝑃𝑙𝑒𝑓𝑡 , 𝑃𝑟𝑖𝑔ℎ𝑡),                (2) 

where 𝑆𝐼𝐷𝐴𝑈  is a set of file identifiers with 𝐴𝑈𝑖  as an author, 

𝑓𝑢𝑛𝑐(𝐴𝑈𝑖) is the random number corresponding to the author 𝐴𝑈𝑖, 
𝑃𝑙𝑒𝑓𝑡 and 𝑃𝑟𝑖𝑔ℎ𝑡 are the pointers to the left and right child of node 𝑣. 

The default values of the pointers are set to 𝑛𝑢𝑙𝑙. Note that, the num-

ber of the nodes in the 𝐴𝑈 − 𝐴𝑉𝐿 tree equals to the number of all 

the authors in the document set. Considering that each document can 

have several authors and each author can have several files, a file 

may correspond to several nodes in the 𝐴𝑈 − 𝐴𝑉𝐿  tree and each 

node can also correspond to several files that contain the author rep-

resented by the node. When a data user provides several authors, we 

hope to employ each of them to filter the results collaboratively and 

hence, in 𝐴𝑈 − 𝐴𝑉𝐿 tree, the authors contained in a same file are 

linked together. In this way, the files with several authors can be eas-

ily obtained by intersecting the file sets of author. 

Based on the random numbers corresponding to the filenames 

and authors, we build and update the 𝐹𝑁 − 𝐴𝑉𝐿 tree and 𝐴𝑈 − 𝐴𝑉𝐿 

tree according to the algorithm proposed in [40]. In 𝐹𝑁 − 𝐴𝑉𝐿 tree, 

we employ binary search algorithm to search the tree for a query. To 

search the files containing a set of authors, we first search the first 

author and get a set of file candidates. Then, we find the second au-

thor through links and update the file candidates. The above process 

is iterated until all the authors are scanned and get the final search 

result. 

V.  HIERARCHICAL RETRIEVAL FEATURE TREE 

A.   Document/Query Vectors and Relevance Score Function in 
Multi-Keyword Document Search 

In this paper, the main body of each document is treated as a 

stream of keywords and we use the normalized TF vector to quantize 

the documents [41]. The TF value of keyword 𝑤𝑖 in 𝐹𝑗 is defined as: 

𝑇𝐹𝑗,𝑤𝑖

′ = ln⁡(1 + 𝑓𝑗,𝑤𝑖
),                                (3) 

where 𝑓𝑗,𝑤𝑖
 is the number of times that it appears in 𝐹𝑗. We then nor-

malize TF value of 𝑤𝑖 in 𝐹𝑗 as follows: 

𝑇𝐹𝑗,𝑤𝑖
=

𝑇𝐹𝑗,𝑤𝑖
′

√∑ (𝑇𝐹𝑗,𝑤𝑘
′ )2𝑤𝑘∈𝒲

, 𝑖 = 1,2,⋯ ,𝑚.                 (4) 

At last the normalized vector of 𝐹𝑗 is constructed as follows: 

𝑉𝑗 = (𝑇𝐹𝑗,𝑤1
, 𝑇𝐹𝑗,𝑤2

, ⋯ , 𝑇𝐹𝑗,𝑤𝑚
).                       (5) 

The above constructed document vectors have two advantages. First, 

the normalized TF vector is a good summary about the content of a 

document. Second, the normalized TF vector is an inherent property 

of a document and it is independent of the document collection 

which may change dynamically. For convenience, we employ the 

term “document vectors” to represent the “normalized document 

vectors” in the rest. 

As for a query request, consider a game that a data user is inter-

ested in a set of documents and he tries to employ a set of keywords 

𝑀𝐾 to describe the documents as clearly as possible. Obviously, he 

should provide some important keywords with strong capability of 

locating the interested documents rather than some common words. 

Therefore, each word needs a weight to reflect its capability, and in 

this paper, we employ IDF value as the weight of a keyword. The 

IDF value of 𝑤𝑖 is defined as 𝐼𝐷𝐹𝑤𝑖
= ln⁡(𝑁 𝑁𝑤𝑖

⁄ ), where 𝑁 is the 

number of documents in the whole document collection and 𝑁𝑤𝑖
 is 

the number of documents that contain keyword 𝑤𝑖 . Further, the 

query vector is represented as 𝑉𝑄 = (𝑞1, 𝑞2, ⋯ , 𝑞𝑚) where 𝑞𝑖 is 0, if 

𝑤𝑖 ∉ 𝑀𝐾; and 𝑞𝑖 is 𝐼𝐷𝐹𝑤𝑖
, if 𝑤𝑖 ∈ 𝑀𝐾. It can be observed that the 

IDF value of a keyword is related with the whole document collec-

tion and independent of specific documents. 

At last, we adopt the widely used “TF-IDF” measurement to cal-

culate the relevance score between a document and a query as fol-

lows: 

𝑅𝑆𝑐𝑜𝑟𝑒(𝑉𝑗 , 𝑉𝑄) = 𝑉𝑗 ∙ 𝑉𝑄.                           (6) 

B.   Structure of an HRF Tree 

In this paper, we use hierarchical retrieval feature (HRF) tree to 

organize the document vectors. As shown in Fig. 2, an HRF tree is a 

height-balanced tree and each node in the tree maps to a cluster of 

document vectors. Each leaf node is composed of a set of similar 

document vectors and its HRF⁡vector is extracted from the document 

vectors. The similar leaf nodes agglomerate with each other to com-

pose the non-leaf nodes until all the document vectors belong to a 

huge cluster at the root node. Clearly, a higher node in the tree maps 

to a larger cluster and the root node maps to the cluster composed of 

all the document vectors. 

Two branching factors, 𝐵1, 𝐵2, are employed to control the tree’s 

structure. Specifically, a leaf node 𝐿𝑖 contains at most 𝐵1 document 

vectors and its retrieval vector (RV) is defined as follows: 

𝐿𝑖 = (𝐻𝑅𝐹, 𝑉1, ⋯ , 𝑉𝑘)⁡, 𝑘 ≤ 𝐵1                    (7) 

where 𝐻𝑅𝐹 is the HRF vector of the cluster, 𝑉𝑙 is the 𝑙-th document 

vector in the cluster. Each non-leaf node or the root node 𝑁𝐿𝑖 con-

tains at most 𝐵2 child nodes and its RV is defined as follows: 

𝑁𝐿𝑖 = (𝐻𝑅𝐹,𝐻𝑅𝐹1, 𝑐ℎ𝑖𝑙𝑑1, ⋯ ,𝐻𝑅𝐹𝑘 , 𝑐ℎ𝑖𝑙𝑑𝑘), 𝑘 ≤ 𝐵2,    (8) 
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where 𝐻𝑅𝐹 is the HRF vector of the cluster, 𝐻𝑅𝐹𝑙 is the HRF vector 

of the 𝑙-th sub-cluster and 𝑐ℎ𝑖𝑙𝑑𝑙 is a pointer to the child node cor-

responding to the sub-cluster. 

An HRF vector is a summarization about the corresponding clus-

ter. Given 𝑃  𝑚 -dimensional document vectors, {𝑉𝑗} , where 𝑗 =

1,2,⋯ , 𝑃 , the HRF vector of the cluster is denoted as 𝐻𝑅𝐹 =

(𝑃, 𝐿𝑆, 𝑉𝑚𝑎𝑥), where 𝐿𝑆 = ∑ 𝑉𝑗
𝑃
𝑗=1 , 𝑉𝑚𝑎𝑥 is calculated as: 

𝑉𝑚𝑎𝑥[𝑖] = 𝑚𝑎𝑥(𝑉1[𝑖], 𝑉2[𝑖],⋯ , 𝑉𝑃[𝑖]), 𝑖 = 1,2,⋯ ,𝑚.      (9) 

Based on the definition of HRF vector, we can infer that the 

HRF⁡vectors of the non-leaf nodes and the root node can be calcu-

lated based on the HRF vectors of all their child nodes.  

Moreover, given an HRF vector, the centroid of a cluster 𝐶 can 

be easily calculated as follows: 

𝑐 = 𝐿𝑆 𝑃⁄ .                                      (10) 

The relevance score between cluster 𝐶  and document vector ⁡𝑉𝑗  is 

defined as follows: 

RScore(𝐶, 𝑉𝑗) = 𝑐 ∙ 𝑉𝑗 .                              (11) 

The relevance score between cluster 𝐶  and query vector 𝑉𝑄  is de-

fined as follows: 

RScore(𝐶, 𝑉𝑄) = 𝑐 ∙ 𝑉𝑄.                             (12) 

C. Constructing an HRF Tree 

We construct an HRF tree in an incremental manner. The process 

of inserting 𝑉𝑗  into the tree is presented in Algorithm 1. As shown in 

line 1 to line 6, 𝑉𝑗  iteratively descents the HRF tree by choosing the 

closest child node based on (11) until it reaches a leaf node. After 

inserting 𝑉𝑗  into the leaf node, we update all the infected nodes in a 

bottom-up manner as shown in line 7 to line 16. In the absence of a 

split, we simply update the HRF vectors. However, if a leaf node 

contains more than 𝐵1 document vectors or a non-leaf node contains 

more than 𝐵2  child nodes, we need to split the node to two new 

nodes. In this paper, we split a node by choosing the farthest pair of 

document vectors as seeds, and then redistribute the remaining doc-

ument vectors based on the closest criteria. A leaf node split requires 

us to insert a new leaf node to the parent node. In some cases, we 

may have to split the parent node as well, and so up to the root node. 

If the root node is split, the tree height increases by one. 

As the HRF tree is constructed incrementally, it naturally sup-

ports the insert update. However, it is also valuable for the HRF tree 

to support the delete update. If the data owner wants to delete the 

document vector of file 𝐹𝑗 from the HRF tree, he needs to send the 

file to the proxy server and then the proxy server is responsible for 

updating the tree. The detailed process of deleting 𝑉𝑗  from the HRF 

tree is presented as follows: 

 Identifying the document vector: The proxy server first finds 

the corresponding number of 𝐹𝑗’s filename and then identify 

the node in 𝐹𝑁 − 𝐴𝑉𝐿 tree. Further, 𝑉𝑗  can be identified in the 

HRF tree based on the links between the trees. 

 Modifying the leaf node: The leaf node 𝐿𝑖  containing 𝑉𝑗   first 

deletes the pointer to 𝑉𝑗  and then updates its HRF vector. Then 

𝐿𝑖 scans all the child nodes and if two leaf nodes can combine 

with each other, they are combined to one node. We combine 

the nodes in order to make the tree compact and this process 

can be ignored if a small number of vectors are deleted. 

D.   Searching an HRF Tree 

As shown in Algorithm 2, we design a depth-first search algo-

rithm for the HRF tree. After initializing 𝑅𝐿𝑖𝑠𝑡, the smallest rele-

vance score is used to prune the search paths based on (12). We em-

ploy the variable 𝑆𝑡𝑎𝑐𝑘 to store the nodes which need to be searched 

in the future. Once the 𝑆𝑡𝑎𝑐𝑘 is empty and all the candidate paths 

are searched, we can guarantee that the retrieval result is accurate. 

In the following, we present the search process in detail and ana-

lyze why the structure of the HRF tree can greatly improves the 

search efficiency. In an HRF tree, the similar document vectors trend 

to be assigned to the same cluster. Consider a query 𝑉𝑄 and two doc-

ument vectors 𝑉1  and 𝑉2  where 𝑉2 = 𝑉1 + 𝑉′ , the relevance scores 

between the query and document vectors are 𝑉𝑄 ∙ 𝑉1 and 𝑉𝑄 ∙ 𝑉2, re-

spectively. Then the difference between these two relevance scores 

can be calculated as follows: 

𝑉𝑄 ∙ 𝑉1 − 𝑉𝑄 ∙ 𝑉2 = |𝑉𝑄 ∙ 𝑉
′| ≤ |𝑉𝑄||𝑉

′|.               (13) 

If 𝑉1 and 𝑉2 are close with each other, |𝑉′| will be small and the rel-

evance scores will be very similar with each other. Consequently, 

organizing the document vectors based on their similarities can sig-

nificantly simplify the search process. 

We use an example to introduce the simple retrieval process. For 

a 2-D keyword dictionary, all the document vectors are located on a 

quarter of a unit circle according to the definition of a document vec-

tor. As shown in Fig. 3, the document vectors are divided to 6 clus-

ters {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}. A data user generates a query vector and cluster 

𝑑 is the most relevant cluster. Assume that the accurate top-𝑘 rele-

vant documents are needed and 𝑘 is much smaller than the number 

of document vectors in a leaf node. It is time-consuming to scan all 

the document vectors in the tree and hence we need to prune the 

search paths dynamically. 

If we can accept an almost accurate result rather than the defi-

nitely accurate top-𝑘 relevant documents, the search process is ex-

tremely easy. Given a query vector 𝑉𝑄, we first locate the most rele-

vant leaf node in a top-down manner. Specifically, starting from the 

root node, the query vector 𝑉𝑄  recursively descends the tree by 

choosing the most relevant cluster according to (12) until the most 
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Fig. 2. The structure of an HRF tree 

Algorithm 2:⁡𝐇𝐑𝐅𝐒𝐞𝐚𝐫𝐜𝐡 (an HRF tree root r, a document vector 𝑽𝑸 ) 

1: Locating the closest leaf node in a similar manner to Algorithm 1; 

2: Initialize 𝑅𝐿𝑖𝑠𝑡 by selecting the most relevant 𝑘 document vectors as defined in (12); 

3: 𝑆𝑡𝑎𝑐𝑘. push(𝑟); 
4: while 𝑆𝑡𝑎𝑐𝑘 is not empty 

5:    𝑢 ← 𝑆𝑡𝑎𝑐𝑘. pop(); 
6:    if the node 𝑢 is not a leaf node 

7:      if RScore(𝑉𝑢,𝑚𝑎𝑥⁡, 𝑉𝑄) > 𝑘thScore 

8:        Push all the children of 𝑢 into 𝑆𝑡𝑎𝑐𝑘; 

9:      else 

10:        break; 

11:      end if 

12:    else 

13:      Update 𝑅𝐿𝑖𝑠𝑡 by calculating the relevance scores between  𝑉𝑄 and the document  

vectors in the leaf node; 

14:    end if 

15: end while 

16: return 𝑅𝐿𝑖𝑠𝑡;  

Algorithm 1: HRFConstruction (a HRF tree root r, a document vector 𝑽𝒋 ) 

1: 𝑆𝑡𝑎𝑐𝑘. push(𝑟); ⁡𝑢 ← 𝑟; 

2: while 𝑢 is not a leaf node 

3:    Calculate all the relevance scores between the child nodes of 𝑢 with 𝑉𝑗⁡based on  (11); 

4:    𝑢 ← the most relevant child node;  

5:    𝑆𝑡𝑎𝑐𝑘. push(𝑢); 
6: end while 

7: Insert 𝑉𝑗 into 𝑢;  
8: while 𝑆𝑡𝑎𝑐𝑘 is not empty 

9:    𝑢 ← 𝑆𝑡𝑎𝑐𝑘. pop(); 
10:    if 𝑢 breaks the limitation of 𝐵1 (for a leaf node) or 𝐵2 (for a non-leaf node) 

11:       Split node 𝑢 into two nodes and recalculate their HRF vectors; 

12:       Update the pointers and the corresponding HRF vectors of the two newly generated  

nodes in the parent node; 

13:    else 

14:       Update the HRF vector of node 𝑢 directly; 

15:    end if 

16: end while 
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relevant leaf node is located. Then, the top-𝑘 relevant document vec-

tors in the leaf node are returned as the search result. However, we 

cannot guarantee that the returned vectors are the accurate result 

though they are good candidates compared with most other vectors 

in the tree. 

To get the accurate result, we need to further search some nearby 

clusters. Assume that the relevance score between 𝑉𝑄 and the 𝑘-th 

relevant document vector 𝑉𝑑,𝑘  in the leaf node 𝑑  is 𝑉𝑄 ∙ ⁡𝑉𝑑,𝑘 . An-

other cluster 𝑑′ should be searched if and only if the maximum rele-

vance score between 𝑉𝑄 and the vectors in cluster 𝑑′ is larger than 

𝑉𝑄 ∙ 𝑉𝑑,𝑘. In other words, if 𝑉𝑄 ∙ 𝑉⁡𝑑′,𝑚𝑎𝑥 ≤ 𝑉𝑄 ∙ 𝑉𝑑,𝑘, it is unneces-

sary to further search cluster 𝑑′. Assume that 𝑉𝑄 ∙ 𝑉𝑑,𝑘 ≥ 𝑉𝑄 ∙ 𝑉𝑑,𝑚𝑖𝑛, 

as shown in Fig. 3, only cluster 𝑐 and 𝑒 need to be searched, and the 

other clusters can be ignored. In particular cases, the size of cluster 

𝑑  may be smaller than 𝑘  and we need to replace it by the second 

most similar cluster to guarantee the robustness of our scheme. If the 

document database is large enough, the spatial region of a cluster 

represented by a leaf node is extremely small and we can prune most 

of the redundant paths in the tree. We will further evaluate the search 

efficiency of the HRF tree in Section VIII. 

VI.  SECURE DOCUMENT RETRIEVAL 

A.  Linking the Three Retrieval Trees 

To efficiently search the documents based on all the parameters 

in a query, we need to link all the three retrieval trees together. Each 

node in the 𝐹𝑁 − 𝐴𝑉𝐿 tree represents a unique document and each 

node in the 𝐴𝑈 − 𝐴𝑉𝐿 tree represents an author. Consequently, all 

the nodes in these two trees should be linked to some other nodes in 

the other trees. However, in the HRF tree, only the elements in leaf 

nodes correspond to documents directly and only these elements 

need to be linked with the nodes in the other two trees. Because each 

document has a unique identifier in the whole document collection, 

we can link the nodes that contain the same document identifiers in 

different trees. Once a set of candidate documents are filtered based 

on one type of search parameters, we can easily access other infor-

mation about the candidates based on the links between the trees. In 

this way, we can further refine the search results from the candidates 

easily and finally get the accurate result. When a tree is updated, the 

positions of some nodes may change and the information must be 

delivered to the other trees based on the links to synchronize the link 

structure. 

B.  Framework of Privacy-Preserving Document Retrieval 

In this section, we present the overall document retrieval frame-

work by mainly employing the functionalities of the proxy server 

and cloud server. 

 𝒮𝒦 ← 𝐒𝐞𝐭𝐮𝐩(): In the initialization phase, the proxy server 

needs to generate the secret key set 𝒮𝒦, including: 1) two ran-

domly generated (𝑚 +𝑚′)-bit vectors 𝑆1 and 𝑆2, and 2) two 

(𝑚 +𝑚′) × (𝑚 +𝑚′)  invertible matrices 𝑀1  and 𝑀2 . Note 

that, 𝑆1 must contains 𝑚 zeros and 𝑚′ ones. 

 ℐ ← 𝐁𝐮𝐢𝐥𝐝𝐈𝐧𝐝𝐞𝐱(ℱ, 𝒮𝒦): For each document, three types of 

information are first extracted including its filename, all the 

authors and the main body. We then build the 𝐹𝑁 − 𝐴𝑉𝐿 tree, 

𝐴𝑈 − 𝐴𝑉𝐿 tree and HRF tree. The three index trees need to be 

linked together based on document identifiers. The first two 

trees can be directly outsourced to the cloud server, because 

they store only a set of random numbers rather than the 

plaintext filenames and authors. In contrast, the HRF tree 

needs to be encrypted before being outsourced to the cloud. 

Note that, parameter 𝑃 in an HRF vector needs not to be en-

crypted. We treat 𝐿𝑆  and 𝑉𝑚𝑎𝑥  equally to document vectors 

and encrypt them in the same way. Before encrypting a docu-

ment vector 𝑉𝑗  in the HRF tree, we first extend it to (𝑚 +𝑚′) 

dimensions where 𝑚′ ≥ 0. Specifically, if 𝑆1𝑖 = 0, the 𝑖-th di-

mension of 𝑉𝑗  corresponds to a keyword 𝑤𝑟 which is extracted 

from 𝒲 in order and 𝑉𝑗[𝑖] is set to 𝑇𝐹𝑗,𝑤𝑟
; otherwise, this di-

mension is an artificial dimension and 𝑉𝑗[𝑖] is set to a random 

number. Note that the last inserted random number must be a 

nonzero number and the artificially added dimensions of all 

the document vectors share the same randomly generated num-

bers. These rules are related with the structure of the trapdoors 

and we will discuss it in the following. Further, we spilt each 

dimension of 𝑉𝑗[𝑖] into 𝑉𝑗[𝑖]
′ and 𝑉𝑗[𝑖]

′′. Specifically, if 𝑆2𝑖 =

0, 𝑉𝑗[𝑖]
′ and 𝑉𝑗[𝑖]

′′ will be set equal to 𝑉𝑗[𝑖]; otherwise, 𝑉𝑗[𝑖]
′ 

and 𝑉𝑗[𝑖]
′′ will be set as two random numbers whose sum is 

equal to 𝑉𝑗[𝑖] . We then encrypt 𝑉𝑗   as 𝐸𝑗 = {𝑀1
𝑇𝑉𝑗

′
, 𝑀2

𝑇𝑉𝑗
′′
} . 

At last, the outsourced index ℐ consists of the 𝐹𝑁 − 𝐴𝑉𝐿 tree,  

𝐴𝑈 − 𝐴𝑉𝐿 tree and the encrypted HRF tree. 

 ⁡𝒞 ← 𝐄𝐧𝐜𝐃𝐨𝐜𝐮𝐦𝐞𝐧𝐭𝐬(ℱ, 𝑠): In this paper, the proxy server 

adopts a secure symmetric encryption algorithm to encrypt the 

documents in ℱ based on a set of symmetric secret keys 𝑠 =
{𝑠1, 𝑠2, ⋯ , 𝑠𝑁} , i.e., 𝒞 = 𝑒𝑠(ℱ) . Specifically, for each docu-

ment, a random key of 256 bits is generated. The document 

identifiers and secret keys are organized in pairwise. Mean-

while, the identifier attribute is set as the main key in the data-

base and hence we can search the secret keys based on the doc-

ument identifiers through the binary search algorithm. In this 

way, we can flexibly find the key to encrypt or decrypt a doc-

ument. Note that, except for the proxy server, all the other en-

tities in the document retrieval system cannot access these keys. 

At last, the encrypted document collection 𝒞 is also outsourced 

to the cloud server. 

 𝒯𝒟 ← 𝐆𝐞𝐧𝐓𝐫𝐚𝐩𝐝𝐨𝐨𝐫(𝒮ℛ, 𝒮𝒦): Once a search request 𝒮ℛ is 

received by the proxy server, it first extracts its parameters in-

cluding 𝐹𝑁, (𝐴𝑈1, ⋯ , 𝐴𝑈𝑡) and 𝑀𝐾. For the filename and au-

thors, they are mapped to corresponding numbers by the one-

way function 𝑓𝑢𝑛𝑐() and we get ℎ𝐹𝑁, ℎ𝐴𝑈1 , ⋯ , ℎ𝐴𝑈𝑡. Then, the 

proxy server constructs query vector 𝑉𝑄 based on 𝑀𝐾 and 𝒲 

as discussed in Section V.A. We then extend it to (𝑚 +𝑚′) di-

mensions. Specifically, if 𝑆1𝑖 = 0 , the 𝑖 -th dimension of 𝑉𝑄 

corresponds to a keyword 𝑤𝑟 which is extracted from 𝒲 in or-

der and 𝑉𝑄[𝑖] is set to 𝐼𝐷𝐹𝑤𝑟
; otherwise, this dimension is an 

artificial dimension and 𝑉𝑄[𝑖] is set to a random number. Note 

that, the value of the last artificial dimension is not a random 

number and it should be calculated carefully to guarantee that 

the dot product of the artificially added dimensions in the doc-

ument vectors and that in 𝑉𝑄  is always 0. Further, we spilt 

𝑉𝑄[𝑖]  into 𝑉𝑄[𝑖]
′  and 𝑉𝑄[𝑖]

′′ . Specifically, if 𝑆2𝑖 = 1 , 𝑉𝑄[𝑖]
′ 

and 𝑉𝑄[𝑖]
′′  will be set equal to 𝑉𝑄[𝑖] ; otherwise, 𝑉𝑄[𝑖]

′  and 

𝑉𝑄[𝑖]
′′ will be set as two random numbers whose sum is equal 

to 𝑉𝑄[𝑖]. Finally, we encrypt 𝑉𝑄 as 𝐸𝑄 = {𝑀1
−1𝑉𝑄

′, 𝑀2
−1𝑉𝑄

′′}. 

Clearly, the relevance score of 𝑉𝑗  and 𝑉𝑄 can be calculated as: 

𝑅𝑆𝑐𝑜𝑟𝑒(𝑉𝑗 , 𝑉𝑄) = 𝑉𝑗 ∙ 𝑉𝑄 = 𝐸𝑗 ∙ 𝐸𝑄.            (14) 

The trapdoor 𝒯𝒟 composed of the mapped numbers of the file-

name and authors, and 𝐸𝑄 are finally sent to the cloud server. 

 ℛ ← 𝐑𝐒𝐞𝐚𝐫𝐜𝐡(𝒯𝒟, ℐ, 𝒞): Three index trees are constructed in 

our framework and, for different search parameters provided 
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Fig. 3. An example search process with two keywords 
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by the data users, the search process is different. In summary, 

the filename has the highest importance degree and the key-

words have the lowest importance degree. For example, if a 

query includes a filename and some extra information, we first 

search the 𝐹𝑁 − 𝐴𝑉𝐿 tree to find the legal candidates and then 

filter the candidates based on the other parameters until the fi-

nal result is obtained. The detailed process of searching is pre-

sented in Algorithm 3. Once the cloud server gets the search 

result, it extracts the corresponding encrypted documents from 

the stored document collection 𝒞 based on their identifiers. At 

last, the encrypted documents are sent to the proxy server. 

 𝒫ℛ ← 𝐃𝐞𝐜𝐃𝐨𝐜𝐮𝐦𝐞𝐧𝐭𝐬(ℛ, 𝑠) : Once the proxy server re-

ceives the encrypted search result of a query, it decrypts the 

encrypted files and finally sends them to the data user. 

C.  Dynamic Document Collection 

In general, three types of update operation, including INSERT, 

DELETE and MODIFY, should be supported in a database. For brev-

ity, we execute a MODIFY request by combining an INSERT and a 

DELETE operation and hence only two requests need to be designed. 

Corresponding operations on the cloud server are inserting and de-

leting a node to all the three trees, respectively. 

We assume that the proxy server stores a copy of the 𝐹𝑁 − 𝐴𝑉𝐿 

tree, 𝐴𝑈 − 𝐴𝑉𝐿 tree and the unencrypted HRF tree locally. We first 

discuss how to update the HRF tree. Since inserting documents into 

the collection affects the keyword dictionary 𝒲, we need to update 

the document vectors before updating the structure of the HRF tree. 

To solve this problem, we preserve some blank entries in 𝒲 and set 

corresponding values in document vectors as 0. If a new keyword is 

added into 𝒲, we just need to replace a blank entry by the new word 

and then generate new document vectors based on the updated dic-

tionary 𝒲.     

The update process of the unencrypted HRF tree in the proxy 

server has been discussed in Section V.C and we need to synchronize 

the encrypted HRF tree in the cloud server to the unencrypted tree. 

Specifically, there are three types of update operations: updating the 

HRF vector of a node, splitting a node and combining two nodes. 

Correspondingly, three types of update requests are sent to the cloud 

server from the proxy server. The processes of generating the re-

quests are presented in the following: 

 Generation of an HRF vector update request: An HRF vector 

update request for node 𝑢 in the encrypted tree is defined as 

{𝑢, 𝐻𝑅𝐹𝑛𝑒𝑤}, where 𝑢 is the updated node and 𝐻𝑅𝐹𝑛𝑒𝑤 is the 

new HRF vector of the node. For brevity, the proxy server can 

put all the HRF vector update requests, caused by an insertion 

or delete operation, into one message. 

 Generation of a splitting request: A splitting request for node 

𝑢 is defined as {𝑢, 𝑢′, 𝐻𝑅𝐹′, 𝑝′, 𝑢′′, 𝐻𝑅𝐹′′, 𝑝′′}, where 𝑢 is the 

split node, 𝑢′, 𝑢′′ are the new generated nodes, 𝐻𝑅𝐹′, 𝐻𝑅𝐹′′ 
are the HRF vectors of the nodes, and 𝑝′, 𝑝′′ are the pointers 

to the child nodes of  𝑢′ and 𝑢′′, respectively. 

 Generation of a combining request: The request of combining 

two nodes 𝑢′ , 𝑢′′  is defined as {𝑢′, 𝑢′′, 𝑢, 𝐻𝑅𝐹𝑛𝑒𝑤}  where 𝑢′ 
and 𝑢′′  are the two combined nodes, 𝑢  is the new node, 

𝐻𝑅𝐹𝑛𝑒𝑤 is the HRF vector of 𝑢. 

Based on the update request, the detailed process of updating the 

encrypted HRF tree in the cloud server is presented as follows: 

 Updating the HRF vector of a node: Once an HRF vector up-

date request {𝑢, 𝐻𝑅𝐹𝑛𝑒𝑤} is received, the cloud server replaces 

the original HRF vector of 𝑢 by 𝐻𝑅𝐹𝑛𝑒𝑤. 

 Splitting a node: Once a splitting request 

{𝑢, 𝑢′, 𝐻𝑅𝐹′, 𝑢′′, 𝐻𝑅𝐹′′}  is received, the cloud server first 

finds the parent of 𝑢  and deletes the pointer to 𝑢 . Then two 

new pointers to 𝑢′ and 𝑢′′ are inserted to the parent node. In 

addition, the pointers, 𝑝′ , 𝑝′′ , to the child nodes need to be 

added into 𝑢′ and 𝑢′′. 
 Combining two nodes: Once a combining request 

{𝑢′, 𝑢′′, 𝑢, 𝐻𝑅𝐹𝑛𝑒𝑤} is received, the cloud server first find the 

parent node of 𝑢′  and 𝑢′′ , and then delete the pointers to 𝑢′ 
and 𝑢′′. At last, the pointer to 𝑢 is inserted to the parent node. 

We then discuss how to update the two AVL trees. Once the data 

owner wants to insert a document into the collection, the proxy 

server needs to send the corresponding numbers of the filename and 

authors, and the encrypted document to the cloud server. The en-

crypted document is immediately inserted to the document collec-

tion. Then the cloud server inserts a new node into the 𝐹𝑁 − 𝐴𝑉𝐿 

tree. For each author, the cloud server checks whether it has been 

inserted to the 𝐴𝑈 − 𝐴𝑉𝐿 tree already. If the author already exists in 

the tree, the identifier of the document is inserted to the author node; 

otherwise, a new node is inserted into the tree. At last, the links 

among the three trees are updated. If a document is deleted from the 

data set, the proxy server needs to send the random numbers of the 

filename and authors to the cloud server. The cloud server first lo-

cates the node in the 𝐹𝑁 − 𝐴𝑉𝐿 tree and then deletes the node. Ob-

viously, the structure of the tree also needs to be updated [18]. For 

an author, the cloud server first locates it in the 𝐴𝑈 − 𝐴𝑉𝐿 tree based 

on its corresponding number, and then deletes the identifier of the 

document from the node. If the node contains some other identifiers, 

the node will be kept in the tree, otherwise the node will be deleted. 

At last, the links between the trees are updated. 

VII.  SECURITY ANALYSIS 

In this paper, the proposed scheme employs several crypto-

graphic algorithms and they are summarized as follows. 

 Symmetric encryption algorithms are employed in the pro-

cess of encrypting documents as discussed in Section III. 

 One-way functions are employed when constructing the 

FN-AVL and AU-AVL trees as discussed in Section IV. 

 Enhanced Asymmetric Scalar-Product-Preserving Encryp-

tion (Enhanced ASPE) algorithm [29] is employed in the 

process of constructing the encrypted HRF tree as dis-

cussed in Section VI. 

We first need to declare that the proposed scheme is built on the 

above cryptographic algorithms and hence the security of our 

scheme strongly relies on that of these employed algorithms. Con-

sidering that the security proof of these existing cryptographic algo-

rithms doesn’t fall in the scope of this paper, for simplicity, two basic 

Algorithm 3: ℛ ← 𝐑𝐒𝐞𝐚𝐫𝐜𝐡(𝓣𝓓, 𝓘,𝓒) 

1: if ℎ𝐹𝑁 ≠ 𝑛𝑢𝑙𝑙 
2:    Search the 𝐹𝑁 − 𝐴𝑉𝐿 tree to find the document whose filename correlates with the  

random number ℎ𝐹𝑁. We denote the document as 𝐷1; 

3:    if (ℎ𝐴𝑈1 , ⋯ , ℎ𝐴𝑈𝑡) ≠ 𝑛𝑢𝑙𝑙 

4:       Search the 𝐴𝑈 − 𝐴𝑉𝐿 tree; 

5:       if the random numbers of 𝐷1’s authors don’t contain the values in (ℎ𝐴𝑈1 , ⋯ , ℎ𝐴𝑈𝑡); 

6:           The result is empty and return 𝑛𝑢𝑙𝑙; 
7:       else 

8:           Return 𝐷1 as the result; 

9:       end if 

10:    else (i.e., (ℎ𝐴𝑈1 , ⋯ , ℎ𝐴𝑈𝑡) = 𝑛𝑢𝑙𝑙) 

11:       Return 𝐷1 as the result; 

12:    end if 

13: else (ℎ𝐹𝑁 = 𝑛𝑢𝑙𝑙) 
14:    if (ℎ𝐴𝑈1 , ⋯ , ℎ𝐴𝑈𝑡) ≠ 𝑛𝑢𝑙𝑙 

15:       Search the 𝐴𝑈 − 𝐴𝑉𝐿 tree to find a set of documents, denoted as 𝐷2, that contain all  

the hash values (ℎ𝐴𝑈1 , ⋯ , ℎ𝐴𝑈𝑡); 

16:       if 𝐸𝑄 ≠ 𝑛𝑢𝑙𝑙 

17:          Sort the documents in 𝐷2 based on the relevance scores with 𝐸𝑄 and return the  

most relevant top-𝑘 documents in order; 

18:       else (i.e., 𝐸𝑄 = 𝑛𝑢𝑙𝑙) 

19:          Return all the documents in 𝐷2; 

20:       end if 

21:    else (i.e., (ℎ𝐴𝑈1 , ⋯ , ℎ𝐴𝑈𝑡) = 𝑛𝑢𝑙𝑙) 

22:       if 𝐸𝑄 ≠ 𝑛𝑢𝑙𝑙 

23:          Search the HRF tree to find the most relevant 𝑘 documents with 𝐸𝑄 and return the  

most relevant 𝑘 documents in order; 

24:       else (i.e., 𝐸𝑄 = 𝑛𝑢𝑙𝑙) 

25:          The result is empty and return 𝑛𝑢𝑙𝑙; 
26:       end if 

27:    end if 

28: end if  
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assumptions about the employed algorithms are first given as fol-

lows: 

Assumption 1: In the employed symmetric encryption algorithm, 

the plaintexts of encrypted documents cannot be recovered without 

the symmetric secret keys. 

Assumption 2: In the employed one-way function, the filenames 

and authors cannot be recovered given only their mapped random 

numbers. 

In our scheme, the employed symmetric encryption algorithm 

and one-way function are not strictly restricted to particular types. 

However, the assumptions are reasonable considering the basic prop-

erties of symmetric encryption algorithms and on-way functions [42]. 

Based on the assumptions provided above, we analyze the secu-

rity of the proposed scheme. As discussed in Section III.D, we 

mainly focus on the security of document files and index structures. 

A. Document privacy 

In existing schemes [21], [22], [23], [24], all the data users pre-

serve the secret keys {𝑠1, 𝑠2, ⋯ , 𝑠𝑁}  to decrypt the searched docu-

ments. In our new threat model, the cloud server can easily recover 

the plaintexts of encrypted documents once a small number of data 

users are compromised. However, our framework stores the keys in 

the proxy server and this properly protects the privacy of documents. 

In this paper, the ciphertexts of documents are constructed by en-

crypting the plaintext files with a set of symmetric secret keys. The 

encryption process is presented as follows: 

𝒞 = 𝑒𝑠(ℱ),                                     (15) 

where 𝒞 is the encrypted documents, ℱ is the plaintext documents, 

and 𝑠 is a set of secret keys {𝑠1, 𝑠2, ⋯ , 𝑠𝑁}. Note that, different doc-

uments are encrypted by different and independent keys. Moreover, 

the secret keys in 𝑠 are totally controlled by the proxy server and 

hence the cloud server and data users cannot obtain them. 

As discussed in Section III.C, the cloud server can access all the 

encrypted documents and the data users can access a set of plaintext 

documents. Considering that a small number of data users may col-

lude with the cloud server, the adversary can easily obtain a set of 

encrypted documents and the corresponding plaintexts, as shown in 

the following: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = {(𝐹𝑖 , 𝐶𝑖),⋯ , (𝐹𝑗 , 𝐶𝑗)},        (16) 

where 𝐹𝑖 is the plaintext of 𝐶𝑖. Based on Assumption 1, we can infer 

that they cannot get any information about the plaintexts of other 

encrypted documents, because the symmetric secret keys are inde-

pendent with each other. Therefore, document privacy is properly 

protected in our framework. 

Another problem is that the malicious data users may leak a 

small number of plaintext documents to the public. This phenome-

non can be alleviated by tracking the source of file leakage [26], [27], 

[28] and limiting the number of documents requested by a data user 

in a period. We do not discuss these techniques in detail here consid-

ering that they don’t fall in the scope of this paper. 

B. Privacy of FN-AVL tree and AU-AVL tree 

The 𝐹𝑁 − 𝐴𝑉𝐿 tree and 𝐴𝑈 − 𝐴𝑉𝐿 tree are stored in the cloud 

server. By colluding with the data users, the cloud server can get 

some plaintext filenames and authors, and their corresponding ran-

dom numbers, as shown in the following: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = {(𝐻𝑖 , 𝐹𝐴𝑖),⋯ , (𝐻𝑗 , 𝐹𝐴𝑗)},     (17) 

where 𝐹𝐴𝑖 is a filename or an author, 𝐻𝑖 is the random number cor-

responding to 𝐹𝐴𝑖 . Note that, 𝐻𝑖 = 𝑓𝑢𝑛𝑐(𝐹𝐴𝑖)  and 𝑓𝑢𝑛𝑐()  is the 

one-way function employed by the proxy server. Based on Assump-

tion 2, we can infer that the plaintext filenames and authors of other 

nodes in the tree cannot be recovered even their random numbers are 

given. 

Another challenge is that the adversary may calculate and store 

the random numbers of the filenames and authors in advance. How-

ever, this problem can be alleviated as follows. We can completely 

cut off the relations between the corresponding numbers to the file-

names and authors by randomly selecting a set of numbers for them 

rather than generating the numbers based on the filenames and au-

thors. Clearly, the cloud server cannot calculate and store the random 

numbers in advance even the filenames and authors are given. An 

extra workload for the proxy server is that it needs to maintain a table 

to retrieve the random numbers for filenames and authors. Consid-

ering that many mature data structures have been designed to man-

age the pairwise data, the workload is an acceptable price for the 

security of the system. As a consequence, the 𝐹𝑁 − 𝐴𝑉𝐿  tree and 

𝐴𝑈 − 𝐴𝑉𝐿 tree are secure in our scheme. 

C. Privacy of HRF tree 

In our scheme, the encrypted document vectors stored in the 

HRF tree are strongly related with the contents of the documents and 

they are of great importance. In this section, we theoretically prove 

that the encrypted HRF tree can defend against the chosen-plaintext 

attack model presented in section III.C. We first describe the chal-

lenging game as follows: 

Init. The challenger selects a set of documents ℱ from the data 

owner and randomly generates a set of secret keys 𝒮𝒦 =
{𝑆1, 𝑆2, 𝑀1, 𝑀2}. Note that, the challenger keeps all the keys secret 

from the adversary. Without loss of generality, the length of 𝑆1, 𝑆2 is 

set as 𝑚, i.e., no artificial attributes are added. (Note that, the addi-

tion of artificial attributes will only increase the security of the tree.) 

Setup. The challenger runs 𝐁𝐮𝐢𝐥𝐝𝐈𝐧𝐝𝐞𝐱(ℱ, 𝒮𝒦) algorithm and 

gives all the encrypted document vectors to the adversary.  

Phase 1. The adversary is allowed to issue queries for the en-

crypted vectors for a set of documents in 𝑃 ⊆ ℱ. 

Challenge. The adversary submits two other documents 𝐷0 and 

𝐷1 out of ℱ to the challenger. The challenger randomly chooses a bit 

𝑏 ∈ {0,1} and maps 𝐷𝑏 to a document vector 𝑉𝑏 based on 𝒲 and 𝑆1. 

Then, the encrypted vector 𝐸𝑏 is constructed based on 𝑉𝑏 and the se-

cret keys 𝑆2, 𝑀1, 𝑀2. At last, the challenger sends 𝐸𝑏 to the adversary. 

Phase 2. Phase 1 is repeated. 

Guess. The adversary outputs a guess 𝑏′ of 𝑏. 

The advantage of an adversary in this game is defined as 

Pr(𝑏′ = 𝑏) −
1

2
. We say that the privacy of encrypted HRF tree is 

secure in chosen-plaintext attack model if all polynomial-time ad-

versaries have at most a negligible advantage in the chosen-plaintext 

attack game. 

We theoretically prove the security of HRF tree in Theorem 1. 

Theorem 1: For the encrypted HRF tree constructed in this paper, 

there exists a negligible advantage 𝜖 for all the polynomial-time ad-

versaries under the assumed system model and threat model pre-

sented in Section III such that: 

Pr(𝑏′ = 𝑏) −
1

2
≤ 𝜖.                            (18) 

Proof: In our scheme, two steps are needed to get the encrypted 

document vectors of 𝐷0 and 𝐷1. First, the proxy server needs to map 

𝐷0, 𝐷1 to plaintext vectors 𝑉0, 𝑉1 based on the normalized TF model 

(as discussed in Section V.A) with 𝑆1,𝒲 as secret keys. Without loss 

of generality, we assume that the entries in the document vectors are 

constructed based on alphabetical order of keywords. Then, the 

plaintext vectors 𝑉0, 𝑉1  are mapped to encrypted vectors 𝐸0, 𝐸1 

based on secure kNN scheme with 𝑆2, 𝑀1, 𝑀2 as secret keys. 

To distinguish 𝐸0, 𝐸1 and output a correct guess 𝑏′ of 𝑏, the ad-

versary first needs to distinguish 𝑉0, 𝑉1  and make the first guess 

𝑉0
′, 𝑉1

′  of them based on 𝐷0, 𝐷1 . For simplicity, we denote 𝑉0 =
𝑓𝑡𝑓(𝐷0) and 𝑉1 = 𝑓𝑡𝑓(𝐷1). The advantage is this process is defined 

as 𝜖1 and we get: 

Pr(𝑉0
′ = 𝑓𝑡𝑓(𝐷0), 𝑉1

′ = 𝑓𝑡𝑓(𝐷1)) ≤
1

2
+ 𝜖1.            (19) 

Clearly, if we provide 𝒲  and 𝑆1  to the adversary, 𝜖1  will be 1 2⁄  . 

However, the secret information is stored in the proxy server and we 

can infer that 𝜖1 trends to be smaller than 1 2⁄ . Without loss of gen-

erality, we get: 
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𝜖1 ≤
1

2
.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20) 

Then, in the second guess, the adversary should make full use of 

query phases. In phase 1 and phase 2 of the game presented previ-

ously, we assume that the adversary obtains a set of pairwise rela-

tions between documents 𝑃  and their encrypted vectors 𝐸 , where 

𝑃 ⊆ ℱ  and 𝐸𝑖 = 𝐁𝐮𝐢𝐥𝐝𝐈𝐧𝐝𝐞𝐱(𝑃𝑖 , 𝒮𝒦)  for all 𝑃𝑖 ∈ ⁡𝑃 . In this case, 

the adversary needs to distinguish the two encrypted vectors 𝐸0, 𝐸1 

based on the following knowledge: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = {ℐ, 𝑃, 𝐸}.               (21) 

We can improve the success rate of adversary’s guess by extending 

𝑃 to {𝑃, 𝑉} where 𝑉𝑖 is the normalized TF vector of 𝑃𝑖 for all 𝑃𝑖 ∈ ⁡𝑃. 

For simplicity, we denote 𝐸0 = 𝑓𝑘𝑛𝑛(𝑉0) and 𝐸1 = 𝑓𝑘𝑛𝑛(𝑉1). 
In this paper, we encrypt the vectors based on 𝑆2,𝑀1,𝑀2 and the 

adversary cannot access these secret keys which are stored in the 

proxy server. Under this situation, the second guess game, i.e., mak-

ing the guess 𝐸0
′ , 𝐸1

′  of 𝐸0, 𝐸1 based on 𝑉0, 𝑉1 and the queried infor-

mation, is strictly the same with the level-3 attack game in [29]. 

Based on Theorem 6 in [29], we can infer that there exists a negligi-

ble advantage 𝜖2 for the polynomial-time adversaries such that: 

Pr(𝐸0
′ = 𝑓𝑘𝑛𝑛(𝑉0), 𝐸1

′ = 𝑓𝑘𝑛𝑛(𝑉1)) ≤
1

2
+ 𝜖2.        (22) 

By combing (19), (20) and (22), we get: 

Pr(𝑏′ = 𝑏) = Pr (𝑉0
′ = 𝑓𝑡𝑓(𝐷0), 𝑉1

′ = 𝑓𝑡𝑓(𝐷1)) ∗                         

Pr(𝐸0
′ = 𝑓𝑘𝑛𝑛(𝑉0), 𝐸1

′ = 𝑓𝑘𝑛𝑛(𝑉1))                    

≤ (
1

2
+ 𝜖1) ∗ (

1

2
+ 𝜖2)                                                 

=
1

4
+

1

2
𝜖1 +

1

2
𝜖2 + 𝜖1𝜖2                                             

≤
1

2
+ 𝜖2.                                                             (23) 

Considering that 𝜖2 is a negligible advantage, we prove that equation 

(18) is always satisfied. Consequently, we claim that the encrypted 

HRF tree is secure under the proposed threat model.                              □ 

In real life, data users search documents based on a set of key-

words in most cases and the privacy of trapdoors is also very im-

portant. Fortunately, we can prove that the privacy of data users’ 

search requests is also properly protected in our scheme. Consider-

ing that the proof process is similar to that of Theorem 1, we don’t 

prove it here. 
Based on Theorem 1, we can infer that though the cloud server 

knows the encrypted index structures, the semantic meanings under-

neath the encrypted vectors cannot be recovered. To further hide the 

relationships between the trapdoors, in [21], [22], [23], a random 

factor is added into the trapdoors and hence the relevance scores be-

tween query requests and document vectors are also modified. Con-

sequently, the accuracy of the search results decreases which cannot 

be controlled by the data users. Though the random factors are not 

employed in our scheme, we will evaluate the search precision of 

HRF tree with different random factors in Section VIII.C. 

VIII.  PERFORMANCE EVALUATION 

The overall document retrieval efficiency is affected by both the 

index structures and the time consumptions of executing basic oper-

ations. We first theoretically analyze the efficiency of the three pro-

posed index trees in Section VIII.A and then evaluate the overall ef-

ficiency of the scheme by experiments in Section VIII.B. At last, the 

search precision is discussed in Section VIII.C. 

A.  Efficiency Analysis 

The heights of 𝐹𝑁 − 𝐴𝑉𝐿  tree and 𝐴𝑈 − 𝐴𝑉𝐿  tree are about 

log⁡(𝑁) and log⁡(𝐾), respectively, where 𝑁 is the number of the doc-

uments and 𝐾 is the number of the authors. As a consequence, the 

time complexities of inserting, deleting and searching a specific 

node in the trees are all 𝑂(log⁡(𝑁)) and 𝑂(log⁡(𝐾)) [40], respectively. 

Both filename-based and author-based search are accurate searches, 

i.e., the returned documents contain the filenames or authors, and 

this search process is equal to search a specific node in the trees. 

Different from the above two trees, the structure of the HRF tree 

is related with the distribution of the document vectors. In the best 

case, all the leaf nodes contain 𝐵1 children and all the non-leaf nodes 

contain 𝐵2 children, and hence the depth of the HRF tree is about 

log𝐵1 ⁡(𝑁/𝐵2). In this case, the time complexities of inserting, delet-

ing and searching a specific node in the tree are all 𝑂(log𝐵1 ⁡(𝑁/𝐵2)). 

However, if each non-leaf node contains only 𝐾1𝐵1  (0 ≤ 𝐾1 ≤ 1 ) 

children and each leaf node contains 𝐾2𝐵2  (0 ≤ 𝐾2 ≤ 1)  child 

nodes, the depth of the tree will be log𝐾1𝐵1(⁡𝑁/(𝐾2𝐵2)). In addition, 

the multi-keyword ranked search process is much complex than 

searching a specific node in the HRF tree though most of the search 

paths are pruned. The accurate time complexity is hard to estimate 

which depends on the distribution of document vectors and the query 

vector. We will evaluate the search time by experiments in Section 

VIII.B.  

To test the efficiencies of the three trees, we compare the trees 

with the KBB tree proposed in [22] on two and three dimensional 

spaces, i.e., each document vector is represented by a 2-D or 3-D 

dimensional vector. We choose the KBB tree as the benchmark be-

cause it can return accurate search results similar to the designed 

trees in this paper. In our simulation, the number of HRF tree’s leaf 

nodes is set to 1000 and the number of documents ranges from 

10,000 to 500,000. For each random search query, the top-10 rele-

vant documents are returned. We employ the search proportion 

measurement to simulate the trees’ efficiency and it is calculated by 

the number of searched document vectors to the number of all the 

document vectors. We execute the simulation for 100 times and the 

average simulation results are presented in Fig. 4 and Fig. 5. 

It can be observed from Fig. 4 that more than 80% document vec-

tors in KBB need to be searched for both 2-D and 3-D document 

vectors to obtain the accurate results. This can be explained by the 

fact that the document vectors in KBB tree are organized chaotically. 

Consequently, KBB tree cannot lead a query request to the proper 

position of the tree to obtain the search results efficiently. The HRF 

tree organizes the vectors based on their similarities. In the search 

process, the search paths are properly leaded by the HRF vectors of 

the nodes and most of the search paths are pruned. Compared with 

the KBB tree, the HRF tree is much more efficient. While the num-

ber of document vectors increases from 10,000 to 500,000, the 

search proportion of the HRF tree decreases from 8.8% to 0.8%. Cor-

respondingly, the search time is significantly shortened. Another in-

teresting observation is that the difference values of the search pro-

 
Fig. 4. Search proportion for KBB tree, HRF tree and AVL trees. 

 
Fig. 5. Search proportion with different numbers of clusters 

with the same size of the document set, 𝑁 = 100,000.  
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portion for 3-D vectors and 2-D vectors decreases with the increas-

ing of the document vectors’ number. We also evaluate the two AVL 

trees and in fact their search proportion is so small that the search 

time can be ignored compared with that of the KBB and HRF tree. 

Considering that the document vectors are organized as clusters, 

the number of the leaf nodes also affects the efficiency of the HRF 

tree and the simulation results are presented in Fig. 5. With the in-

creasing of the number of clusters, the search proportion for both 2-

D and 3-D document vectors decreases. The difference values be-

tween them also decrease. Except for the search proportion, the size 

of the tree also greatly affects the search efficiency and to get a bal-

ance between them, we adjust 𝐵1, 𝐵2 to make the tree includes about 

500 leaf nodes. 

Some important properties of the HRF tree are summarized as 

follows: 1) Searching the “nearly” accurate result is very easy and 

guaranteeing the strict accuracy of the search results is much more 

difficult; 2) For a constant number of clusters, the search proportion 

decreases with the increasing of document vectors’ number; 3) The 

dimension of the document vectors has a large affection on the 

search proportion and a high dimensional vector space makes a high 

search proportion. 

B.   Efficiency Evaluation 

In this section, we evaluate the proposed framework on the Enron 

Email Data Set [43] and 10,000 records are randomly chosen as our 

experiment corpus. All the algorithms are implemented on a 2.60 

GHZ Intel Core processor, Windows 7 operating system with a RAM 

of 4 GB. The document retrieval system is mainly composed of four 

functionalities including constructing the index structure, generating 

the trapdoor, searching and updating the index structure. The effi-

ciencies of the four functionalities are evaluated respectively in the 

following. 

1) Index Structure Construction 

The processes of constructing the two AVL trees are straightfor-

ward and include mainly two steps: 1) mapping the filenames and 

authors to the random numbers, and 2) organizing the numbers by 

two AVL trees. Clearly, the time costs of building the two AVL trees 

depend mainly on the numbers of the documents and authors in the 

document collection. Constructing the encrypted HRF tree mainly 

includes three phases: 1) mapping the documents to document vec-

tors, 2) building the HRF tree of the document vectors and 3) en-

crypting the HRF tree. The major computation steps to encrypt a 

document vector includes a splitting process and two multiplications 

of a (𝑚 +𝑚′) -dimensional vector and a (𝑚 +𝑚′) × (𝑚 +𝑚′) 
matrix. To encrypt the whole HRF tree, the total time complexity is 

𝑂(𝑁(𝑚 +𝑚′)2) and hence the time cost for building the encrypted 

HRF tree mainly depends on the number of documents in the docu-

ment collection ℱ and the number of keywords in dictionary 𝒲. 

Fig. 6(a) shows that the time costs of constructing the HRF tree 

and the index structure in MRSE are nearly linear with the number 

of documents. This can be explained by the fact that most time is 

consumed in the process of constructing the document vectors which 

is linear to the number of documents. However, compared with the 

index structure in MRSE, the HRF tree consumes more time because 

the document vectors are further organized based on their similari-

ties. The two AVL trees are much more time-efficient because they 

do not need to scan all the words in a document and just need to scan 

the filename and authors. Fig. 6(b) shows that the time costs of build-

ing an HRF tree and the index structure in MRSE are nearly propor-

tional to the number of keywords in the dictionary. The time costs of 

constructing the AVL trees are independent to the size of keyword 

dictionary. Though constructing the index structures is of high com-

putational complexity, it is acceptable considering that this is a one-

time operation. 

2)  Trapdoor Generation 

Given a query request including a filename, several authors and 

𝑡 keywords, the generation of a 𝐹𝑁 trapdoor or a 𝐴𝑈 trapdoor incurs 

𝑂(1). Building the HRF trapdoor incurs a vector splitting operation 

and two multiplications of a (𝑚 + 𝑚′) -dimensions vector and a 

(𝑚 +𝑚′) × (𝑚 +𝑚′) matrix. Consequently, the time complexity is 

𝑂((𝑚 +𝑚′)2) which agrees with the simulation results in Fig. 7(a). 

The number of keywords in the query has very slight affection on 

the time costs of generating trapdoors as shown in Fig. 7(b). Building 

an HRF trapdoor consumes slightly more time than that in MRSE 

because of the dimension extension. 

3) Search Efficiency 

When a data user executes a filename search or authors search, 

the cloud server needs to execute only log⁡(𝑁) or log⁡(𝐾) comparison 

operations and the time complexities are 𝑂(log⁡(𝑁)) and 𝑂(log⁡(𝐾)). 
In a multi-keyword search, the time complexity of computing a rel-

evance score between a trapdoor and a document vector is 𝑂(𝑚 +
𝑚′), and the height of the HRF tree is about log𝐾1𝐵1(⁡𝑁/(𝐾2𝐵2)). 

Thus, the time complexity of searching a path from the root to the 

leaf node is 𝑂(log𝐾1𝐵1(⁡𝑛/(𝐾2𝐵2)) ∗ (𝑚 +𝑚′)). If 𝛼 percent of all 

the paths need to be accessed, the upper bound time cost of executing 

a multi-keyword search is 𝑂(𝛼 ∗ (𝑚 +𝑚′) ∗ (⁡𝑁/(𝐾2𝐵2)) ∗
log𝐾1𝐵1(⁡𝑁/(𝐾2𝐵2))). 

As shown in Fig. 8(a), in MRSE, all the document vectors need 

to be scanned to obtain the search result and the time cost is linear to 

the number of the documents. The search time of HRF tree is much 

smaller than that of MRSE. The two hash index trees perform much 

better. Fig. 8(b) presents the search efficiency with the increasing 

number of retrieved documents. It can be observed that the search 

 
(a)                                           (b) 

Fig. 7. Time costs of constructing trapdoors. (a) For the different 

sizes of dictionary with fixed number of query keywords, 𝑡 = 10. 

(b) For the different numbers of query keywords with fixed diction-

ary, 𝑚 = 3,000.  

  
(a)                                     (b) 

Fig. 6. Time costs of constructing index structures. (a) For the dif-

ferent sizes of document set with fixed keyword dictionary, 𝑚 =
3,000. (b) For the different sizes of dictionary with the same docu-

ment set, 𝑁 = 5,000.  

 

(a)                                                   (b) 

Fig. 8. Time cost of executing a query. (a) For the different size of 

data set with fixed keyword set, 𝑚 = 3,000. (b) For the different 

number of retrieved documents with fixed document set and key-

word dictionary, 𝑁 = 5,000, 𝑚 = 3,000.  
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time of all the index structures keep relatively stable with the in-

crease of retrieved documents. 

4) Update Efficiency 

When a document vector is inserted or deleted from the HRF tree, 

about 𝑂(log𝐾1𝐵1(𝑁/(𝐾2𝐵2))) nodes on the tree need to be updated. 

Since updating a HRF vector takes 𝑂(1)  time and the encryption 

process consumes (𝑚 +𝑚′)2 time, the overall time complexity of 

an update operation on the HRF tree is 𝑂((𝑚 +𝑚′)2log𝐾1𝐵1(𝑁/

(𝐾2𝐵2))). We illustrate the time cost of executing an update opera-

tion through inserting a node into the tree. Note that, we ignore the 

performance of MRSE in terms of update efficiency in this section 

considering that no index tree is constructed in that scheme. It can 

be observed from Fig. 9(a) that when the dictionary is fixed, insert-

ing a document vector into the HRF tree cost nearly logarithmic time 

with the size of document set. Though the time costs for the AVL 

trees also increase with an increasing number of document set, it can 

be ignored compared with that of updating the HRF tree. Fig. 9(b) 

shows that the update time of the HRF tree is nearly linear to the size 

of the dictionary with a fixed document set. Similarly, the update 

time costs of the AVL trees are much smaller than that of the HRF 

tree. This is reasonable considering that these two trees are much 

simpler compared with the HRF tree. 

C. Search Precision of HRF Tree with Different Random Factors 

In our framework, three encrypted index trees are constructed. 

The search results on the two AVL trees are accurate and hence the 

search precision is always 100%. In the following, we focus on the 

search precision of HRF tree with different random factors. Similar 

to the schemes in [21], [22], [23], a random number can be added to 

the relevance score between a query vector and a document vector 

as presented as follows: 

𝑅𝑆𝑐𝑜𝑟𝑒′(𝑉𝑗 , 𝑉𝑄) = 𝑉𝑗 ∙ 𝑉𝑄 + 𝛿 = 𝐸𝑗 ∙ 𝐸𝑄 + 𝛿,          (24) 

where 𝛿 is randomly selected from a uniform distribution 𝑈(0, 𝑏). 
In this way, the search results are slightly different even for the same 

query request and hence the privacy of access patterns is protected. 

As shown in Fig. 10, the search accuracy monotonously decreases 

with the increasing of 𝑏. This is reasonable considering that a larger 

𝑏 increases the error of relevance score which misleads the selection 

process of top-⁡𝑘 documents. In conclusion, there exists an interest-

ing tradeoff between search precision and privacy of access patterns. 

Fortunately, parameter 𝛿 can be selected by the data users according 

to their requirements. 

IX.  CONCLUSION 

In this paper, a flexible, secure and efficient privacy-preserving 

document search framework is proposed based on cloud computing. 

It supports not only the accurate document search based on filenames 

and authors, but also the multi-keyword ranked document retrieval. 

Three tree-based index structures are constructed and an accurate 

depth-first search algorithm on the HRF tree is designed. When a set 

of parameters are provided by the data user, the parameters are col-

laboratively employed to efficiently locate the candidates until the 

accurate result is finally extracted from the document collection. In 

our framework, a stronger and more practical threat model is em-

ployed in which the cloud server can collude with a small set of data 

users. Under this assumption, the adversary can execute the chosen-

plaintext attack to recover the files, filenames, authors and document 

vectors. In this case, existing schemes cannot properly protect the 

privacy of document collection. To defend this new attack, a proxy 

node is employed in our system to improve the security of the whole 

system and alleviate the workload of the data owner and data users. 

Both theoretical analysis and experimental results demonstrate the 

reliability and efficiency of the proposed framework. 

The secure document retrieval framework can be further im-

proved in several aspects. First, the returned top-𝑘  relevant docu-

ments may not satisfy the data users’ requirements and they naturally 

attempt to obtain the next 𝑘 relevant documents. Consequently, it is 

a meaningful future work to design a search scheme that supports 

dynamic parameter 𝑘 in the search process. Second, the proxy server 

is responsible for generating the update information for the HRF tree 

which is a heavy workload. A better strategy is that the proxy server 

focuses on security control and the update operations are directly ex-

ecuted by the cloud server. Third, in real life, data users may require 

more search patterns and some more modules need to be designed 

and integrated into our framework. 
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