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Growing Autonomous UAV Network Market

• Autonomous UAV networks are gaining increasing prevalence.
• The UAV market will reach 100 billion USD by 2030. [1]

• Their growing prevalence demands robust security, especially against 
collaborative attacks.



Autonomous UAV Network Security

• Inherit fundamental security vulnerabilities from traditional 
autonomous networks, while facing unique challenges
• Wireless nature

• Highly dynamic topology

• Rapid node mobility

• Communication disruptions and packet losses

• Thus, it is important to develop robust security mechanisms for 
autonomous UAV networks.

• These characteristics make them more vulnerable to collaborative 
attacks.



Collaborative Attack Definition

• Multiple adversaries coordinate and synchronize their actions to 
achieve disruption, deception, or usurpation of the target network.

• It is a threat that will be exacerbated by the increasing availability of 
commercial off-the-shelf (COTS) UAV platforms.

• Implications
• Attackers can simultaneously compromise multiple UAVs within a network to 

wage attacks that exceed the capabilities of individual adversaries, such as co-
ordinated jamming combined with false data injection. 

• Multiple attackers may employ different attack vectors concurrently, forcing 
the network to defend against diverse threats simultaneously. 



Collaborative Attacks

• What are Collaborative Attacks?
• DDoS Attacks [2]

• Coordinated Eavesdropping [3]

• Why are they Important?
• They are more harmful to the network

• Amplifying Effect

• Shortcut Effect

• They are harder to detect and defend
• Hiding Effect

• The above effects are dubbed synergy effects (SEs)



Proposed Tasks

• Task 1: Defining Collaborative Attacks against Autonomous UAV 
Networks 
• Develops formal system and threat models for collaborative attacks against 

autonomous UAV networks, while establishing experimental validation 
approaches. 

• Three subtasks include: 
• characterizing system models that capture the features and resource constraints of 

autonomous UAV networks, 

• formulating threat models that define the capabilities and coordination patterns of 
collaborative attackers, and 

• developing comprehensive approaches for experimental validation of both attacks and 
defenses. 



Proposed Tasks

• Task 2: Designing Mechanisms to Secure Autonomous UAV Networks 
against Collaborative Attacks
• Resource-constrained UAVs require a lightweight, onboard filtering 

mechanism to handle high-volume traffic loads, for which we employ 
lightweight machine learning (ML) models as the initial detection layer.

• The filtered alerts are then processed with two complementary tracks: an 
instant analysis track and a long-term analysis track. 
• Instant track: alerts trigger security verification against defined attack models using 

model checking technology to identify immediate threats. 

• Long-term track: employs sequential and attention-based ML techniques to uncover 
complex temporal dependencies between alerts that may indicate coordinated 
adversarial behavior. 



Proposed Tasks

• Task 2: Designing Mechanisms to Secure Autonomous UAV Networks 
against Collaborative Attacks (continued)
• The discovered long-term attack patterns are then fed back into the model 

checker for pattern analysis. 
• This creates a closed-loop system where model checking discovers attack patterns that 

guide the refinement of ML models



Proposed Tasks

• Task 3: Designing Defense Framework to Counter Collaborative 
Attacks 
• We exemplify the approach through a framework designed for a centralized 

autonomous UAV network topology. 

• It serves as a baseline example — through this project, the research will 
explore framework variations including decentralized architectures, hybrid 
networks with ground vehicles, and other topological configurations. 

• The modular design ensures the research not only validates the core 
detection mechanisms but also establishes foundations for adapting the 
framework to diverse autonomous UAV network deployments.



Task 1: Developing System Model of 
Autonomous UAV Networks 
• Autonomous UAV networks also include ground vehicles and other 

autonomous aircraft (see figure in next slide). 

• The network can operate in various configurations: 
• networks with and without ground vehicle nodes, 

• fully autonomous versus human-supervised operations, and 

• centralized versus decentralized control structures. 

• Each configuration presents distinct security implications and requires 
tailored defensive approaches. 

• Furthermore, we should consider dynamic network membership, 
where nodes can join or leave during task.



An Autonomous UAV Networks with Ground 
Vehicles and Other Autonomous Aircrafts



Limitations of Prior Works

• Traditional defense mechanisms are inadequate because they focus on 
detecting and mitigating individual attack patterns rather than identifying 
the subtle interplay between multiple coordinated adversaries. 
• For example, attackers deliberately distribute their malicious activities across 

multiple nodes to stay below detection thresholds or employ complementary attack 
methods that mask each other’s signatures.

• Prior research on collaborative attacks
• focused primarily on developing detection and defense strategies for traditional 

networks, 
• failing to address the resource limitations inherent to UAV platforms, their limited 

energy capacity and limited onboard computational capabilities.

• These constraints affect the feasibility and effectiveness of security 
solutions, as resource-intensive defense mechanisms can potentially 
compromise the network’s operational lifetime and mission capabilities.



Understanding Threat Models against 
Autonomous UAV Networks 
• Real world implications

• In search and rescue operations, coordinated attacks can disrupt communications 
while injecting false data to mislead rescue efforts. 

• In precision agriculture, attackers can manipulate UAV routing while depleting 
ground sensor resources in critical areas. 

• In military applications, physical sabotage may be synchronized with cyber attacks to 
maximize fleet vulnerability.

• A collaborative attack is composed of individual, atomic attacks
• Sybil attacks, where attackers create multiple fake identities to manipulate system-

wide collaborative decisions;
• Wormhole attacks, where adversaries record and retransmit packets between 

different network locations to disrupt routing;
• Black hole attacks, where malicious nodes advertise false shortest paths to intercept 

network traffic.



Examples of Collaborative Attacks

(a): Wormhole nodes (W1, W2) 
collaborating with blackhole 
nodes (B1-B4) for amplified 
routing disruption; 
(b): Sybil node (S) providing fake 
IDs to blackhole nodes for 
detection evasion; 
(c) and (d): Sequential insider (F) 
and outsider (G) attack 
coordination across time steps.



The Hiding Effect: A Blackhole-Sybil example

• Blackhole-Sybil Collaborative Attack
• The Sybil adversary secretly transfers valid IDs to blackhole adversaries 

instead of abusing them.
• SE1: It does not trigger abnormal events and, thus, is hidden from detection.

• Blackhole adversaries broadcast false routing information with distinct IDs 
received from the Sybil adversary.
• SE2: Making blacklisting-based blackhole attack defense mechanisms[4~6] invalid.



Task 2: Designing Mechanisms to Secure 
Autonomous UAV Networks against Collab- orative 
Attacks 
• Defense against Multi-Stage Attacks (MSAs) vs. Defense against 

Collaborative Attacks:
• Defenses against MSAs are concerned with finding patterns in sequential 

actions that are typically conducted by a single attacker. 
• By contrast, collaborative attacks are more general because they involve 

multiple attackers, who can execute their actions in an interleaved fashion 
which is more sophisticated than sequential events.

• Nevertheless, the research will use sequential data analysis as some 
building-blocks in the defenses. 

• Moreover, the MSAs launched by a single attacker cannot achieve 
synergy effects as discussed above.



Task 2: Designing Mechanisms to Secure 
Autonomous UAV Networks against Collab- orative 
Attacks 
• Current multi-stage attack defenses fail to address three challenges in 

UAV environments: 
• (1) coordinated actions by multiple attackers, 

• (2) rapidly changing attack surfaces due to UAV mobility, and 

• (3) resource constraints that limit computational defense mechanisms. 



Using Formal Methods to Detect Collaborative 
Attacks
Traditional ML models struggle to detect multi-step, coordinated attack behavior. 
Collaborative attacks often span multiple nodes and evolve over time — difficult to 
capture via flow-based features alone.

Our Approach:

• Treat network events as state transitions in a system model.

• Use formal verification techniques (e.g., model checking) to:
• Detect illegal state transitions or unexpected sequences.
• Identify if multiple agents are collaborating across time to breach security.

Key Ideas:

• Model UAV network behavior using finite state machines or temporal logic.

• Encode known benign and malicious interaction patterns.

• Use runtime verification or offline checking to flag potential coordinated attacks.



Learning-Based Models for Sequential Detection

Hidden Markov Models (HMM):

• Probabilistic models capturing transitions between hidden system states.

• Suitable for lightweight onboard detection.

• Assumes limited memory (Markov property) and works best with relatively 
simple or periodic attack patterns.

Long Short-Term Memory Networks (LSTM):

• A type of recurrent neural network designed to capture long-term dependencies.

• Effective in learning subtle, delayed, or multi-stage attack patterns.

• Requires extensive training data and higher computational resources.



Examples of events and actions associated with 
the four proposed mechanisms in the context of 
three examples of collaborative attacks. 



Task 3: Designing Defense Framework to 
Counter Collaborative Attacks 



A Proposed Framework

• The figure highlights the preliminary framework
• The framework implements a distributed detection architecture that balances 

detection capability with UAV resource constraints. 

• It leverages the Base Station (BS) for computationally intensive analysis while 
deploying efficient short-term detection on individual UAVs. 

• Base Station Components
• The Model Checking Engine forms the framework’s foundation, providing 

three functions. 
1. Discovers and verifies possible attack collaboration patterns. 

2. Generates attack signatures to guide HMM deployment on UAVs.

3. Identifies temporal dependencies and critical events for LSTM and attention analysis. 



A Proposed Framework

• The architecture offers several key advantages. 
• Immediate threat detection occurs at network edges through lightweight 

HMMs while complex attack evolution analysis is centralized at the BS. 

• UAVs maintain minimal state information and computational overhead, yet 
the framework continuously adapts to new attack patterns. 

• Most importantly, all detection decisions can be verified through model 
checking. 

• The preliminary experiments show this distributed approach provides 
a good tradeoff between effectiveness in detecting collaborative 
attacks and resource utilization. 



A Variant of the Proposed Framework

• RDCollab: Reasoning and Detecting Collaborative Attacks
• A framework to reason about and detect collaborative attacks in autonomous 

UAV networks that leverages model checking to explore attack patterns.

• It models individual attacks as finite state machines (FSMs) that can be 
combined to represent collaboration.

• The framework uses properties describing network safety to explore 
collaborative attacks and guide intrusion detection systems. 

• RDCollab improves IDSs' detection rates on non-hidden adversaries by up to 
63% and can detect hidden adversaries within 6.1 seconds.



A Variant of the Proposed Framework

• RDCollab: Reasoning and Detecting Collaborative Attacks
• Three major synergy effects are identified: Hiding Effect, Amplifying Effect, and 

Shortcut Effect. 
• The Hiding Effect makes adversaries more difficult to detect or makes specific adversaries 

undetectable. 
• The Amplifying Effect occurs when coordinated attacks cause more damage than the sum of 

individual attacks. 
• The Shortcut Effect allows adversaries to launch attacks with fewer steps or achieve goals 

faster. 
• Seven novel collaborative attacks were discovered through model checking, including 

Hidden Blackhole Attack, Hidden Wormhole Attack, Duplicated Routing Disturbance 
Attack, Distributed Data Exfiltration Attack, and others. 

• The framework extracts segment patterns from collaborative attack counterexamples 
as signatures to guide IDSs. 

• Three baseline ML-based IDSs were used for evaluation: HMM-based, SVM-based, 
and RFC-based.



Our Solution: RDCollab (Reasoning and 
Detecting Collaborative Attacks)

The collaborating attacks are formally modeled as finite states machines 
(FSMs) connected by channels for message exchange.



An Example of Collaborative Attack Model
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More Details of the Modeling Phase 

• We define impact labels that describe how an adversary's actions violate 
the confidentiality, integrity, or availability of the system. For example, we 
label "send_fake_rtn_info” (send fake routing information) with "int_viol" 
for integrity violation, and "drop_packet" with "avai_viol" for availability 
violation.

• Then we have detectability labels that indicate how observable an 
adversary's actions are. We use "det" for detectable actions, "part_det" for 
partially detectable actions, and "non_det" for actions that can't be 
observed externally. For instance, "send_fake_rtn_info" is labeled as "det" 
since it's observable, while "generate_id" in the Sybil FSM is labeled as 
"non_det" as it's done locally by the adversary.

• These labels help us bridge the gap between abstract security 
requirements and concrete system behaviors.



Our Solution: RDCollab (Reasoning and 
Detecting Collaborative Attacks)

Synergy effects are encoded as security properties in linear temporal logic 
(LTL) formulas.
Model checking is used to check collaborating model consisting of attack 
FSMs against the LTL-form security properties indicating attack collaborations.



Our Solution: RDCollab (Reasoning and 
Detecting Collaborative Attacks)

If the check fails, the model checker outputs a counterexample which can be 
referred to by IDS as oracles on how individual attacks collaborates.



Our Solution: RDCollab (Reasoning and 
Detecting Collaborative Attacks)

The IDS thus updates its detection and defense strategy accordingly.



More Details of the Reasoning and Guiding 
Phases
• RDCollab defines properties the model should satisfy in a synergy effects-

free scenario (i.e., the scenario without the collaborative attacks that cause 
synergy effects). 

• It then uses the model checking to verify the collaboration model against 
the properties. If the model violates a property, the model checker outputs 
a counterexample demonstrating a model execution that can be 
interpreted as a collaboration pattern with synergy effects.

• The segments of such a pattern are used in the guiding phase, as they can 
be used as signatures to detect collaborative attacks. 

• RDCollab translates the segments into instructions to guide IDS in 
improving its detection effectiveness.



RDCollab Evaluation Results

• Detecting the Hidden Sybil Adversary (SE1)

• With various numbers (1~6, x-axis) of blackhole adversaries, RDCollab 
can detect the Sybil adversary that transfer fake IDs to them every 3, 
2 and 1 second(s) within 6 seconds (y-axis).



RDCollab Evaluation Results

• Improving the Detection of Blackhole Adversaries (SE2)

• With various numbers (1~6, subfigure titles) of blackhole adversaries, 
RDCollab-guided HMM-based IDS improves the detection rate of 
blackhole adversaries compared with baseline HMM-based IDS.

• The improvements are shown by the red lines.



Takeaways and Contributions

• Collaborative attacks pose a growing threat to UAV networks.

• RDCollab provides a comprehensive approach to tackling these 
challenges.
• A solution to detect collaborative attacks against autonomous UAV networks.

• Implementation of RDCollab instantiating the proposed solution.

• Evaluation of RDCollab’s effectiveness of collaborative attack detection.

• The next steps are to enhance collaborative attack detection and 
response systems.



Another Issue: Lack of Robustness in intrusion 
detection systems for UAV networks

● Current IDS systems lack evaluation on diverse, dynamic UAV datasets and 
give high False positives caused by varying network conditions and 
congestion, while often demanding high computational resources.

● Existing IDS datasets lack UAV-specific attacks, aerial mobility, and real 
wireless traffic patterns.

● Due to High costs of collecting large network datasets, we use data 
augmentation using MLP function approximation method. This makes 
current IDS system robust against false positives caused by mobility in UAV 
networks. 



Three-Phase Plan for Advancing Collaborative 
Attack Detection

Phase 1: Dataset Creation

• Develop a comprehensive 
dataset simulating 
collaborative attacks in UAV 
networks.

• Include realistic mobility 
models, packet-level logging, 
and diverse adversarial 
behaviors.

• Emphasize attack diversity 
(e.g., blackhole, wormhole, 
Sybil) and coordination 
mechanisms.

• Use Data Augmentation to 
increase diversity of dataset.

Phase 2: Transformer-Based 
Detection
•Leverage attention-based 
models (e.g., Transformers) to 
capture temporal dependencies 
and multi-agent coordination 
patterns.
•Fine-tune on domain-specific 
UAV datasets.
•Benchmark against baseline ML 
models and analyze detection 
accuracy under dynamic 
conditions.

Phase 3: Enhancing Detection 
Efficiency
•Optimize detection models for 
onboard deployment using 
techniques like knowledge 
distillation, pruning, and 
quantization.
•Explore hierarchical detection: 
light-weight edge models + cloud-
based heavy analysis.
•Integrate detection with real-time 
response mechanisms.



Why Existing Datasets Fall Short for UAV 
Networks

Lack UAV-specific attacks

• Most datasets focus on generic IT or IoT threats, not aerial or coordinated UAV threats.

Static or limited mobility

• Many datasets assume fixed topologies, unsuitable for dynamic, mobile UAV environments.

No real UAV traffic

• Missing realistic communication patterns like video/image transmission or inter-UAV coordination.

Not designed for swarm behavior 

• Fail to capture group dynamics, cooperation, or synchronized attacks.

Misaligned threat models

• Include irrelevant attack types (e.g., fuzzing, worms) not applicable to UAV use cases.

Partial relevance (e.g., IoT/WSN)

• Offer some overlap in resource constraints, but lack full UAV context.



Phase 1: Our UAV IDS 
Dataset: Key Features

Dynamic UAV Network & Mobility

● UAVs (10-50) & Basestations (1-5) move using Gaussian-Markov 
model.

● Links dynamically change based on Euclidean distance, simulating 
WiFi characteristics (capacity, delay, loss).

● Packet loss modeled via BER, SNR, & FSPL, with retransmission-

based correction.

Attacks Simulated

● DoS & DDoS – SYN floods (100 to 100K packets/sec), Black Hole, 

Wormhole, Replay Attack.

Realistic UAV Data Capture

● UAVs send images/videos, simulating reconnaissance transmission.
● Traffic captured at node & switch levels for IDS evaluation.

● Systematic variation: 100 runs per setup (60s each) with diverse UAV 

counts, attacks, & packet rates.



Phase 1: Our data augmentation: Using MLP 
as a function approximation 

MLPs (Multi-Layer Perceptrons): are powerful function approximators that can learn nonlinear mappings between 
input and output feature distributions.

They capture complex relationships between flow statistics like inter-arrival times, packet sizes, and burstiness 
patterns across different bandwidths.

Unlike linear regression, MLPs can model diverse traffic behaviors more accurately, especially when the 
transformation is not linearly scalable.



Phase 1: Our data augmentation: Using MLP as a function 
approximation 

• Input: Original network traffic is segmented into 1-
second flow chunks from a 100 Mbps environment.

• Feature Extraction: We extract statistical features 
for each chunk (e.g., flow size, number of packets, 
arrival times).

• MLP Transformation: These features are passed 
through a trained MLP (or linear regression as 
baseline) to generate a mapped version mimicking 
how the same traffic would appear on a 10 Mbps link.

• Output: The resulting 10 Mbps-style flow chunks 
are recombined into an augmented dataset with 
realistic traffic for low-bandwidth settings.



F1- score of different ML 
techniques using Flow 
features.

• We use these vanilla models on three public 
datasets. 

• We measure 65 different flow features based 
on packet size, packet time of arrival, and TCP 
flags. 

• We measure F1-scores as these datasets are 
imbalanced.

• As dataset diversity and complexity increase, 
traditional models struggle to generalize—
highlighting the need for more expressive, 
context-aware approaches.

Machine 
learning 
model

CICIDS 
2017[x]

CICIOT2023[x] UNSW-
NB15[x]

1D – CNN 97.98 67.68 60.62

Long short-
term memory

87.15 64.29 46.17

Random 
Forest

99.63 79.12 87.66

Stochastic 
gradient 
descent

95.98 50.41 39.03

Logistic 
Regression

93.16 48.24 37.82

Multilayer 
perceptron

95.87 61.55 48.45



Phase 2 – Transformer-Based Detection Ideas

Older detection methods often rely on shallow models or handcrafted features, which struggle to capture the 
complex temporal and multi-agent coordination patterns in collaborative attacks—necessitating more 
expressive architectures like Transformers.

Multi-Agent Attention Modeling

• Capture inter-node interactions by modeling UAV network as a sequence of events with node-level 
embeddings.

Graph-Transformer Hybrid

• Combine GNNs with Transformers to account for both network structure and temporal behavior.

Contrastive Learning

• Learn discriminative features by contrasting collaborative vs. non-collaborative attack traces.

Few-Shot Fine-Tuning

• Enable rapid adaptation to unseen coordinated attacks with minimal labeled data.



Phase 3 – Making Detection Efficient

Multi-Agent Attention Modeling

• Capture inter-node interactions by modeling UAV 
network as a sequence of events with node-level 
embeddings.

Graph-Transformer Hybrid

• Combine GNNs with Transformers to account for 
both network structure and temporal behavior.

Contrastive Learning

• Learn discriminative features by contrasting 
collaborative vs. non-collaborative attack traces.

Few-Shot Fine-Tuning

• Enable rapid adaptation to unseen coordinated 
attacks with minimal labeled data.



Phase 3 – Making Detection Efficient

Lightweight Transformer Variants

• Explore MobileBERT, TinyBERT, and Linformer for onboard inference with low overhead.

Hierarchical Deployment

• On UAVs: Quick screening via distilled models or rule-based alerts.

• On Base Station: Deep analysis using full models and historical context.

Dynamic Resource Adaptation

• Adjust model complexity based on available compute, energy, and threat severity.

On-the-Fly Model Updates

• Incorporate detected counterexamples from RDCollab to update the detection pipeline in real time.



Future Directions

• Apply RDCollab techniques to related domains like VANETs

• Apply federated learning across UAVs without raw data sharing

46
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