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Abstract—Advances on resiliency to arbitrary faults and system failures have contributed well established, sound protocols and
paradigms in distributed systems literature. The corner stone of this contribution lie redundancy/replication techniques in which is a
double–edged–sword, by increasing the number of nodes inherently increases the system’s attack-vector – the set of ways an attacker
can compromised a system. To remedy this issue, system randomization and diversification has been considered as an effective
defensive strategy, referred to as a Moving Target Defense (MTD). In this paper, we introduce a bio-inspired formal model for
space/time system randomization and diversification. and a quantification scheme for virtual machines in cloud computing
environments. We show the practicality of the model with a MTD framework (Mayflies) integrated into cloud management software
stack (OpenStack).
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1 INTRODUCTION

The traditional defensive security strategy for dis-
tributed systems is to safeguard applications against ma-
licious activities or prevent attackers from gaining control
of the system using well established defensive techniques
such as; perimeter-based fire walls, redundancy and replica-
tions, and encryption. Although these techniques have been
widely adopted, given sufficient time and resources, espe-
cially, sophisticated threats that target zero-day exploits, all
of these methods can be defeated. While defensive security
strategies against arbitrary faults and system failures for dis-
tributed systems have been studied for decades, defending
against sophisticated adversaries still remains challenging.
This is due to the fact the security motto is based on staying
one-step ahead of the attackers.

With the ever increasing adoption on cloud computing,
due to its simplified service-based management model built
on commodity off–the–shelf hardware and software com-
ponents, cyber threats have risen in recent years. Moving
Target Defense (MTD) [1], is a defensive strategy that aims
to reduce the need to stay one-step ahead against cyber
threats by disrupting attackers gain-loss balance of the
system. The core of this strategy is to continuously shift
the system’s attack surface [2] – the set of ways/entries an
adversary can exploit/penetrate the systems, with the goal
of increasing the cost of an attack and the perceived benefit
of compromising it.
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For decades, randomization and diversification tech-
niques have been applied to all aspects of the system
to combat against specialized threats that target mem-
ory structures, CPU registers, applications and networks.
These include; Instruction Set Randomization [3], Address
Space Randomization [4], randomizing runtime [5], and
system calls [6] that have been used to effectively com-
bat against system-level exploits (i.e., return-oriented/code
injection). These randomization techniques are considered
mature and tightly integrated into most modern operat-
ing systems. Diversification techniques such as N-Version
programming [7] aims to diversify variable binary forms
of the same program, and N-Variant Systems [8] execute
multiple variants of the same system in synchrony with
a given input and monitoring for divergence to combat
against application-level threats.

Recent advances in Software Defined Networks (SDN),
the core building blocks of the cloud networking, have
further amplified atacks on the systems in cloud platforms
Virtual Machines (VMs). SDN separates the data plane and
the control plane to allow the network functionality to
be dynamically programmed in order for the VMs to be
managed independently from the network interfaces, thus,
increased the attack surface of the cloud infrastructures (i.e.,
network poisoning) [22]. To remedy this issue, a network-
level randomization techniques, referred to as IP-Hopping,
an MTD solution scheme to combat against such exploits
has been proposed in recent years [10].

Furthermore, to prevent attackers from gaining full sys-
tem control, VM-level randomization and diversification
across cloud platforms has been introduced in early fram-
works such as TALLENT [11] and MARCO [14]. Recently,
Mayflies [18], an MTD framework integrated into the cloud
software stack (OpenStack) developed by the same authors
is introduced that allows VMs withstand against attacks in
short time-intervals in the hope of limiting their window of
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exposure by continuously substituting VMs with different
characteristic (i.e., OS) across platforms. The overarching
goal of VM randomization and diversification frameworks
is to disrupt adversaries’ gain/loss balance of the system by
continuously shifting the attack surface, however, a formal
model to reason about the system behavior have not yet
been sufficiently explored, thus, the focus of this paper.

In this paper, we propose a bio-inspired formal model
(consensus of the species’ populations model [15]) for
space/time system VM randomization and diversification
using Dynamic Bayesian Network [?]. To illustrate the efficacy
of the proposed model, we first discuss the practical imple-
mentation of VM randomization and diversification frame-
work (Mayflies) introduced in our previous short papaer
[18], then present the proposed model and its quantification
scheme.

We make two contributions in this work:

1) A simple but yet effective space/time randomiza-
tion algorithms on virtualized cloud platforms.

2) A sound theoretical foundation to mathematically
reason about MTD system randomization behavior
and a quantification scheme using well established
tools and techniques.

We have organized this paper as follows, we first give a
quick background of the topic in section 2, then discus an
VM randomization and diversification MTD framework to
illustrate the practicality of the proposed model in section
3. We present the proposed formal model and its quantifica-
tion scheme in section 4. Finally, the conclusion and future
work is discussed in section 6.

2 BACKGROUND

Advances on resiliency to arbitrary faults and system fail-
ures have contributed well established sound protocols
and paradigms in distributed systems, however, resiliency
against sophisticated attacks still pose a challenging task.
This is due to the fact that replication/redundancy is the
corner stone of building reliability guaranteed fault-resilient
systems, however, this solution approach is double-edged-
sword in which increasing reliability through replication
increases the system’s attack-vector (more nodes to protect).

The criticality of diversity as a defensive strategy in ad-
dition to replication/redundancy was first proposed in [12].
Diversity and randomization allow the system defender to
deceive adversaries by continuously shifting the system’s
attack surface – the set of ways/entries an adversary can
exploit/penetrate the systems [2].

In general, space/time randomization and diversifica-
tion techniques is simply transforming the traditional ser-
vices that are designed to be protected their entire runtime
to services that deal with attacks in time intervals through
restarting/refreshing or migrating across platforms. Such
transformation is simply achieved by allowing the appli-
cations run in heterogeneous OS’s on variable underly-
ing computing platforms (i.e., hardware and hypervisors),
thereby, creating a mechanically generated system instance
(s) that are diversified in time and space which is considered
as good defense as type-checking [13]. To the best of our
knowledge, a formal model for system randomization and

diversification has yet been explored, thus, the focus of this
work.

Inspired by the consensus of the species’ populations
model first introduced in [15] and further studied in insects
in [16], the preys’ population is measured by the propor-
tionality of their survival/reproductive rate vs. their eaten
rate by predators. Analogous to Virtual Machines (VMs) on
cloud computing environment, the preys population imply
the systems/VMs and the predators imply the attackers. Thus,
we can quantify the species’ population (VMs) in terms
of their survival from exploits/attacks (eaten) vs. reproduc-
tive/replacement rate at any given time.

The principle cornerstone of this model is to effectively
control the VMs survival/reproductive rate in order to guar-
antee desirable prey/VM population in a desired state at all
times using a Moving Target Defense (MTD) solution scheme.
MTD is a defensive strategy to refresh VMs by randomizing
and diversifying across platforms in time intervals for the
hope of keeping them away from exploits. As such, the
proposed model allows formalizing MTD system behavior
and to effectively control VM population by keeping the
VM rate of changes, the refresh/reproductive time vs. attack
success time (i.e., OS finger printing, code injection), in
balance at all times for the system defenders’ favor.

To illustrate the afficacy of the proposed model in vir-
tualized cloud environment, we use Mayflies [18], an MTD
framework built as an extension to Openstack cloud soft-
ware stack [32], discussed in section 3.1. The main idea
of Mayflies is to randomize/diversify VMs across hetero-
geneous cloud platforms/space in time intervals. We use
Library for Virtual Machine Introspection (LibVMI) [17], an
open source library for proactive monitoring VMs below
the hypervisor, to detect in progress attacks by examining
live memory structures, and also avoid randomizing VMs
on vulnerable platforms (discussed in section 3.5). This
is the driving engine for our quantification scheme, the
survival/reproductive (VMs) rates and the eaten/compro-
mised rates at any given time interval.

With this model, we consider systems are initially de-
ployed in a desired state (known pristine VMs), then, it’s
possible that some of the systems transition into an undesired
state (i.e., exploited/compromised), a valid assumption in
cyber space. The overarching goal of the model in con-
junction with any VM randomization and diversification
framework is to formally reason the behavior of the systems
on virtualized cloud environment, and quantify in terms of
proportionality of the surviving vs. the compromised VMs
between the Desired and Undesired states constructed with
Hierarchical Hidden Markov Model (HHMM) and reasoned
with Dynamic Bayesian Networks (DBN).

3 VM RANDOMIZATION AND DIVERSIFICATION
FRAMEWORK

In this section, we give a brief overview of Mayfies, a VM
randomization and diversification MTD framework intro-
duced in our previous paper [18], then, discuss the practical
implementation of VM replacement and network interface
swapping (section 3.4) to lay the context of the proposed
model (section 4). For those interested in the details of the
framework design are suggested to reffer to our previous
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paper [18], and the proactive cloud monitoring scheme with
VMI in [19].

3.1 Mayflies Overview

Mayflies [18] is a MTD framework built on top of OpenStack
cloud software stack [32]. OpenStack is a widely adopted
open source cloud management software stack that consists
of a wide array of components such as; nova compute, hori-
zon, and neutron, to simply cloud computing infrastructure
management at scale with less user (admin) interactions.
Mayflies adopts a cross-vertical design that operate on three
different logical layers of OpenStack; the nova compute at the
application layer (GuestOS layer), the VMI at the hypervisor
layer (HostOS layer), and the neutron at the networking
layer.

Fig. 1: High-level Mayflies architecture

Figure 1 illustrates the high-level architecture of Mayflies
framework (top right) and OpenStack cloud framework
components (bottom and left quadrant). In the cloud frame-
work, starting from the infrastructure at the bottom layer lie
the hardware. Typically, in each platform there is a host OS,
a hypervisor (KVM/Xen) to virtualize the hardware for the
guest VMs, and the cloud software stack (i.e., OpenStack)
depicted as the vertical bars on the left quadrant. The core
components we leveraged in this work include; nova, neu-
tron, horizon, and glance. In addition, a libvmi [31], a library
for virtual machine introspection to proactively monitor the
VM’s below the hypervisor by taking snapshot of the VMs
memory at runtime. This is to detect attacks in realtime
and guide the VM replacement decisions across platforms,
discussed in section 3.5.

As the cloud software stack (OpenStack) abstracts the
VM compute nodes from the application’s architectural style
(i.e., SOA) or it’s communication model (i.e., synchronous
vs. asynchronous) with a unified deployment models (i.e.,
IaaS, AaaS, SaaS), Mayflies extends OpenStack to further
abstract the applications’ runtime from the VMs in order to
break the runtime into observable time-intervals regardless
of the application type. In each time-interval (as low as a
minute) we destroy a VM and replace it with a fresh copy,
discussed in section 3.4. The fundamental problem of VM
replacement is the application state where the terminating
VMs’ state must be transferred to the freshly instantiated
VM, discussed in section 3.3.

In Mayflies, we introduce two abstraction layers; a high-
level System State: Desired and UnDesired, and Application
Runtime-level abstraction, dubbed Time Interval Runtime
(TIRE) as illustrated in Fig. 1 (top box) depicted in dotted

line. This abstraction allows us to model both the high-level
system states desired/undesired and the applications’ time-
interval runtime independently, thus, accurately reason the
transition between the Desired and the Undesired states. The
driving engine of the two high-level states transitions is
observations from the TIRE abstraction layer, discussed in
section 3.5.

3.2 Problem Formulation
As illustrated in Figure 1, given two high-level hidden states
S {SDesired, SUnDesired}, we formulate the problem as a
Binary Random Walk on the set of the two states moving
randomly one move per time-interval Ti (i.e., as low as a
minute), according to the following scheme:

We start with SDesired in the first time-interval since
the system is initially deployed in the Desired state before
any attack tookes place, then in each time-interval (as low
as a minute), we observe a random outcome of the system
status as a coin flip, for example, we can be at either move to
SUnDesired state or stay in SDesired state according to the
outcome of the observation of a time-interval (Ti). Similarly,
the next time interval Tj , and so on.

However, for a typical system, the UnDesired state could
consist of a set of internal states such as compromised, failed,
crashed. Then, the observations can be viewed of as rolling a
fair dice, for example, we move to SCompromised if the die
comes up 1 or 2, stay at SFailed if the dice comes up 3 or 4,
and move to SCrashed in the case of a 5 or 6. It’s intuitive
to see that these observations are probabilistic in nature.

Thus, we map the Random Walk probabilistic observa-
tions to the Library for Virtual Machine Introspection (LibVMI)
intrusion detection observations discussed in section 3.5. to
guide the VM randomization priorities, and reason the high-
level system state transitions. Although we used Mayflies
MTD framework with LibVMI to illustrate the efficacy of
the model (keeping the preys/VMs population in balance
within the Desired state at all times), one can use any MTD
framework that randomizes/refreshes VMs and any real
time intrusion detection system in this model.

3.3 Application State
As any MTD framework, Mayflies partitions the traditional
runtime execution of the system by terminating/destroying
the VM and replacing it with another freshly spawned VM.
The inherent challenges of this runtime partitioning are a)
dealing with the application state transfers, and b) the perfor-
mance impact on the application. Generally, application state
is an abstract notion of a continuous memory region of the
application at runtime. Destroying/terminating VMs with
a predefined time-interval (as low as a minute), breaks the
continuity of the application state, thus, requires the state
of the terminating VMs to be transferred to the freshly ac-
tivated VMs, however, the implementation of such abstrac-
tion is dictated by the applications’ communication model
(i.e., synchronous vs. asynchronous) among the application-
s/services or the client and the servers, therefore, Mayflies’
VM randomization is only suitable for certain applications.

In Mayflies, we exploit the built-in reliability properties
of the applications, especially, replicated systems. In [20],
we deployed an implementation of a Byzantine Fault-tolerant
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System (BFT-Smart) [26] in Mayflies on a private cloud
setting built on OpenStack. BFT-Smart is a quorum-based
synchronous system model where the replicas continue to
guarantee reliability even a fraction of the nodes/VMs are
malfunctioning (compromised/malicious). In this system,
the state for the application includes; the systems’ current
transaction number and known leader, number of the partic-
ipating replicas in the quorum, to aid the recovering replica
upon crash or failure. Replacing a VM in this system setting
only requires injecting the updated configuration files, and
the recovering/replaced VM connects to the rest of the
replicas to synchronize before even the clients connect to
it.

Applications like RESTful web services, a asynchronous
service model for example, a stateless web service (clien-
t/server) model where the client requests are processed
and responded by the servers without any system state is
preserved. In this applications, the communication protocol
bound to the client/server or between services attempts
to reconnect when the VM is terminated and a new/fresh
instance is activated in a timely manner. In contrast, for
stateful services, referred to as SOAP-based services, for
instance, the services are bound to not only communication
protocols but also security sessions (i.e., WS-*, WS-Secure
Conversation) that cannot be disrupted or terminated and
re-initiated, however, one can develop a work around of
these limitations. In general, transferring VM application
state (i.e., TCP connections, security sessions, etc.) in a
generic fashion is not feasible, thus, Mayflies VM random-
ization is an application dependent.

3.4 VM Replacement
Inspired by the cloud software stacks’ VM replacement
scheme VMentry and VMexit employed by the hypervisors’
scheduler for mapping the virtual computing resources to
the physical resources (i.e., CPU, memory), the VMs are
paused/stopped without the applications knowledge or
even migrated to different platforms to load balance the
infrastructure. Mayflies’ VM replacement scheme is simply
a) detaching the network interface of an active target VM,
b) destroying/terminating the VM using the cloud soft-
ware stacks’ command line interface (CLI) nova-create VM,
nova-destroy which is designed for provisioning and de-
provisioning VMs, then, c) attaching the network interface
to a fresh/new VM. Note that such VM replacement strategy
is only suitable for certain applications as discussed in
previous section.

Figure 2 illustrates the conceptual cross-section view
of a cloud infrastructure building blocks where OpenStack
is at the inner core of the cloud ecosystem. and Mayflies’
continuously substitutes guest VMs (fourth ring) while
proactively monitoring the VMs below the hypervisor (ring
2) and simultaneously reprogramming network interfaces
with Software Defined Network (SDN) (outer rings). It’s intu-
itive to see how the VMs are destroyed and activated fresher
copies across hardware platforms while dynamically swap-
ping their network interfaces, thus, reason the transitions
between the high-level system state (Desired and UnDesired).

Algorithm 1. shows the VM replacement process. In
Algorithm 1, we first save the target VM application con-
figuration files and other related runtime state information

Fig. 2: Cross Section View of Cloud Infrastructure. At the
core inner circle is Openstack, the second ring depicts the
hardware and the hypervisors/host OS on the third ring,
and one or more guest VMs on each host show on the fourth
ring. The outer two rings depict the internal IPs (10.x.x.x),
referred to Fix IPs and the externally visible IPs (192.x.x.x),
referred to as Floating IPs

Algorithm 1 VM Replacement

Input: VMid
1: procedure REPLACE()
2: targetV Mconfig ← CopyConfig(VMid)
3: DestroyVM(VMid)
4: newVM ←GetNewVM()
5: SwitchInterfaces() . algorithm 2.
6: newVMconfig ← targetV Mconfig
7: end procedure

including network interfaces in line 2, then, destroy the
target VM in line 3. Swap the network interfaces in line
5 (described in algorithm 2 below), then copy back the
configuration files in line 6.

3.4.1 Network Interface Replacement
Effectively terminating a VM and replacing it with a fresh
new VM in a timely manner is simplified by the Software De-
fined Networking (SDN), a programmable networking fabric
that decouples the control plane (i.e., virtual routers and
switches) from the data plane. In SDN environment, the
active VM is attached to a virtual network interface that
is referred to as ports with a fix IP for internal access (among
the servers), and a floating IP for external access that can be
later associated to the ports. This is the virtualized version of
the traditional network settings of Local Area Network (LAN)
and Wide area Network (WAN) respectively. Note that both
Fix and Floating IP addresses are bound to the port even after
it’s separated from the VM, thereby, transferable to another
VM.

As illustrated in Fig. 3, we detach the port off of the target
VM (VMx), then get VMy from the prepared pool of VMs
with all the application and it’s configuration files installed
and attach the port. Once the network port is attached to
the new VM, then we inject all the necessary application
runtime state info of the terminated target VM.

Algorithm 2 shows the network interface swap proce-
dure. In algorithm 2, we first check if the new VM from the
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Fig. 3: Illustration of VM compute and SDN interface in-
terchanges. VMx seamlessly replaces VMy from a pool of
VMs.

VM pool was created with network interface in line 2 and
create one for it if needed in lines 3 and 4, then, associate
the known external IP Floating IP of the terminating VM
to it in line 5. Note that the <options> for port-create/attach
includes creating the interface with specific IP address. We
dis-associate the Floating IP if the VM has network interface
in line 8, then swap the interfaces in lines 9 and 10. We
finally associate the known IP to it in line 11. This allows
the servers/replicas to continue using the known IP and
the clients re-connect to this replica through it's floating IP
(192.x.x.x) as the old server/replica had dropped off of the
network and came back.

Algorithm 2 Network Interface Switch

Require: VMx, VMy

1: procedure SWITCHINTERFACES()
2: if VMyInterface == NULL then
3: neutron port− create < options >
4: neutron port− attach < options >
5: nova interface − associate < F loatingIP,
V Mx >

6: else
7: portID ← GetPortID(VMx(ID))
8: nova interface − dis − associate < VMx,
F loatingIP >

9: nova interface− detach < VMx, V MxportID
>

10: nova interface− attach < VMyVMxportID
>

11: nova interface − associate < F loatingIP,
V My >

12: end if
13: end procedure

Typically, the new VM (VMy) has different characteris-
tics (i.e., Windows OS or variable Linux-based OSs (ubun-
tu/Feodra)) than VMx, the target VM that is getting de-
stroyed. Note that the substituting VM can be from a pool
of prepared VMs without network interfaces or created on
demand. The pros and cons of the VM selection strategy is
discussed in our previous paper [19]. Furthermore, depend-
ing on the OS image of the replica, a VM reboot is required
after the nova interface-attach <options>.

3.4.2 Network Interface Replacement Challenges
The process of replacing a node in Mayflies is greatly sim-
plified by the combination of nova for provisioning/de-
provisioning VMs, and neutron to the dynamically program
network interfaces, however, these two components are

asynchronous (functions have no return values to determine
whether the next call can be safely performed). For example,
detaching the network interface off of the replica with the
nova interface-detach <options> to free it’s fix and
floating IPs in order to attach it to the new VM instance using
the interface-attach <options> throws an error “IP
is still in use“. The reason is that all OpenStack compo-
nent (i.e., nova, neutron, horizon, glance, cinder, etc.) are done
through RESTful messaging (i.e., AMQP) for efficiency and
interoperability.

A typical workaround is to insert sleep(x) to hold the
process for an x amount of time before proceeding to
the next call, however, this x will vary depending on
the load of the controller which is difficult to predict,
thereby, increasing the refresh time if x is large or dis-
rupting the system (crashes) if x is too small. We syn-
chronized the nova calls by making other nova reporting
function calls (i.e., nova show -minimal and nova
interface-list) in a while loop as illustrated in the
following code snippet.

#/bin/bash
...
nova interface-detach <options>
while [ 1 ]
do
isactive=$(nova interface-list replicaID
| awk ’/\ACTIVE\y/ {print $2}’);

if [ -z "$isactive" ]
then

break;
fi

sleep 1
done

nova interface-attach <options>
...

Basically, the loop holds the execution of the next func-
tion call by repeatedly calling nova interface-list
replicaID function that reports the status of the given
replica ID every second. We parse the value ACTIVE in
isactive variable from the result returned by the nova
interface-list command using awk, then, break once
the value is null with the -z condition. This means that the
interface does not exist and can proceed to the next function
call, thus, prevent us to blindly wait function result in such
environment.

3.5 Space/Time Replacement and Observations
As illustrated in Fig. 4. below, at least one node/VM is
terminated and activated/replaced with a new one with dif-
ferent characteristics (i.e., OS) on a different platform/host
(y-axis) in each time-interval (x-axis). This time unit can be
as low as a minute (system time unit) or upon completing
certain number of n transactions/service responses in which
translates to the time it takes to complete n transactions(i.e.,
minutes). Depending on the threat model, an effective VM
replacement strategy is to randomize or in round robin
fashion, however, in order to prevent from blindly replacing
VMs on vulnerabile platforms/configurations (i.e., OS), we
use Library for Virtual Machine Introspection (LibVMI) [31], an
open source library for live memory introspection.
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Fig. 4: An illustration of space/time Randomization. We
mark C for clean if the VMs’ memory integrity is intact as its
deployed, and D for dirty if the memory structure changed.

Since we are interested in realtime proactive attack detec-
tion, we leveraged vmi to detect memory structural changes
that is caused by certain attacks (i.e., code injection). The
implementation details and the afficacy of the live memeory
snashot capturing technique is described in our previous pa-
per [20]. The idea is to run the VM in a sandox for profiling
its memory structure (start and end offset addresses) at run-
time, and then compare the initial memory references to the
consequence snapshots as shown in Algorithm 3. Capturing
the VMs live memory has neglegible performance impact
[17], furthermore, it’s intuitive to see that the memory start
and end memory address offsets is also has a negligible
performance impact, since it’s just a basic string comparison.

Algorithm 3 shows the process of memory introspection
process. In Algorithm 3, for a new VM/node, we first save
the initial VM memory structure (start and end-address
offsets) in line 5 and mark it clean since this is a fresh VM
that is currently being profiled. Then, mark accordingly if
the VM’s address offsets differ/altered from the initially
recorded offsets in lines 8, 9, 10 and 12. The comparison
is simply checking the start/end address offsets shift. The
VMs that their memory structure altered are given priority
regardless of VM replacement strategy (random or round
robin) adopted.

Algorithm 3 Virtual Introspect

1: Input: node
2: Output: Clean or Dirty
3: procedure INTROSPECT(node)
4: if node == new then
5: initialProc← GetProcessMemory(node)
6: nodeStatus← Clean
7: else
8: currentProc← GetProcessMemory(node)
9: if initialProci(key, val) 6=
currentProci(key, val) then

10: nodeStatus← Dirty
11: else
12: nodeStatus← Clean
13: end if
14: end if
15: end procedure

To gain a holistic view of the high-level system state, in
some time interval (i.e., one hour), we determine whether
the system is in a desired state or undesired state by calcu-

lating the proportion of the VMs that are found with dirty
memory structures and how fast these VMs are being re-
placed over a given time period. This allows us to have full
control over the preys/VMs population within pre-specified
time frame.

4 FORMAL MODEL

In this section we first describe the proposed model and
the rationale behind our choice. We then discuss the Time
Interval Runtime Execution scheme and introduce the pro-
posed DBN model construction and the formulation of the
high-level system state transitions. We discuss the model
quantification in section 5.

4.1 Model Description
Finite State Automata (FSA) is widely adopted mathemat-
ical machinery for specifying systems with both Determin-
istic Finite Automata (DFA) and Non-Deterministic (NFA)
properties. Buchi automaton [21], a type of ω-automaton
which is NFA is the most popular kind of automaton used in
modeling distributed systems. It is extremely challenging to
develop an effective proven methods for high-level system
state transitioning under the non-deterministic nature of
the cyber space, therefore, we adopt the probabilistic FSA
(PFSA) model.

PFSA is simply a NFSA (with no ε transition) with prob-
abilities for all transitions of the FSA. By definition, PFSA
is a generative model, where as the FSA (non-probabilistic)
finite automaton, are accepting devices for strings generated
by grammars in formal languages. We don’t specify any
alphabet input string

∑
for our automaton, however, we

use the output alphabet donated by Λ where a ∈ Λ and is
generated by simply observing the system’s active nodes in
time intervals.

Thus, we consider the Time Interval Runtime Execution
(TIRE) observations to represent the output alphabet a ∈ Λ
that drives the high-level system state Desired/UnDesired
transitions, discussed in section 4.3. These probability ob-
servation outcome can be either true or false in which true is
the accepting transition to another state and false is staying
in the same state. The expressiveness of the Accept lies the
power of the Buchi automaton to model the time-interval
runtime execution and the correctness property violations
can be specified in terms of the Accept condition.

A property is specified as a Buchi automata A and then
characteristics of the structure of this automata are used to
classify its properties. We achieve such structured character-
istics by modeling the framework with PSFA, specifically, a
Hierarchical Hidden Markov Model (HHMM) [24] represented
with Dynamic Bayesian Networks (DBN) [25], a time-linear
representation of Hidden Markov Model (HMM).

FSA enables modeling complex systems by decomposing
into multiple automaton and then chaining one automaton
output to a second automatons’ input, thereby, reasoning
about the system behavior separately while composing
them to achieve the desired results. Thus, the proposed
model anbales to extend to other formal automata mod-
els such as; interface automata [27], virtual machines [28],
cloud framework [29], and attack surface [30]. As such, the
proposed model fills the gap for formally modeling an end-
to-end system spectrum in the cloud ecosystem.
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4.2 Time-Interval Runtime Execution (TIRE)
The Time-Interval Runtime Execution (TIRE) is an abstraction
layer to break the runtime execution into intervals where
each interval the system is assessed for its current high-level
state, desired state or compromised/failed). Formally.
Definition 1. Runtime Execution of distributed systems is

typically defined as a set of infinite sequences of states
in Q, donated by Qω .

We define time-interval as follows:
Definition 2. Time-Interval in Mayflies is defined as a time

unit. We use Ti to donate each time interval where
i=1,2,3... are minutes/hours which is the prespecified
lifespan of the VM.

TIRE is simply the break points of the infinite sequences
of states in Qω . In each time-intervals Ti where i=1,2,3 . . . ,
at least a node ni is replaced to n′i, thus, the execution
sequences for ni will be those {q0 . . . qi−1} ∈ Qi gener-
ated within T0 to Ti−1 time interval, then the execution
sequences for n′i will be those {qi . . . qj} ∈ Qj of Ti to Tj
where i < j, and so on. Thus, the runtime sequences of ni,
n′i, n

′′
i , . . . are isolated in the form of {Qin, Qjn, Qkn, . . . .}

∈ Qω , thereby, allowing us to safeguard the individual VM
in time intervals rather than it’s entire runtime in which is
proven to be defeated eventually.

While we pro-actively monitoring the system at the
hypervisor-level (below the OS) for runtime integrity vio-
lations, at any time interval of Ti, Tj , . . . Tn we determine
whether or not we observed a violation, if a violation
is detected (i.e., altered the applications internal memory
structure/offset using VMI), then we replace the comprised
VM(s) before they reach their predefined lifespan so we will
be in our desired state in the next time interval. One way
to formalize and model this probabilistic observations O
(discussed next) of whether a VM status has changed or
not is through a Hidden Markov Model (HMM).

A Markov chain or process is a sequence of events
or states Q={q1, q2, . . . qn}, and HMM represent stochastic
sequences as Markov chains where the states are associated
with a probability density function (pdf). The pdfs in each
state qi are characterized by the probabilities of the emission
p(x|qi) and the transition qi,j where the transition to a
next state is independent of the past states. An elaborate
introduction of the theory of HMM and its applications can
be found in [23].

4.2.1 TIRE Observations
Formally, let {Oj , j=1,2,. . . } be observations of the VM status
n∈N, where N is the set of nodes. We model these obser-
vation as a Bernoulli processes where Oj ∈{0,1} in which
Oj = 1 indicates an observed VM is clean and Oj = 0
indicates the VM is dirty. The dirty VM can be either missing
(i.e., network drop) or it’s compromised (i.e., VMs address
space altered).

Formally, let n be a node in Mayflies and is defined by a
tuple: ni = 〈nstart, nρ〉 where

• nstart ∈ R+, represent the real time the node starts.
• nρ ∈ [nstart, < ρ|Oti >], represent the lifespan of

the VM from the start to the end. Either naturally
reaching it’s lifespan ρ (no attacks) or terminated

Fig. 5: Mayflies DBN System Model – system states are
Desired, UnDesired( Compromised, Failed) labeled as D,
C, and F, followed by the Exit state E. The dotted lines on E
depict for the control returning to the parent node. TIRE is
the observing state in double circles.

prematurely based on the observation result at time
Oti time-interval t due to attacks. Observations Oi ∈
[0, 1] represent the VM is found to be inactive=0 or
active=1 (i.e., Dirty or Clean), thereby, is terminated
accordingly.

• n′start, n
′
ρ′ , represent the real time node n replaced to

n′ with a new predefined life expectancy ρ′, thus, it’s
nj tuple; nj = 〈nstart, nρ〉

4.3 Model Construction
Typically, we deploy a system in a desired state and at some
point in time we end up in undesired state (i.e., compro-
mised or failed) without our knowledge (in most cases).
This is mostly credited to the successful stealthy attacks
that create turbulence state infinitely many times until the
system is compromised, ex-filtrated data or less usable (fail or
crash). These high-level uncertainties are driven by what’s
happening at the application’s runtime level, for instance,
if a node/server is compromised and is still running, then,
the system is in a compromised state, in contrast to when a
node crashes in which the system enters into a failed state.
One way to formalize this behaviour is through Hierarchical
Hidden Markov Model (HHMM) [24].

As the name implies, a Hierarchical Hidden Markov
Model (HHMM) forms a hierarchy of HMMs where each
state itself is an HHMM with sub level of HMMs as its
abstract/internal states. The top-level states in the hierarchy
are called the hidden states and the low-level is the produc-
tion state that emit observations. An HHMM is defined as a
3-tuple H =< λ, ξ,Σ > where λ ⊇ (A,Π, B) which repre-
sents the set of the transitions for the horizontal matrix, the
vertical vector and the probability distributions respectively.
The ξ is the topological structure which specifies the levels
and parent-child relationships of all the states, and Σ is the
observation alphabet.

As depicted in Figure 5, we construct an HHMM in
which the hidden states S are Desired, UnDesired and Time
Interval Runtime Execution (TIRE) as the omitting/observable
state (discussed next). We define the topology of the HHMM
hierarchy as follows: The Desired state (D) as the root state
(i.e., initial state), the UnDesired set of states Compromised (C)
and Failed (F) in level II, and TIRE as the leaf state in level
III. Note that the Undesired state can have as many states as
needed at all levels.



JOURNAL OF IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL X., NO. X, XXXX 2018 8

With this HHMM construction, we model the system
with Dynamic Bayesian Network [?]. As depicted in Fig 5,
DBN represents HHMM with time-linear transition parti-
tions to drive a much simpler and faster algorithms for
inference, classifications, prediction and learning which we
consider in our future work. In this work, the representation
and the encoding of the observation sequences and the tran-
sitions between the hidden states of the model is sufficient
to illustrate Mayflies’ MTD objective.

We define STIRE emissions as VM status observation
captured by the proactive monitoring library at the hypervi-
sor level (i.e., VMI) in time intervals, say every minute. We
consider the following three observations:

• A node is active which is typically the initial state
when the system is deployed.

• A node is inactive which can be either not-reachable
due to network drop or hardware/software failures.

• A node is dirty due to runtime integrity violations,
(i.e., detected anomaly in the applications memory).

For simplicity, we treat both in-active and dirty as Dirty
and active as Clean as described earlier. We define the guid-
ing principle of state transitions as following:

• The systems starts in a Desired (SD) state and tran-
sitions to either Failed (SF ) state if STIRE emit in-
active, or to a Compromised (SC ) state if STIRE emit
dirty. Otherwise, stays in (SD), i.e. VM (s) is active.

To illustrate how we map the VMI observations to the
high-level system states, consider at time t=1 in Figure 5,
the system starts in a desired (SD) state and consider STIRE
emits dirty after the first observation, then the system tran-
sitions to a compromised (SC ) state in t=2. We cannot change
the state till (SC ) transitions to SE signaling for its exit.
At this point, we refresh the compromised VM and asses
the sytem so the next time in t=2, the STIRE emits active
and the system transitions to SD at t=3. Thus, modeling
Mayflies with HHMM and encoding it in this manner, we
can reason the system behavior by the transitions between
the DBN states (discussed next), and quantify it in terms of
the overall proportion of the time {t2, ti, tk, . . . } the system
was in compromised state (discussed in section 5).

4.4 State Transition Probabilities
As illustrated in Figure 5, we defined three hidden states
SD, SC and SF and an observable state STIRE that omits
observation probabilities. Since we are not interested in
contracting the model and learning by its probability dis-
tributions, and the hidden state themselves are not internal
HHMMs states with abstract sub-levels of HMMs, we treat
our HHMM as a flat HMM to reason the transition probabil-
ities of the hidden states. In fact, the hidden state are visible
to us as we anticipate of being in our desired state at all time.

4.4.1 TIRE Transitions Propabilities
Time Interval Runtime Execution (TIRE) transition function is
simply a real number, time assigned to the structure which
breaks the system runtime into manageable intervals (i.e.,
one minutes intervals). Thus, we define the transitioning
function as:

αTi,j → R+

Using αTi,j , we simply observe node(s) status between
αTi and αTj . At the transition point αTj , we generate a
sequences of observations {O=o1, o2, o3, . . . } of inactive
and/or dirty VM. TIRE transitions T=t0. . . tn and observa-
tions O=o0. . . on lie the probability distributions to easily
reason about the high-level system state transitions (dis-
cussed next). Thus, for each state S in Mayflies, we associate
that state with random variable taking values in Λ according
to certain (state-dependent) probabilities.
Property 1. An HMM observation o is a logical predicate

over Mayflies. Each Ti is considered a state predicate
evaluates to true or false. We say that state transitions
at each Ti satisfies a state predicate if the predicate
evaluates to true and vice-versa.

By definition of the first-order HMM, transition ti to tj is
dependent only upon the current state at ti. Therefore, the
probabilistic nature of that transition can be defined as:

αTi,j = Pr [Ti+1 = j|Tt = i]

We make a first-order HMM assumption regarding the
transition probabilities.

Pr [Ti, |Ti−1, Ti−2, . . . , T0] = P [Ti|Ti−1] , i ∈ 0, 1, 2, 3 . . .

Similarly, we assume the emission probabilities of the
model on how the observed event from STIRE) results
system state transition:

Pr [oi, |Ti, . . . , T0, oi−1, . . . , o0] = P [oi|Ti] , o ∈ O

Modeling TIRE as an observable HMM and formulating
it in this manner enable us to anticipate the high-level
hidden state transitions in which the probability of transi-
tioning to an undesired state in Ti can go either way (i.e.,
desired/undesired). We anticipate this outcome if it results
against our favour to bounce the system back to our desired
state in the next time interval (Ti+1). Thus, each TIRE time
interval (Ti) is represented as the transition state, and the
transition between the states are the invariant that must be
preserved. We assert that the underlying runtime execution
is preserved if these invariants hold.

4.4.2 High-level State Transition Probabilities
Typically, at the deployment time, the system starts in a
Desired state, call it SDesired. TIRE observation generates
transition probabilities of either to a SCompromised or SFailed
state. The probability that a transition can happen before
observation is collected is:

αTij
Pr[T0 = 0]

Therefore, assuming the system starts in SDesired state
and further assuming in that state till the first observation
collected. Certainly, this is the base case.

For the 1st observation or ∀Ti where i > 0, the probabil-
ity of seeing the observed events o1, o2, o3, . . . of a sequence
up to oi−1 observations and reaching in state Ti−1 time
interval, then transitioning to state SCompromised at the next
step is:

P (T0, T1, T2, . . . , Ti−1, oi−1 = SDesired, oi = SCompromised)
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= αTij
(SDesired)Pr (oi = SCompromised|oi−1 = SDesired)

Similarly, for the 1st observation or ∀Ti where i > 0, the
probability of seeing the observed events o1, o2, o3, . . . of a
sequence up to oi−1 observations and reaching in state Ti−1
time interval, then transitioning to state SFailed at the next
step is:

P (T0, T1, T2, . . . , Ti−1, oi−1 = SDesired, oi = SFailed)

= αTij
(SDesired)Pr (oi = SFailed|oi−1 = SDesired)

In general, the probability that we are starting in
SDesired at Ti−1 time-interval given the observed events up
to oi−1, and given that we will be in state other than Desired
state at time-interval Ti observation oi, the transitioning
probabilities are equally likely, thus, preserving for all cases.

The fundamental problem of time-interval based obser-
vations is choosing the perfect observation intervals, for
example, if the observation time is too long, we will have
the case where the observation oi−1 results that we are in a
Desired state, then at oi end up in a Compromised state before
we get the observation oi+1, a valid assumption in cyber
space. In contrast, if the observation time is too short, then
we will introduce unnecessary performance burden on the
applications.

5 MODEL QUANTIFICATION

In the species’ populations model [15], the preys population
is measured by the proportionality of their survival/re-
productive rate vs. their eaten rate by predators. The prin-
ciple cornerstone of this model is to observe the preys’
reproductive rate in order to project their extinction. It’s
intuitive to see our quantification scheme follows the same
principle, effectively controlling the systems’ health status
in realtime with the MTDs’ VM replacement/reproductive
defensive strategy and LibVMIs attack detection scheme, we
aim to project VM (population) extinction/compromised at
all times.

We assume VMs in Mayflies start with pristine status
where they perform computations within a predefined lifes-
pan and being replaced by the end of that lifespan (as low
as a minute). The key objective is to ensure VM populations
with shorter attack window of exposure exists in Desired
state as often as possible. With this controlled VM popula-
tion environment, the MTD framework allows to reason the
behavior of state transitions to any of the Undesired states.
Hence, we are interested in the long-run distribution of
the process/runtime execution (i.e., one hour), for example,
the long-run proportion of the time T that we are in the
Desired state overtime to quantify the preys/VMs desired
population.

Formally, let STi represent the state of the system at
time T where i=1,2,3. . . hours, and the time-intervals of the
VM replacement tj where j = 0,1,2,. . . N is within T where
N VMs/nodes are replaced and observed within that time
interval Ti. Clearly, the inherent cost of N VM replacement
on cloud platforms (OpenStack) is the upper bounds of the
time requires to randomize VMs on the cloud in contrast
to the attackers cost of crafting an attack. Thus, the two

competing time to fully control VM population in Desired
state is the following:

• The defensive cost which is the the VM Replacement
Cost RC(T) – time to replace a node/VM including
the network interface replacement, and the Observa-
tion Time OC(T) – time it takes to detect attacks using
LibVMI.

• The offensive cost which is the Attack Cost AC(T) –
time it takes for any attack to be carried (i.e., OS
finger printing, code injection time) and succeed.

Intuitively, for any MTD defensive strategy, in order to
guarantee for the system stay in a Desired state as often as
possible (desired VM population), the defensive cost has be
less than the offensive/attackers’ cost.

RC(T ) +OC(T ) < AC(T )

Formally, let ν be the expected overhead time of replacing
a VM and µ be the expected overhead time of system
observations in one time interval Ti, then:

RC(Ti) =
n∑
j=1

νj

and

OT (Ti) =
n∑
j=1

µj

where RC(t) and OC(t) is the total cost of the MTD defensive
strategy of one time interval T (i.e., one hour) being replaced
N VMs and observed. Let pqij denote the probability of
going from state qi to qj in one step, and λi represent the
matrix P whose entries are the pij . For each state Si, we
define:

λi =

∑n
j=1 Si

Ti

where
∑j
j=1 Si is the total number n of visits the pro-

cess makes to each state Si over the time-intervals Ti ∈
T0, T1, T2. . . . Ti. Intuitively, the existence of λi translates to
changes in system states in which in turn is not in a single
state (i.e., undesired) as long as our observations and node
replacements is being performed within the acceptable time
frames. Note that the Markov process model is an exponen-
tial distribution, in that, the decisions are dependent only in
the current state. As such, if we are at Desired state now, the
probability to any other state will be 1/3rd (with the 3 states)
no matter where we were (Failed or Compromised) in the past.

Let λ denote the row vector of the elements of the λi,
given the underlying HMM state transition for each state
Si, then we have a matrix in the form of λ = λP subject to∑
i λi = 1. Calculating λ in each transition results a solution

set of < XD, XC , XF > time units for the three states,
which means that in the long run we spent X amount of the
time at the desired state, X amount of time in compromised
state, and X amount of our time at failed state. Thus, we
can easily reason about the high-level system states in any
time intervals, for instance, if we run the system for 1 hour,
then, we get time intervals like; for 55 minutes we operated
under normal conditions in a desired state, 3 minutes in a
compromised state, and 2 minutes in failed state.
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6 CONCLUSION

We introduced a formal model for Virtual Machine (VM)
space/time diversification and randomization across cloud
computing platforms. We presented Mayflies, a bio-inspired
MTD framework, to illustrate the practicality of the model
and a quantification scheme in Openstack private cloud soft-
ware stack. We described the implementation details of VM
replacement using nova API desinged for provisioning/de-
provisioning VMs, and neutron for dynamic network inter-
face swapping. For future work, we consider modeling a
realistic experiments for applications deployed in a private
cloud setting.
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[24] S. Fine, Y. Singer and N. Tishby. The Hierarchical Hidden Markov
Model: Analysis and Applications" In Machine Learning, vol. 32, p.
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