
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021 4133

Detection of Message Injection Attacks Onto the
CAN Bus Using Similarities of Successive

Messages-Sequence Graphs
Mubark Jedh, Lotfi Ben Othmane , Senior Member, IEEE, Noor Ahmed,

and Bharat Bhargava , Life Fellow, IEEE

Abstract— The smart features of modern cars are enabled
by a number of Electronic Control Units (ECUs) components
that communicate through an in-vehicle network, known as
Controller Area Network (CAN) bus. The fundamental challenge
is the security of the communication link where an attacker can
inject messages (e.g., increase the speed) that may impact the
safety of the driver. Most of existing practical IDS solutions
rely on the knowledge of the identity of the ECUs, which is
proprietary information. This paper proposes a message injection
attack detection solution that is independent of the IDs of
the ECUs. First, we represent the sequencing of the messages
in a given time-interval as a direct graph and compute the
similarities of the successive graphs using the cosine similarity
and Pearson correlation. Then, we apply threshold, change point
detection, and Long Short-Term Memory (LSTM)-Recurrent
Neural Network (RNN) to detect and predict malicious message
injections into the CAN bus. The evaluation of the methods using
a dataset collected from a moving vehicle under malicious RPM
and speed reading message injections show a detection accuracy
of 97.32% and detection speed of 2.5 milliseconds when using
a threshold method. The performance metrics makes the IDS
suitable for real-time control mechanisms for vehicle resiliency
to cyber-attacks.

Index Terms— Industry applications, security, information
security, intrusion detection, intelligent transportation sys-
tems, transportation, vehicle, mathematics, algorithms, detection
algorithms.

I. INTRODUCTION

THE growing market explosion on modern cars with high
premium prices is driven by the increased consumer

awareness for their safety features and superior functionalities.
This is credited to a number of Electronic Control Units
(ECUs) components that communicate through an in-vehicle
network, known as Controller Area Network (CAN) bus [1].
Within a single vehicle, there is a complex network of around
one hundred collaborating ECUs, as depicted in Figure 1.
These ECUs use a large software base of about 100MB to

Manuscript received December 24, 2020; revised May 17, 2021 and
June 20, 2021; accepted July 3, 2021. Date of publication July 19, 2021;
date of current version August 30, 2021. This research is partly funded by
Iowa State University’s Regents Innovation Fund (RIF). The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Kai Zeng. (Corresponding author: Lotfi Ben Othmane.)

Mubark Jedh and Lotfi Ben Othmane are with the Department of Electrical
and Computer Engineering, Iowa State University, Ames, IA 50011 USA
(e-mail: lbenothmane@icloud.com).

Noor Ahmed is with the Air Force Research Laboratory, Rome,
NY 13441 USA.

Bharat Bhargava is with the Department of Computer Science, Purdue
University, West Lafayette, IN 47907 USA (e-mail: bbshail@purdue.edu).

Digital Object Identifier 10.1109/TIFS.2021.3098162

Fig. 1. Example of connected vehicle [3].

control the functionalities of the vehicle through message
exchanges using the CAN bus [2]. There are two types
of CAN: (1) CAN-H (high), a fast bus for communicating
critical data, such as the engine, transmission, and speed
messages, and (2) CAN-L (low), a slow bus for communi-
cating non-critical data such as infotainment data [2]. Most
importantly, it’s used for safety mechanisms such as; collision
avoidance, anti-lock brakes, traction control, and electron
stability control.

Furthermore, the CAN bus enables intercommunication
link within the vehicle and external vehicles and devices
through WiFi, Bluetooth, or cellular networks. This capability
is exploited by the Intelligent Transportation System (ITS)
applications, such as infotainment systems, fleet management
systems, parking assistance, remote diagnostics, eCall, remote
engine start, and Cooperative Adaptive Cruise Control (CACC)
systems. These applications communicate with the ECUs of
the vehicle through the CAN bus to improve the experience
of the customers [3]–[5] by, for example, reducing the speed
and activating the brakes of the vehicle.

The CAN bus was designed as a stable, safe, and flex-
ible closed network without considering security, specifi-
cally, authentication and authorization mechanisms. In addi-
tion, the extension of the network through the On-Board
Diagnostics (OBD) to provide ways to report self-diagnosed
errors and malfunctions through On-Board Units (OBUs)
contributed to expanding the attack surface (the set of ways
an attacker can compromise the vehicle) through the CAN
bus [7]–[9]. Upstream’s research team identified 367 publicly
reported incidents for a decade long [6]. The analysis of these
incidents shows an exponential growth of attacks, as depicted
by Figure 2a. Among these attacks, 27% involved taking
control of the car, as depicted by Figure 2b.

To remedy these security problems, a wide array of defen-
sive security solution schemes has been proposed. Most

1556-6021 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3803-8672
https://orcid.org/0000-0001-6476-194X

4134 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 2. Growth and distribution of cyber-attacks on connected vehicles between 2010 and 2019 [6].

of these solutions typically require the modification of
the CAN protocol, which is not practical for aftermarket
vehicles [3], [4]. Others have attempted to devise machine
learning-based solutions driven by syntactic data through
simulations or data related to researchers’ devices to detect
malicious behaviors [10], which limits the practicality of their
efficacy.

Many of the practical IDS solutions require the knowledge
of CAN ID of the messages (the CAN messages include an
ID that indicates the information embedded in the message,
e.g., speed and brake) which is proprietary to the car man-
ufacturers [11]. The information is used to identify abrupt
values changes that indicate attacks. An alternative approach
is to use OBDII to extract CAN messages exchanged by the
vehicle’ ECUs and translate the CAN IDs of the messages
to their corresponding Priority ID (PID), as in [5]. This
approach prevents attackers who may reverse engineer the
IDS device from recovering the semantics of CAN IDs and
use them for attacks on vehicles. Unfortunately, this approach
has several imitations. First, a reasonable proportion of the
CAN message types are not captured (or ignored) through
OBDII because of lack of equivalent PIDs for every CAN
IDs. For instance, song and Kim [12] were able to match
the PIDs of only nine out of 40 ECUs to their corresponding
CAN IDs. In addition, we observed in our previous studies
[5], [13] with a Ford vehicle for the importance of the
differences in the size of CAN message trace and PID mes-
sages trace.1 Second, PID messages are acquired through
query/response mechanisms [5], which returns a limited set
of fresh messages. These limitations prevent the development
of an effective machine-learning-based IDS for the CAN bus.

In this paper, we answer the question: Can we detect
cyber-attacks on a moving vehicle without the need to know
the IDs of the vehicle’s ECUs? We hypothesize that there is
a pattern of messages sequences between the collaborating
ECUs of the vehicle, and injecting CAN messages disrupts
the sequences’ pattern. To answer this question, we first
develop a direct graph that represents the sequence relations
between ECUs messages based on their CAN ID, which
we call Messages-Sequence Graph (MSG). Then, we use a
sliding-window approach to compare the similarity between
the graphs computed from the sequences of messages sent
through the CAN bus in successive time windows using

1We observed that synchronization-like messages, for example, do not have
corresponding PIDs.

the cosine similarity and Pearson correlation metrics. Next,
we apply the threshold, change point detection, and LSTM-
RNN techniques to detect and predict injection attacks on the
CAN bus. The main contributions of the paper are:

1) An effective sequential CAN Bus message injec-
tion attacks detection mechanism that uses similarity
metrics of successive messages-sequence graphs that
has an accuracy of 97.32% and detection speed of
2.5 milliseconds.

2) An effective LSTM-RNN-based Machine Learning
(ML) technique for detecting messages injections attacks
on CAN Bus from MSGs.

3) A change-point detection technique for detecting mes-
sages injection attacks on CAN Bus from MSGs.

The paper is organized as follows. Section II discusses the
security issues of the CAN protocol and Section III reports
about related work. Then, Section IV presents the research
method, Section V describes the evaluation methods and
Section VI reports the results. Section VII concludes the paper.

II. SECURITY ISSUES ON CAN PROTOCOL

The Controller Area Network (CAN) is a network protocol
developed by Robert Bosch in 1986 [1] to communicate the
ECUs that control the behaviors of the vehicles’ mechanical
and electrical components [14]. All cars manufactured in USA
after 2008 support the CAN protocol and offer a means to
interface with it through the On-Board Diagnostics (OBD)-II
port, which is usually located under the steering wheel. The
OBD is implemented in the vehicles to provide ways to report
self-diagnosed errors and malfunctions [15] and is mandatory
for all cars and light trucks sold in the United States and the
European Union. This port gives direct access to the CAN
network, which inherently creates the attack surface, the set
of ways an attacker can penetrate the vehicle.

By design, CAN bus is resilient, robust, and easy to wire
but has a set of security weaknesses. The fundamental security
issues are: (1) The CAN bus data frame has no source identifier
field to identify the legitimacy of the sending ECU. As a
result, ECUs cannot trust messages based on their sources.
(2) The protocol does not protect the confidentiality of CAN
messages. Attackers can read the messages exchanged in the
CAN bus and infer information that could be used to stage
attacks, including associating CAN ID with ECUs. (3) The use
of priority in gaining the right to send messages could be easily
used to flood the bus of a vehicle with messages that have

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

JEDH et al.: DETECTION OF MESSAGE INJECTION ATTACKS ONTO CAN BUS 4135

small CAN ID and prevent other ECUs from communicating
and makes their service unavailable, i.e., Denial of Service
(DOS) attack. frame [16].

Typically, attackers inject messages into the CAN bus,
suppress legitimate messages (i.e., legitimate messages that
have higher priority IDs than injected messages are ignored)
or compromise an ECU to behave maliciously through either
direct or indirect access points. Direct access point attacks
include the OBD-II port, the CD player or the USB port [17].
For instance, the attacker can inject malicious CAN messages
through the USB port, encode a malicious software onto a CD
to exploit the entertainment system of a car or use it to access
the CAN bus or update the firmware of an ECU. The indirect
access points are short and long-distance wireless access
points connected to the CAN bus. These include Bluetooth,
on broad Wi-Fi such as Vehicle-to-Vehicle (V2V) devices,
remote keyless entry, Tire Pressure Monitoring System (TPM),
Global Positioning System (GPS) and cell phone network.

The attack surface increases as more features, such as
vehicle apps used for telematics services, road-side assistance,
V2V applications, and remote diagnostic, are added in the
car. Connecting vehicles to external entities through wireless
devices expose the security weaknesses of the CAN bus [3].
Wolf et al. were among the pioneers in describing the weak-
nesses of the CAN bus, including unauthorized access into
the CAN bus and lack of confidentiality and integrity checks
of CAN messages [18]. Further, Hartzell et al. discussed
the impacts of the common entry points, limited bandwidth,
multi-cast messaging, lack of encryption of messages, and
multi-system integration on the security of the CAN bus [17].

Valeseka and Miller demonstrated that hijacking connected
vehicles is possible. They identified remotely the IP address
of their Jeep car from the Sprint Cellular network and took
over the vehicle’s critical features, including disabling breaks,
controlling the steering wheels, and turning on/off windshield
wipers while the car is moving [19]. Recently, Golston and
Green reported successful exploits of vulnerabilities to take
control of recent Tesla cars [20], [21]. An experimental
security analysis of the attack surface of the connected vehicle
including the short and long-range wireless channels, the enter-
tainment systems (i.e., CD player, iPod port, USB port) and
the electric charge port was performed by Koscher et al. [22],
who showed the wide range of potential attacks on connected
vehicles. Othmane et al. [23] surveyed security experts and
validated Koscher et al.’s insights that attacks on connected
vehicles are not lab experiments anymore. Thus, an effective
and practical detection and prediction of injections of CAN
messages is critical for connected and autonomous vehicles.

III. RELATED WORK

Attackers take control of connected vehicles by injecting
messages into their in-vehicle networks, mainly their CAN
bus. Several hardware and software-based encryption methods
were proposed to prevent eavesdropping CAN messages. For
instance, Farag et al. proposed CANTrack, which encrypts
the data payload field of CAN messages to prevent access
to them by non-legitimate entities [24]. On the one hand,
message authentication mechanisms are considered to detect

and/or prevent injection attacks. For instance, Hiroshi et al.
proposed the use of a secret key that would be distributed
to legitimate ECUs of the given vehicle [25]. Each of the
legitimate ECUs of the vehicle must reject CAN messages
that are not authenticated with the key. Authentication-based
mitigation solutions have been heavily explored [26]–[29], but
they cannot be used for aftermarket vehicles.

Other notable mitigation techniques have been reported in
e.g., [3], [4]. In general, some of these proposed mitigation
solutions trade performance and security requirements given
the computation and communication constraints of the ECU
used in vehicles and time-criticality of some of the messages
(i.e., braking). Others, require modification of the currently
well-vetted CAN bus protocol (with respect to safety) which
makes them not practical, especially for aftermarket vehicles.

Early detection of message injection attacks on CAN bus
methods were based on frequency, entropy, and correla-
tion [30]. For instance, Taylor et al. proposed an Intrusion
Detection System (IDS) based on messages frequency using
the Hamming distance between successive message data fields
to detect attacks [31]. The methods were validated using
syntactic dataset, a data set that is constructed by adding and
removing messages to the set of the CAN messages collected
in normal driving conditions. IDSs that are based on frequency,
timing, and entropy are effective for only attacks that disturb
the frequencies of CAN bus messages [10] because they assess
the collision management in the Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) algorithm used by the
CAN bus.

CAN messages compete on the CAN Bus; the message
with the lowest CAN ID is injected first in the bus. Thus,
frequency-based IDS would work in injecting messages with
low CAN ID (the frequency of messages in a time-step
becomes high) but may fail to detect attacks that inject
messages with high CAN ID—as the frequency of injected
messages is low. Our method is more sensitive to the injection
of messages. It accounts for each injection as one legit-
imate two-messages sequence is missing and one illegiti-
mate two-messages sequence exists. Unfortunately, we cannot
implement the frequency-based method and compare it to
our method because we did not slice our data based on the
time-window when we collected it.

Recently, there has been increased attention for the use of
machine learning techniques based on feature extraction from
the CAN bus data frame messages to identify attacks. At the
core of these solution methods is discriminating messages
associated to attacks and those that are not, with acceptable
accuracy and false positive [32]. Neural Network (NN) has
been the commonly used ML-based approach for designing
IDSs for the CAN bus, e.g., [11], [33]–[35]. The main prob-
lem with this supervised learning method is that it requires
extensive time to develop high-performance IDS models from
labeled data [11] and the trained models are specific for vehi-
cle’ make and model, and driver. The unsupervised ML-based
IDSs use mostly message-timing, message-frequencies, and
message-latency [36], [37]. These methods identify the CAN
bus fuzzing through the assessment of the contention algorithm
used in the CSMA/CD protocol.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

4136 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 3. CAN message data frame format.

Fig. 4. Similarity of two messages-sequence graphs at successive
time-window t (left) and t + 1 (right). The labels of the nodes are the
CAN ID and the labels of the edges are number of times a message with
the CAN ID source of the edge is followed by a message with the CAN
ID destination of the same edge during the time-window. For example,
33 messages and 56 messages with ID 344 followed messages with ID 342 at
resp. time-windows t and t + 1, which indicate a possible change of the
behavior of the vehicle.

The common data sources that are used to assess the
accuracy of the ML-based IDS solutions include; data from
the owner devices [38], synthetic/artificial data [39], simulated
data [40], and data from a stationary/parked vehicle [36],
[41], [42]. This limits the confidence in the results and
threatens its validity [43]. To the best of our knowledge, our
previous work [10] and the works of Stachowski [11] are the
only two studies that used datasets collected from moving
vehicles under messages injection attacks. Both studies require
knowing the association of CAN ID to the vehicle’s ECUs,
which is proprietary information and dependent on the make
and model of the vehicle.

Wu et al. [37] and Young et al. [44] provide comprehensive
surveys on IDS for connected and autonomous cars. Unlike
most machine learning-based studies in the literature, our
proposed technique neither depends on the make or model of
the car nor its proprietary information (i.e., CAN ID); it uses a
combination of graph-based and machine learning techniques.

IV. RESEARCH METHOD

We approached the problem of detecting and predicting
message injection attacks on modern cars by capturing the
patterns of the sequencing of the CAN messages exchanged
among the ECUs. As depicted by Figure 5, data collected from
the CAN bus are represented as a direct Message-Precedence
graph (left box). Then, the Pearson and Cosine similarities of
successive graphs are used as the ML features (middle box).
Finally, LSTM-RNN, Threshold, and Point Change prediction
is used to predict messages injection (right box). We validate
our methodology using datasets collected from a moving car
while fabricated speed and RPM messages are being injected
into its CAN bus. We describe these methods in the following
subsections.

Fig. 5. High-level view of our solution methodology.

Fig. 6. An Illustration of CAN data stream format– Each row corresponds
a Timestamp followed by the CAN interface name, the CAN ID of the ECU
(i.e., 264), followed by “#” and the actual data in hexadecimal format.

A. Message-Sequence Graph

Technically, CAN is a time-synchronized broadcast,
multi-cast reception message network bus. Figure 3 above
illustrates the CAN message format. Each message consists
of a data frame, remote frame, error frame, or overload frame.
The data frame is used to exchange data between the nodes,
the remote frame is used to request the transmission of a
specific identifier, the error frame is transmitted by any node
detecting an error, and the overload frame is used to inject a
delay between data or remote frames [1].

We observed by monitoring the CAN Bus of the vehicle
that the sequence of CAN IDs of messages are almost the
same when the car is parked and that there are patterns of
CAN ID sequences associated with actions such as increase
of speed. Figure 6 shows a snapshot of a message captured
from the CAN bus. Each message has a freshness tag (like
a timestamp) followed by the CAN bus ID, the CAN ID of
the ECU, and the actual data. The ECU of a given vehicle
collaborate by exchanging successive messages through the
CAN bus to perform specific actions. For example, a CAN
message representing an increase of the fuel will usually
be followed by a message representing an increase of RPM
and most likely a message representing an increase of the
speed [10]. It is intuitive to see that each of these messages
have a sequence pattern.

We hypothesize that there are patterns of sequences
of messages exchanged between the collaborating ECUs
of the vehicle and injecting CAN messages disrupts the

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

JEDH et al.: DETECTION OF MESSAGE INJECTION ATTACKS ONTO CAN BUS 4137

messages-sequence patterns. The idea is to capture the pattern
of the sequences of the messages and represent it as a
graph where the nodes represent the CAN ID and the edges
represent the sequences of the messages of that given CAN ID.
Note that the messages captured are independent of vehicle’s
ECUs.

Graphs are an effective tool for modeling relationships [42]
and are commonly used in applications like fraud detection
and social networking anomaly detection [45]. Marchetti and
Stabili first used graphs to construct an IDS for CAN Bus [46]
and achieved 100% accuracy by evaluating the method using
synthetic dataset. Islam et al. evaluated Marchetti and Stabili
method using dataset of a parked vehicle [47] and found the
accuracy to be 86.23% [42]. Furthermore, they proposed the
use of the variation of the number of edges of the MSGs (size
of the cliques of the graphs) as an indicator of attacks and
Chi-square to compare the data computed from a test dataset
to data calculated from a baseline datasets [42] with 100%
accuracy for spoofing attacks. We implemented the method
and tested it using the datasets that we collected from a moving
vehicle [13]. We found that the method reports attacks when
using a dataset representing a moving vehicle in the presence
of speed reading injection (X2(1, N = 58) = 9, 56, p < 0.01)
and RPM readings injection (X2(1, N = 58) = 29, 18,
p < 0.01). Then, We split the dataset representing normal
behavior into two sets—the two sets are baselines. The method
reports that the two sets are independent, which implies
(according to the paper) that one dataset set is related to
an attack—which is not true. We note that the first part of
the normal dataset is related to an increase in the vehicle’s
speed, and the second part of the normal dataset is related to
a decrease in the vehicle’s speed (X2(1, N = 27) = 5, 27,
p < 0.01). This implies that the method is effective in
detecting attacks on parked vehicles but is ineffective on
moving vehicles. We note that the variation in the sizes of
the graphs’ cliques is high in moving vehicles, which makes
the method inefficient.

We opted to use the network flow of the graphs rather
than the size of the MSG-cliques. Formally, let E(N1, N2)
be an edge that represents a CAN message with CAN ID N1
followed by a CAN message with CAN ID N2. Let the label
of edge E(N1, N2) represent the frequency of CAN messages
with CAN ID N1 followed by CAN messages with CAN ID
N2. We call this graph Messages-Sequence Graph (MSG) as
shown in Figure 4, and the construction of the graph sequence
is illustrated in Algorithm 1.

In Algorithm 1, we first create a dictionary of the CAN
ID exchanged in the CAN bus–The CAN ID become the
labels of the rows and columns on a matrix representing the
edges of the MSG in line 2. Then, it loops over all the CAN
messages that were exchanged during the time window w (we
use windows of e.g., 100 successive messages) and increases
the label of the edge linking the node representing the CAN
ID of a given message to the node repressing the CAN
ID of the previously processed message in lines 3-7. Equa-
tion 1 represents the distribution of the messages-sequences at
time t .

D(t) = E(Ni , N j)(t) (1)

Algorithm 1 Message Graph Sequencer
Input: C AN Data: A batch of CAN messages with size

window
Input: window: Size of the batch messages
Output: M SG: message precedence graph

1: function COMPUTEMSG(data, window)
2: Call CreateDictionary()
3: for k ← 1 to N do
4: key ← concat(CANData[j][’CAN ID’]
5: + CANData[j+1][’CAN ID’])
6: MSG[key]← MSG[key] +1
7: end for
8: return M SG
9: end function

B. Feature Extraction

We hypothesised that the MSG representing the messages
exchanged in a CAN bus during a time slot t with size
w is similar to the MSG representing the CAN messages
exchanged during the following time slot t+1 with same size
w in the case of normal driving behavior and that injection of
messages into the CAN bus disrupts this pattern. We formulate
the Similarity concept for our IDS using Equation 2. That
is, the similarity Sim at time t + 1 is the similarity of the
distributions of the messages-sequences D at time t and at
time t + 1.

Sim(t + 1) = Similari ty(D(t), D(t + 1)) (2)

There are several similarity metrics that measure the similar-
ity between two graphs [48] including Cosine similarity, Pear-
son and Cramer correlation, chi-squared, T-test and Levene’s
tests. We briefly describe the two methods that we selected
for our study and the rationale behind our choice.

1) Cosine Similarity: measures the cosine angle between
two non-zero vectors and determines whether the angle point
is in the same direction or not. It helps to tease apart the
types and relationships of vertices in social networks [48].
Simply, it’s metric measures the angle between two vectors
as formulated by Equation 3, where x and y are two vec-
tors. Cosine Similarity is often used to measure document
similarity, mainly for plagiarism detection. Simply, the metric
compares two documents by measuring the similarity of the
vectors of the frequencies of the words in both documents, then
outputs a number between 0 and 1. The closer the number is
to 1, the more similar the two vectors.

Cosim(x, y) =
∑n

i=1(xi × yi)√∑n
i=1 x2

i ×
√∑n

i=1 y2
i

(3)

The cosine similarity for the two MSGs of Figure 4 is 0.66.
2) Pearson Correlation: The correlation measures the

strength of the linear association between two non-zero vectors
and is given by Equation 4. It is widely used to measure
similarity [48]. It compares the similarity and returns values
between 1 and −1. The closer the value to 1 or −1, the strong

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

4138 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

the modeled relationship is.

PC(x, y) =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)

√∑n
i=1(yi − y)

(4)

The Pearson correlation coefficients of the two MSGs of
Figure 4 is 0.63.

The Pearson correlation measures the strength of the rela-
tionships between two variables and is a de facto metric
for measuring similarity between two datasets. The cosine
similarity method is commonly used in forensics investigation,
malware analysis, and IDS [49], [50]. This paper is the first to
report the use of these metrics to construct IDS from CAN Bus
data. Further, experimented with other metrics, such as t-test
and Levene’s test, which exhibited much lower accuracy [51]
and were excluded from the paper.

C. Prediction of Messages Injections

In conjunction with Cosine and Pearson similarity metrics,
we employed three techniques to predict the messages injec-
tion attacks, which are: threshold, LSTM-RNN and Change
Point Detection (CPD). In general, the threshold is commonly
considered as the base case, and the LSTM and CPD are
commonly used IDS solutions [52].

1) Threshold: A threshold is a selected value of the given
similarity metric that is believed to provide better accuracy in
detecting injection of messages. To identify “good” thresholds
for the three selected similarity metrics, we variate the thresh-
old values for the given metric and compute its accuracy until
we observe an “optimal” value.

2) Recurrent Neural Network-Long Short-Term Memory:
The technique was first introduced in 1997 and become the
core methodology deep learning [53]. It is a gradient-based
architecture developed for modeling time-series data with
long-term dependencies [54]. The design solves the problem
of vanishing gradient by allowing errors to be back-propagated
through time. The LSTM was constructed using the sequential
model of a linear stack of layers, which are recurrently
repeating memory blocks. It is very powerful in sequence
prediction problems because it can store past information for
a long time.

3) Change Point Detection: The problem could be formu-
lated as follows [55]. We observe a sequence of observations
yi/ i = 1, . . . , n, indexed by some meaningful ordering, such
as time or location in the sequence. Change Point Detection
(CPD) is concerned about testing the null hypothesis:

H0 : yi ∼ F0, i = 1, . . . n, (5)

against the single change-point alternative:

H1 : ∃1 � τ ≤ n, yi ∼

{
F1, i < τ

F0, Otherwise
(6)

CPD estimates the change-points-location where the distrib-
ution of a sequence of observations abruptly changes [55], [56]
and is commonly used for detecting anomalous behavior in
sequences of observations [57]. The sequence of observations
used in this work are the similarities between consecutive
MSGs.

TABLE I

DATASET SIZE

V. EVALUATION METHODS

In this section, we discuss our experimental evaluation setup
and the parameters used for our study.

A. Evaluation Datasets

In our previous study [10], we collected a log of CAN
bus messages for (1) normal driving behavior, (2) injection
of fabricated speed reading messages onto the CAN bus, and
(3) injection of fabricated RPM reading messages onto the
CAN bus of an in-motion Ford Transit 500 2017. The data
set is available in [13]. Table I shows the number of CAN
messages that were used in the research. Figure 7 shows the
speed and RPM readings and their relationships in the three
datasets [10]. The plot at the left shows that the speed of the
vehicle varies between 0 and almost 30 mph and the RPM
readings varies from almost 0 to almost 2300 units during a
normal driving scenario. The plot at the center shows that the
speed of the vehicle in this drive test reached almost 11 mph
and the RPM readings oscillates between the actual values and
the value that corresponds to the injected hex value “FFFF”,
i.e., 120000. The plot at the right shows the RPM readings of
the vehicle in this drive test reached almost 1800 units and
the speed readings oscillates between the actual values and
the value that corresponds to the injected hex value “FFF”,
i.e. almost 25 mph.

The Pearson correlation between the speed readings and
RPM readings represented by the orange lines in Figure 7
shows a strong relationship (the coefficient is 0.85) between
the 2 quantities in the plot at the left, weak relationship (the
coefficient is 0.33) in the plot at the center, and no relationship
(the coefficient is -0.013) in the plot at the right [10]. This
suggests that the ECUs of the vehicle may act on the injected
RPM readings but may not act on the injected speed readings
that they receive. The difference between the correlation
coefficients hints to the impact of messages injection on the
collaboration between the ECUs of the car, which we explore
in this paper.

B. Evaluation Method for the Similarity Techniques

We first construct the MSGs from each time-window
(default 100) successive messages from the three CAN log
datasets described in Table I. Then, the similarity metrics are
used to compute the similarity values of the MSGs series for
each of the datasets.

To assess the efficacy of each of the similarity metric,
we plot the similarity values as time-series data to observe

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

JEDH et al.: DETECTION OF MESSAGE INJECTION ATTACKS ONTO CAN BUS 4139

Fig. 7. An illustration of speed and RPM readings on the three datasets for a normal vehicle operation (left), and the impact on message injection attacks
for RPM reading on speed reading (center), and on speed reading on RPM reading (right).

TABLE II

NORMALITY TEST FOR METRIC VARIABLES (SHAPIRO-WILK)

the tendencies of the values computed from the three datasets.
Then, we plot the distributions of the frequencies of the sim-
ilarity values to observe whether similarity values computed
from the no injection of fabricated messages dataset differ or
not from the similarity values computed from the RPM and
speed injection of fabricated messages datasets. Next, we use
t-test [58] to statistically validate the difference between the
two distributions of similarity values computed from the no
injection of fabricated messages dataset and the distributions of
similarity values computed from respectively RPM and speed
injection of fabricated messages datasets.

In addition, we set thresholds for each of the similarity
metrics and compared the similarity values computed from the
MSGs to these thresholds. A similarity value below the thresh-
old of the given similarity indicates injection of messages at
the related time-window. Subsequently, the accuracy of the
method in detecting injection of messages onto the CAN bus
is computed. The best thresholds that we identified are 0.87 for
both the cosine similarity and Person correlation. Section VI-A
discusses the results of the evaluation.

C. Evaluation Method for the Change Point Detection
Technique

The CPD method estimates the point of change of a pop-
ulation from a sample data. The method uses Markov-Chain
Monte Carlo (MCMC) to sample the data and Bayesian infer-
ence to detect the point at which the mean of the population
changes. The parameters of the model are the mean and the
standard deviation of the population and the distributions of
the data before the change point and after the change point.
We choose the Normal distribution for both distributions.
We tested the normality of cosine similarity values and Pearson
correlation coefficients computed from the three datasets using
the Shapiro-Wilk [59]. The p-values of the t-tests are provided
by Table II. The values indicate that all the datasets follow the

Normal distribution. We used PYMC [60], [61] to evaluate the
capability of the change point detection method to identify
injection of CAN messages.

Using CPD method to identify injection of messages from
the similarity data, we compared the identified point of
changes to the actual point of changes (i.e., the time we
started injecting messages) for each of the datasets. In addition,
we compare the strength of change for each of the datasets,
which is the proportion of the difference between the mean
before the change point and after the change point to the
average of the two means. We use threshold 1% to interpret
this strength of the change; a strength of change above 1%
implies there is a change and a strength of change below 1%
implies there is no change. Section VI-B discusses the results
of the evaluation.

D. Evaluation Method for the RNN-LSTM

Initially, we developed prediction models using the Recur-
rent Neural Network (RNN)-Long Short-Term Memory
(LSTM) method from the three raw-datasets described
in Table I. The models had low performance. To have datasets
that have a balanced number of records wrt. injection/no
injection of CAN messages, we constructed two datasets out
the three row datasets as follows:
• We appended the injection of speed reading messages

onto the CAN bus dataset to the no injection of fabricated
messages dataset to form the constructed speed readings
injection dataset.

• We appended the injection of RPM reading messages onto
the CAN bus dataset to the no injection of fabricated
messages dataset to form the constructed RPM readings
injection dataset.

We used LSTM-RNN, as implemented in package
Keras [62], to predict injection of messages in the CAN bus.
Table III lists the parameters that were used in the study. The
sequences of MSG similarities are fed onto the first/input layer
of the LSTM model. The output of the input layer is passed
on to the second layer. The output of the second hidden layer
is then passed on to the output/dense layer, which maps the
output values to binary values, representing the states injection
of CAN messages and no injection of CAN messages. The
experiment is performed for both dataset and the accuracy of
the method is computed and reported in Section VI-C.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

4140 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 8. Impact of the injection of speed reading messages (left) and RPM reading messages (right) on the of cosine similarity values of the MSGs of
successive time-windows; the cosine-similarity is higher without the injection of speed and RPM reading messages.

Fig. 9. Impact of the injection of speed reading messages (left) and RPM reading messages (right) on the distribution of the frequencies of the cosine
similarity values of MSGs of successive time-windows.

TABLE III

RNN-LSTM MODEL PARAMETERS

Fig. 10. The impact of the number of hidden neurons on the accuracy of
the models generated from the Pearson similarities data.

Note that we adopted the commonly used RNN config-
uration parameters as specified in Table III, including the
ratio of training dataset and identified the other parameters
by visualizing the impacts of the variations of the parameters
values on the accuracy of the generated prediction models.
For instance, Figure 10 and Figure 11 show the impact of the

Fig. 11. Impact of the number of Epochs on the accuracy of the models
generated from the Pearson similarities data.

number of hidden neurons and the number of epochs on the
accuracy of the models respectively. In addition, inspecting
the Tensorborad Graph Visualization to detect over-fitting and
under-fitting of the generated models.

VI. RESULTS OF THE EVALUATION OF THE DETECTION ON

MESSAGES INJECTION USING SIMILARITY OF

MESSAGES-SEQUENCES GRAPHS

This section describes the capability of MSG similarity
metric in conjunction with threshold, RNN-LSTM, and CPD
to detect injection on CAN messages.

A. Evaluation of the Threshold Technique

This subsection describes the results of using cosine similar-
ity and Pearson correlation of MSGs and thresholds to detect
injection of CAN messages.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

JEDH et al.: DETECTION OF MESSAGE INJECTION ATTACKS ONTO CAN BUS 4141

Fig. 12. Impact of the injection of speed reading messages (left) and RPM reading messages (right) on Pearson correlation coefficients of MSGs of successive
time-windows; the Pearson correlation coefficients are higher without the injection of speed and RPM reading messages.

Fig. 13. Impact of injection of speed reading messages (left) and RPM reading messages (right) on the distribution of the frequencies of the Pearson
correlation coefficients of MSGs of successive time-windows.

1) Cosine Similarity Method: Figure 8 and Figure 9 show
respectively the sequence of cosine similarity values and the
distribution of the cosine similarity values computed from
the three datasets. We observe from Figure 8 that the plot
of the sequence cosine similarity values extracted from the
no injection of fabricated messages dataset is higher than
the sequence of the cosine similarity values extracted from
the injection of fabricated reading messages dataset.

We observe from Figure 9 that the distribution of the cosine
similarity values extracted from the no injection of fabricated
messages dataset is different from the distribution of the cosine
similarity values extracted from the injection of fabricated
reading messages dataset in red color. The t-test confirms that
injection of fabricated messages onto the CAN bus impacts
the sequence of messages exchanged in the CAN bus. The
t-test’s p-value for the difference of the mean of the cosine
similarity values extracted from the injection of speed reading
messages dataset and the mean of the cosine similarity values
extracted from the no injection of fabricated messages dataset
is 1.12 e − 74 and the t-test’s p-value for the difference of
the mean of the cosine similarity values extracted from the
injection of RPM reading messages dataset and the mean of
the cosine similarity values extracted from the no injection of
fabricated messages dataset is 2.61 e − 69.

2) Pearson Correlation Method: Figure 12 shows the
sequence of correlation coefficients extracted from the three
datasets over time, and Figure 13 shows the distribu-
tion of correlation coefficients extracted from the three
datasets.

We observe from Figure 12 that the plot of the sequence
Pearson correlation coefficients extracted from the no injection
of fabricated messages dataset is higher than the sequence
of the Pearson correlation coefficients extracted from the
injection of fabricated reading messages dataset. We observe
from Figure 13 that the distribution of the Pearson correlation
coefficients extracted from the no injection of fabricated
messages dataset is different from the distribution of the
Pearson correlation coefficients extracted from the injection of
fabricated reading messages dataset. The t-test confirms that
injection of fabricated messages onto the CAN bus impacts
the sequence of messages exchanged in the CAN bus.

The t-test’s p-value for the difference of the mean of the
Pearson correlation coefficients extracted from the injection
of speed reading messages dataset and the mean of the cosine
similarity values extracted from the no injection of fabricated
messages dataset is 9.466e−75 and the t-test’s p-value for the
difference of the mean of the cosine similarity values extracted
from the injection of RPM reading messages dataset and the
mean of the cosine similarity values extracted from the no
injection of fabricated messages dataset is 1.6e− 70.

3) Accuracy of the Threshold Method: Table IV and Table V
summarize the accuracy of the threshold-based method in
detecting injection of messages using the two similarity met-
rics applied to successive MSGs when using the three datasets.
Table VI shows also that the cosine similarity and Pearson
correlation have low false-positive rates for the case of no
injection of fabricated messages dataset. We conclude that
cosine similarity and Pearson correlation exhibit excellent

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

4142 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE IV

PERFORMANCE OF THE THREE SIMILARITY METRICS WHEN USING THE
INJECTION OF RPM READINGS DATASET

TABLE V

PERFORMANCE OF THE SIMILARITY METRICS WHEN USING THE
INJECTION OF SPEED READING MESSAGES DATASET

TABLE VI

PERFORMANCE OF THE SIMILARITY METRICS WHEN USING THE NO
INJECTION OF FABRICATED RPM READING MESSAGES DATASET

TABLE VII

COMPARING THE IDENTIFIED POINT OF CHANGES TO THE APPROXIMATE

ACTUAL POINT OF CHANGE. (WE SET THE POINT OF CHANGE
AS THE MEAN OF THE ESTIMATED POINT OF

CHANGE RANGES WITH 94%.)

accuracy in detecting injection of speed and RPM reading
messages.

B. Change Point Detection Method

This subsection describes the capability of the CPD method
in conjunction with the cosine similarity and Pearson correla-
tion of MSGs to detect injection of messages onto the CAN
bus.

Table VII and shows the identified point of changes and the
actual point of changes and Table VIII provides the strength of
changes computed from the three datasets for both similarity
techniques. Discussions on the capability of the two similarity
metrics follow.

1) Cosine Similarity: Figure 14 shows the identified change
points from the cosine similarity sequences computed from the
injection of RPM reading messages, injection of speed reading
messages and no injection of fabricated messages datasets. The
change points are at windows 66, 391, and 169 for resp. The
injection of RPM readings, injection of speed readings and
no injection of fabricated messages datasets. We observe that
the method detects quickly the change for the case of injection
of RPM reading messages dataset (after 32 time-windows) but

TABLE VIII

RATIO OF THE DIFFERENCE BETWEEN THE MEAN BEFORE THE CHANGE
POINT AND AFTER THE CHANGE TO THE AVERAGE

OF THE TWO MEANS (IN PERCENTAGE)

with significant delay for the case of injection of speed reading
dataset dataset.

We also observe that the method wrongly detects a change
for the case of no injection of fabricated messages dataset.
We observe, however, that the strength of change is 8.65%
for the injection of RPM readings, 2.07% for the case of
injection of speed readings dataset, and 0.81% for the case
of no injection of fabricated messages dataset. Therefore,
the strength of the change metric indicates that the method
detects change for the case of injection of RPM readings and
injection of speed readings and does not detect change for the
case of no injection of fabricated messages dataset.

2) Pearson Correlation: Figure 15 shows the identified
change points from the Pearson correlation coefficients
sequences computed from the injection of RPM reading mes-
sages, injection of speed reading messages, and no injection
of fabricated messages datasets. The change points are at
windows 54, 468, and 174 for resp. The injection of RPM
reading messages, injection of speed reading messages and no
injection of fabricated messages datasets. We observe that the
change was quickly detected for the case of injection of RPM
readings dataset (after 20 time-windows) but with a significant
delay for the case of injection of speed readings dataset.

We also observe that the method wrongly detects a
change for the no injection of fabricated messages dataset.
We observe, however, that the strength of change is 10.96% for
the injection of RPM reading messages dataset, 2.31% for the
case of injection of speed reading messages dataset, and 0.75%
for the case of the no injection of fabricated message dataset.
Therefore, the strength of the change metric indicates that
the method detects change for the case of injection of RPM
reading messages and injection of speed reading messages and
does not detect change for the case of no injection of fabricated
message dataset.

3) Summary: We observe that cosine similarity and Pearson
correlation detect injection of RPM messages quickly but slow
to detect injection of speed messages. In addition, we observe
that change strength allows detecting message injection.

C. LSTM-RNN Prediction Method

We discuss in the following the performance of LSTM-RNN
in conjunction with the similarities of MSGs in predicting
injection of messages onto the CAN bus.

Table IX provides the accuracy of the LSTM-RNN method
in predicting injection of CAN messages from a constructed

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

JEDH et al.: DETECTION OF MESSAGE INJECTION ATTACKS ONTO CAN BUS 4143

Fig. 14. Detection of point of change of successive MSGs from the Cosine Similarity when RPM reading messages injected (left), speed reading messages
injected (center), and normal operation (right).

Fig. 15. Detection of point of change of successive MSGs from the Pearson correlation coefficients when RPM injected (left), speed message injection
(center), and normal operation (right).

TABLE IX

ACCURACY OF LSTM-RNN IN PREDICTING INJECTION
OF CAN MESSAGES

injection of speed and RPM readings datasets considering
different window sizes. We observe that the window size
impacts the performance of LSTM-RNN in detecting injection
of CAN messages. The results show that

1) the accuracy for the cosine similarity varies between
73.43% and 98.45% for the case of constructed injection
of speed reading messages dataset and between 37.93%
and 100% for the case of constructed injection of RPM
reading messages dataset;

2) the accuracy for the Pearson correlation varies between
73.43% and 100% for the case of constructed injection
of speed reading messages dataset and between 37.9%
and 100% for the case of constructed injection of speed
reading messages dataset.

We conclude that LSTM-RNN exhibits excellent accuracy
in predicting injection of CAN messages onto the CAN bus
from the constructed injection of speed and RPM readings
messages dataset when using cosine similarity and Pearson
correlation to compute the similarities of the consecutive
MSGs.

D. Evaluation of the Speed of Attack Detection

We evaluated the techniques using an Intel Dual-Core i5,
with 2.3 GHz CPU and 8 GB RAM, MacBook Pro. We used
Python 3.7 and Keras for processing the data.

Table X shows the CAN message injections detection speed
of the algorithms used in the study. We observe that the
LSTM-RNN and CPD can detect CAN bus message injections
on average, in respectively, 6.03 seconds and 10.06 respec-
tively. We note that both average values are well above the
normal breaking reaction time, between 0.5 and 2 seconds.
We observe, however, that the threshold-based method can
detect CAN bus message injection in about 1.57 milliseconds
when using cosine similarity metrics and 2.44 milliseconds
when using Pearson correlation. Thus, the latter method is suit-
able for IDS-based real-time resiliency-control mechanisms for
cyber-attacks.

E. Impact of the Results

Although several machine learning-based message-injection
attack-detection studies in the literature, only a few techniques
were evaluated using CAN Bus datasets of parked or moving
vehicles under cyber-attacks. Table XI compares the IDS
solutions that we developed with the state of the art solutions
that were evaluated using datasets collected from parked
and moving vehicles in presence of CAN message injection

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

4144 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE X

EVALUATION OF THE ATTACK DETECTION SPEED OF THE SOLUTIONS FOR WINDOW 200 MESSAGES

TABLE XI

STATE-OF-THE-ART IDS VS. OUR IDS SOLUTION

attacks. Among these solutions, two pre-commercials IDSs
(Supplier 1 and Supplier 2) that were evaluated by Stachowski
et al. [11], and the IDS that we proposed earlier [10]. One of
the NN-based IDS that was evaluated by Stachowski et al.
on three vehicles makes (each was tested for several hours)
showed complete accuracy (1.0) but (1) requires knowledge
of the association of CAN IDs to the corresponding ECUs
for each of the vehicle-makes, (2) sensitive to change to
the vehicle configuration (the authors developed a separate
machine learning model for each of the three vehicles),
(3) requires extensive machine-learning model training time,
and (4) believed to have a high attack detection speed, which
makes it not practical for real-time application, such as activate
braking to counter speed increase attack.2 Note that the

2The authors did not report attack detection speed for the method, but we
expect that the method would require high attack detection speed (i.e., above
two seconds) like our LSTM-RNN method.

solution discussed in [42] has higher false alarm rate when
using our datasets, as discussed in subsection IV-A.

Most of the practical CAN Bus injection detection methods
use models developed from a baseline dataset, e.g., a neural
network model. The baseline models are closely related to
ECUs set used by the vehicle. Changing the ECUs set by, e.g.,
adding or removing devices requires developing a new model,
which makes the solution not appropriate for the after-market
vehicles. In addition, the baseline model is developed with
the assumption that the car is not under attack when the
baseline dataset is collected, which cannot be guaranteed for
after-market vehicles as well. Therefore, our proposed method
does not use a baseline model.

Our proposed IDS solution does not require the knowledge
of the association of CAN IDs to the corresponding ECUs
of the vehicle and shows good accuracy, up to 0.98, when a
supervised ML (RNN-LSTM) is used, and with high accuracy
when an unsupervised method (threshold technique) is used,

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

JEDH et al.: DETECTION OF MESSAGE INJECTION ATTACKS ONTO CAN BUS 4145

up to 0.97. Additionally, the threshold-Consine Similarity
method showed a quick detection of injection of fabricated
messages, 1.5 to 2.6 milliseconds, as discussed in the previous
section. This shows that our scheme is a practical generic
IDS solution as it does not use proprietary information from
the car manufacturers. Note that we used in this study three
datasets related to one driver and one vehicle. We consider
experimental evaluation for a set of vehicles and drivers in
our future work.

The methods that we proposed in this paper captures the
legitimate CAN ID sequence patterns. We expect that the
method will also be effective in detecting Denial of Service
attacks in networks and insider attacks which we consider in
our future work.

VII. CONCLUSION

The number of cyber-attacks on connected vehicles is
increasing. The research community has proposed anomaly-
based Intrusion Detection System (IDS) solutions to address
this problem. The main advantage of this solutions is that it
does not require modification to the CAN protocol. Existing
IDSs either use the entropy of messages or require the knowl-
edge of the IDs of the different sensors/actuators of the test
vehicle. This paper investigates the use of Messages-Sequence
Graph (MSG), which models the sequences of CAN messages
in a time window to detect message injection. The study
found that the cosine similarity and Pearson correlation of
the sequence of MSGs are effective in detecting injection of
RPM and speed messages with 98.45% accuracy and speed
detection time of 1.5 to 2.64 milliseconds.

ACKNOWLEDGMENT

The authors thank Bhagath-Kuma Veerannagari for devel-
oping some of the functions used in the research.

REFERENCES

[1] R. Bosch GmbH. (1991). CAN Specification v2.0. [Online]. Available:
http://esd.cs.ucr.edu/webres/can20.pdf

[2] D. K. Nilsson, U. E. Larson, and P. H. Phung, “Vehicle ECU classifica-
tion based on safety-security characteristics,” in Proc. IET Road Transp.
Inf. Control Conf. ITS United Kingdom Members’ Conf. (RTIC), 2008,
pp. 1–7.

[3] L. Ben Othmane, H. Weffers, M. M. Mohamad, and M. Wolf, “A survey
of security and privacy in connected vehicles,” in Wireless Sensor and
Mobile Ad-Hoc Networks: Vehicular and Space Applications. New York,
NY, USA: Springer, 2015, pp. 217–247.

[4] V. H. Le, J. den Hartog, and N. Zannone, “Security and privacy
for innovative automotive applications: A survey,” Comput. Commun.,
vol. 132, pp. 17–41, Nov. 2018.

[5] L. Ben Othmane et al., “Demo: A low-cost fleet monitoring system,” in
Proc. IEEE Int. Smart Cities Conf. (ISC2), Sep. 2018, pp. 1–2.

[6] Upstream Auto. (2020). Upstream Security’s Global Automotive Cyber-
security Report. Accessed: Feb. 2020. [Online]. Available: https://www.
upstream.auto/upstream-security-global-automotive-cybersecu%rity-
report-2020/

[7] C. Miller and C. Valasek. (2013). Adventures in Automotive Networks
and Control Units. [Online]. Available: http://illmatics.com/carhacking.
pdf

[8] R. Brandom, “The scariest thing about the Chrysler hack is how
hard it was to patch,” Dept. Comput. Sci., Verge, Tech. Rep.,
Jul. 2015. [Online]. Available: https://www.theverge.com/2015/7/24/
9036153/chrysler-hack-vulnerability-automobile-car-software-security

[9] J. Golson. (Sep. 2016). Car Hackers Demonstrate Wireless Attack on
Tesla Models. [Online]. Available: https://www.theverge.com/2016/9/19/
12985120/tesla-model-s-hack-vulnerab%ilitykeen-labs

[10] L. Ben Othmane, L. Dhulipala, N. Multari, and M. Govindarasu, “On the
performance of detecting injection of fabricated messages into the CAN
bus,” E Trans. Depend. Sec. Comput., early access, Apr. 23, 2020, doi:
10.1109/TDSC.2020.2990192.

[11] S. Stachowski, R. Gaynier, and D. J. LeBlanc. (Apr. 2019). An Assess-
ment Method for Automotive Intrusion Detection System Performance.
[Online]. Available: https://rosap.ntl.bts.gov/view/dot/41006

[12] H. M. Song and H. K. Kim, “Discovering CAN specification using on-
board diagnostics,” IEEE Des. Test. Comput., vol. 38, no. 3, pp. 93–103,
Jun. 2021.

[13] L. Ben othmane and L. Dhulipala, “Injection of RPM and speed reading
messages onto the CAN bus of a moving vehicle,” IEEE Dataport., to
be published, doi: 10.21227/s1jy-h433.

[14] T. G. F. Vahid. (1999). Embedded System Design: A Unified Hard-
ware/Software Approach. Accessed: Feb. 5, 2020. [Online]. Available:
http://dsp-book.narod.ru/ESDUA.pdf

[15] B. Electronics. OBD-II On-Board Diagnostic System. Accessed:
Jan. 2019. [Online]. Available: http://www.obdii.com/connector.html

[16] O. Avatefipour and H. Malik, “State-of-the-art survey on in-vehicle
network communication (CAN-bus) security and vulnerabilities,” 2018,
arXiv:1802.01725. [Online]. Available: https://arxiv.org/abs/1802.01725

[17] S. Hartzell, C. Stubel, and T. Bonaci, “Security analysis of an automobile
controller area network bus,” IEEE Potentials, vol. 39, no. 3, pp. 19–24,
May 2020.

[18] M. Wolf, A. Weimerskirch, and T. Wollinger, “State of the art: Embed-
ding security in vehicles,” EURASIP J. Embedded Syst., vol. 2007,
pp. 1–16, Jan. 2007.

[19] C. Valasek and C. Miller. (2015). Adventures in Automotive Networks
and Control Units. Accessed: Feb. 1, 2020. [Online]. Available:
https://ioactive.com/pdfs/IOActive_Adventures_in_Automotive_
Networks_an%d_Control_Units.pdf

[20] G. Golson. (2016). Car Hackers Demonstrate Wireless Attack on Tesla
Models. Accessed: Feb. 3, 2020. [Online]. Available: https://www.
theverge.com/2016/9/19/12985120/tesla-model-s-hack-vulnerabilit%y-
keen-labs

[21] A. Greenburg. This Bluetooth Attack Can Steal a Tesla Model X in
Minutes. Accessed: Feb. 3, 2020. [Online]. Available: https://www.
wired.com/story/tesla-model-x-hack-bluetooth/

[22] K. Koscher et al., “Experimental security analysis of a modern automo-
bile,” in Proc. IEEE Symp. Secur. Privacy, May 2010, pp. 447–462.

[23] L. Ben Othmane, R. Fernando, R. Ranchal, B. Bhargava, and E. Bodden,
“Likelihood of threats to connected vehicles,” Int. J. Next-Gener. Com-
put., vol. 5, pp. 290–303, Nov. 2014.

[24] W. A. Farag, “CANTrack: Enhancing automotive CAN bus security
using intuitive encryption algorithms,” in Proc. 7th Int. Conf. Modeling,
Simulation, Appl. Optim. (ICMSAO), Apr. 2017, pp. 1–5.

[25] H. Ueda, R. Kurachi, H. Takada, T. Mizutani, M. Inoue, and S. Horihata,
“Security authentication system for in-vehicle network,” SEI, Oaks,
PA, USA, Tech. Rev., Oct. 2015, pp. 5–9, vol. 81. [Online]. Available:
https://global-sei.com/technology/tr/bn81/pdf/81-01.pdf

[26] A. Herrewege, D. Singelée, and I. Verbauwhede, “CANAuth—A simple,
backward compatible broadcast authentication protocol for CAN bus,”
in Proc. ECRYPT Workshop Lightweight Cryptogr., Dresden, Germany,
Jan. 2011, p. 7.

[27] B. Groza, S. Murvay, A. van Herrewege, and I. Verbauwhede, “LiBrA-
CAN: A lightweight broadcast authentication protocol for controller
area networks,” in Cryptology and Network Security. Berlin, Germany:
Springer, 2012, pp. 185–200.

[28] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and
S. Horihata, “CaCAN—Centralized authentication system in CAN,” in
Proc. Embedded Secur. Cars (Escar) Eur., Nov. 2014, pp. 1–9.

[29] R. Kurachi, T. Pyun, S. Honda, H. Takada, H. Ueda, and S. Horihata,
“CAN disabler: Hardware-based prevention method of unauthorized
transmission in CAN and CAN-FD networks,” in Proc. Embedded Secur.
Cars (Escar), Jun. 2016, pp. 1–7.

[30] M. Bozdal, M. Samie, S. Aslam, and I. Jennions, “Evaluation of CAN
bus security challenges,” Sensors, vol. 20, pp. 16–17, Apr. 2020.

[31] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly
detection for the automotive CAN bus,” in Proc. World Congr. Ind.
Control Syst. Secur. (WCICSS), Dec. 2015, pp. 45–49.

[32] M.-J. Kang and J.-W. Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” PLoS ONE, vol. 11,
no. 6, pp. 1–17, Jun. 2016.

[33] S.-F. Lokman, A. T. Othman, and M.-H. Abu-Bakar, “Intrusion detection
system for automotive controller area network (CAN) bus system: A
review,” EURASIP J. Wireless Commun. Netw., vol. 184, no. 1, pp. 1–7,
2019.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2020.2990192
http://dx.doi.org/10.21227/s1jy-h433

4146 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

[34] S.-F. Lokman, A. T. B. Othman, and M.-H. Abu-Bakar, “Optimised
structure of convolutional neural networks for controller area network
classification,” in Proc. 14th Int. Conf. Natural Comput., Fuzzy Syst.
Knowl. Discovery (ICNC-FSKD), Jul. 2018, pp. 475–481.

[35] S. Longari, D. H. N. Valcarcel, M. Zago, M. Carminati, and S. Zanero,
“CANnolo: An anomaly detection system based on LSTM autoencoders
for controller area network,” IEEE Trans. Netw. Service Manage.,
vol. 18, no. 2, pp. 1913–1924, Jun. 2021.

[36] E. Seo, H. M. Song, and H. K. Kim, “GIDS: GAN based intrusion
detection system for in-vehicle network,” in Proc. 16th Annu. Conf.
Privacy, Secur. Trust (PST), Aug. 2018, pp. 1–6.

[37] W. Wu et al., “A survey of intrusion detection for in-vehicle networks,”
IEEE Trans. Intell. Transp. Syst., vol. 21, no. 3, pp. 919–933, Mar. 2020.

[38] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for
vehicle intrusion detection,” in Proc. 25th USENIX Conf. Secur. Symp.,
Austin, TX, USA, Aug. 2016, pp. 911–927.

[39] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in auto-
mobile control network data with long short-term memory networks,”
in Proc. IEEE Int. Conf. Data Sci. Adv. Anal. (DSAA), Oct. 2016,
pp. 130–139.

[40] M. Levi, Y. Allouche, and A. Kontorovich, “Advanced analytics for
connected car cybersecurity,” in Proc. IEEE 87th Veh. Technol. Conf.
(VTC Spring), Jun. 2018, pp. 1–7.

[41] G. D’TAngelo, A. Castiglione, and F. Palmieri, “A cluster-based
multidimensional approach for detecting attacks on connected vehi-
cles,” IEEE Internet Things J., early access, Oct. 22, 2020, doi:
10.1109/JIOT.2020.3032935.

[42] R. Islam, R. U. D. Refat, S. M. Yerram, and H. Malik, “Graph-
based intrusion detection system for controller area networks,” IEEE
Trans. Intell. Transp. Syst., early access, Oct. 1, 2020, doi: 10.1109/
TITS.2020.3025685.

[43] D. S. Cruzes and L. Ben Othmane, Empirical Research for Software
Security: Foundations and Experience. New York, NY, USA: Taylor &
Francis Group, LLC, 2017, ch. Threats to Validity in Software Security
Empirical Research, pp. 275–300.

[44] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom, “Survey of
automotive controller area network intrusion detection systems,” IEEE
Des. Test. Comput., vol. 36, no. 6, pp. 48–55, Dec. 2019.

[45] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection
and description: A survey,” Data Mining Knowl. Discovery, vol. 29,
no. 3, pp. 626–688, 2015.

[46] M. Marchetti and D. Stabili, “Anomaly detection of CAN bus messages
through analysis of ID sequences,” in Proc. IEEE Intell. Vehicles Symp.
(IV), Jun. 2017, pp. 1577–1583.

[47] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS: A novel intrusion
detection system for in-vehicle network by using remote frame,” in Proc.
15th Annu. Conf. Privacy, Secur. Trust (PST), Aug. 2017, pp. 57–5709.

[48] M. Newman, Networks—An Introduction. London, U.K.: Oxford Univ.
Press, 2010.

[49] H. Kwon, T. Kim, S. J. Yu, and H. K. Kim, “Self-similarity based
lightweight intrusion detection method for cloud computing,” in Intelli-
gent Information and Database Systems, N. T. Nguyen, C.-G. Kim, and
A. Janiak, Eds. Berlin, Germany: Springer, 2011, pp. 353–362.

[50] J.-H. Park, M. Kim, B.-N. Noh, and J. B. D. Joshi, “A similarity
based technique for detecting malicious executable files for computer
forensics,” in Proc. IEEE Int. Conf. Inf. Reuse Integr., Sep. 2006,
pp. 188–193.

[51] (2020). Using Messages Precedence Similarity to Detect Message
Injection in in-Vehicle Network. [Online]. Available: https://lib.dr.
iastate.edu/creativecomponents/651/

[52] T. Andrew, J. Bryans, and S. Shaikh, “Towards viable intrusion detection
methods for the automotive controller area network,” in Proc. 2nd
Comput. Sci. Cars Symp. Future Challenges Artif. Intell. Secur. Auton.
Vehicles (CSCS), Munich, Germany, Sep. 2018, pp. 1–9.

[53] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[54] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[55] H. Chen and N. Zhang, “Graph-based change-point detection,” Ann.
Statist., vol. 43, no. 1, pp. 139–176, Feb. 2015.

[56] D. Barry and J. A. Hartigan, “A Bayesian analysis for change point prob-
lems,” J. Amer. Stat. Assoc., vol. 88, no. 421, pp. 309–319, Mar. 1993.

[57] H. Olufowobi et al., “Anomaly detection approach using adaptive
cumulative sum algorithm for controller area network,” in Proc. ACM
Workshop Automot. Cybersecur. (AutoSec), Richardson, TX, USA, 2019,
pp. 25–30.

[58] W. S. Gosset, “The probable error of a mean,” Biometrika, vol. 6, no. 1,
pp. 1–25, Mar. 1908.

[59] S. Shapiro and M. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, nos. 3–4, pp. 591–611, 1965.

[60] A. Patil, D. Huard, and C. Fonnesbeck, “PyMC: Bayesian stochastic
modelling in Python,” J. Stat. Softw., vol. 35, no. 4, pp. 1–81, 2010.

[61] M. D. Homan and A. Gelman, “The no-U-turn sampler: Adaptively
setting path lengths in Hamiltonian Monte Carlo,” J. Mach. Learn. Res.,
vol. 15, no.1, pp. 1593–1623, Jan. 2014.

[62] F. Chollet et al. (2015). Keras. Accessed: Feb. 2020. [Online]. Available:
https://github.com/fchollet/keras

[63] A. R. Javed, S. U. Rehman, M. U. Khan, M. Alazab, and T. Reddy,
“CANintelliIDS: Detecting in-vehicle intrusion attacks on a controller
area network using CNN and attention-based GRU,” IEEE Trans. Netw.
Sci. Eng., vol. 8, no. 2, pp. 1456–1466, Apr. 2021.

Mubark Jedh received the B.S. degree from North-
ern Illinois University, USA, in 2017, and the M.S.
degree from Iowa State University, USA, in 2020,
where he is currently pursuing the Ph.D. degree.

Lotfi Ben Othmane (Senior Member, IEEE)
received the B.S. degree in information systems from
the University of Sfax, Tunisia, in 1995, the M.S.
degree in computer science from the University
of Sherbrooke, Canada, in 2000, and the Ph.D.
degree from Western Michigan University (WMU),
USA, in 2010. He is currently an Assistant Teach-
ing Professor with Iowa State University, USA.
Previously, he was the Head of the Department
of Secure Software Engineering, Fraunhofer SIT,
Germany. He works currently on engineering secure
cyber-physical systems.

Noor Ahmed received the B.Sc. degree from Utica
College in 2002, the M.Sc. degree from Syracuse
University in 2006, and the Ph.D. degree from
Purdue University in 2016, all in computer science.
He has been a Computer Scientist with the Air
Force Research Laboratory, Rome, NY, USA, since
2003. His research interests focus on security in
cloud computing and SOA, and semantic comput-
ing, reliability, and resiliency in distributed systems
with special emphasis on moving target defense,
blockchain, and cyber-physical systems.

Bharat Bhargava (Life Fellow, IEEE) received the
Ph.D. degree in electrical engineering from Purdue
University, West Lafayette, IN, USA. He is with the
Department of Computer Science, Purdue Univer-
sity. He is a fellow of IETE.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:34 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JIOT.2020.3032935
http://dx.doi.org/10.1109/TITS.2020.3025685
http://dx.doi.org/10.1109/TITS.2020.3025685

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

