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Abstract

Anonymity is important in a peer-to-peer system to protect peers that offer/request services. We propose an
anonymity scheme on Chord to provide a peer k-anonymity protection against a global passive adversary who can
sniff all the communication on a network. For collaborating adversaries, anonymity is protected as long as they
perform only passive attacks. An encryption scheme ensures that peers can authenticate the sender of an anonymous
response. A trusted third party is not needed. We achieve a performance comparable to Chord. The efficiency and
anonymity guarantees are shown theoretically. As a case scenario, anonymous access to trust information is studied on
a trust model. Peers query the information stored by trust holders. We show how trust holders anonymously respond
to such queries. Attack scenarios are discussed in detail to verify security of the scheme.

Index Terms

Peer-to-peer systems, anonymity, cryptography, trust management, security.

I. INTRODUCTION

Data confidentiality is important in many Internet applications such as e-commerce, online banking, and most
remote access applications. Encryption algorithms and public key authentication schemes protect the content of
a communication from unauthorized persons. Another dimension in a communication is to protect anonymity of
communicating parties. In some applications, parties may want to keep their identity confidential, e.g., negotiations
between two incorporating companies and secret messaging among people. Encryption of messages does not protect
anonymity if adversaries are capable of sniffing a large portion of the network. Most anonymity related systems
rely on mix networks [1] and onion routers [2]. In these systems, all anonymized communication goes through
some trusted nodes. These nodes encrypt and shuffle incoming and outgoing traffic so a global passive adversary
can not determine the identity of communicating parties.

In a peer-to-peer system, anonymity is needed for censorship resistance[3], publisher/subscriber protection in
storage systems[4], [5], witness/trust holder anonymity in a trust model [6], [7], or a general protection against
malicious peers [8], [9]. Probabilistic random path building [8], tunnelling [9], limitations on routing information
exchange [3], creating multicast groups [10] ,and broadcasting [4], [5], [6] are used as methods of protecting
anonymity. These methods are vulnerable to large scale sniffing attacks. An anonymity scheme is needed against
global passive adversaries. Mix networks or onion routers can be adapted for peer-to-peer systems to prevent such
attacks but they depend on trusted nodes. Due to decentralized nature of peer-to-peer systems, trusted nodes are
not preferred in order to anonymize network communication.

Efficiency of an anonymity scheme is important for its usability. An anonymity scheme on a peer-to-peer system
should not use network flooding which causes excessive traffic [11]. A distributed hash table (DHT) [12], [13],
[14] can be adapted to create an efficient anonymity scheme. Besides efficiency, authenticity of an anonymous
reply is important [6]. A malicious peer may forge fake anonymous replies in the name of others. To mitigate such
attacks, a peer can add a signature to its anonymous reply. Other peers verify authenticity of a reply by checking
the signature. However, this verification should be done without revealing the identity of the signer.

We propose k-anonymity Chord and oblivious replying to provide an anonymous, efficient, and authenticated
access method to a peer who offers services or stores information for other peers. Oblivious replying is a crypto-
graphic protocol which guarantee k-anonymity [15] protection against global passive adversaries. The basic idea is
that k peers sends k replies to each request and these replies can not be distinguished from each other. An adversary
can not track down the sender of a reply. In case collaboration, anonymity is protected if adversaries only perform
passive attacks. We do not consider active adversaries who can drop, modify, and forge messages. Countering such
an adversary might be expensive in terms of computation and network communication [15]. Instead of a more
secure but complex anonymity scheme, we aim a more practical one.
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As a case scenario, we adapt our scheme for trust holder anonymity. In a trust model [16], [17], [18], peers
establish long-term trust relationships to reduce the risk in future interactions. Each peer becomes a trust holder
by storing trust information of other peers. A malicious peer may attack its trust holders to avoid dissemination of
its bad reputation. Trust holders must be anonymous when answering queries about trust information. Anonymity
increases the availability of trust information since trust holders are less vulnerable to denial of service (DOS)
attacks. This provides a peer more motivation to perform trust holding duty.

Peers are assumed to register their pseudonyms and some encryption keys to a bootstrap server before joining the
network first time. After registration, peers join into two overlay networks: service and trust networks. The service
network can be overlaid on any network substrate. The trust network should be overlaid on k-anonymity Chord. A
service request happens as follows. A peer queries the service network to find a particular service, e.g., searching
a file in a file sharing network. After finding a service provider, the peer sends a query to the trust network. Trust
holders of the service provider anonymously reply the trust information. If the service provider is trustworthy, the
peer starts an interaction. Replies of trust holders is authenticated through an encryption scheme. Thus, an adversary
can not forge inauthentic trust information. Asymptotic running time of anonymous reply method is O(log2 N/η)
where N is the network size and η is the maximum number of replies that may fit into a network packet.

Section II presents related research. In Section III, communication and encryption architecture has been explained.
Section IV explains k-anonymity Chord and three reply methods to protect anonymity. We explain the disadvantages
of two previously proposed reply methods and present oblivious reply method as our approach. After discussing
future research opportunities in Section V, we conclude in Section VI.

II. RELATED WORK

Chaum [1] first proposed mix networks to protect anonymity of communicating parties for delay tolerant ap-
plications. Babel mixes [19] tried to maximize anonymity by introducing variable and large latency. Probabilistic
security [20] and cryptographic mix nodes [21], active attacks [22] and practicality [23] of mix networks have been
studied. Although different techniques are defined on these papers, the common idea is to use trusted mix nodes
for routing messages in an untraceable manner to protect anonymity of communicating parties.

Onion routers [24], [2] form an overlay network to build anonymous, bi-directional virtual circuits for real-time
communication. While mix networks are generally designed for delay tolerant applications, e.g., e-mail systems,
onion routing is more feasible for real-time applications such as HTTP. Tor [25] expands onion routing with forward
secrecy, congestion control, integrity checking and configurable exit policies. Tor uses directory servers to maintain
onion router topology and certificates.

Our scheme aims to protect anonymity without relying on a trusted mix network or onion routers. Thus, k-
anonymity Chord should be considered as a different category of anonymity systems. However, we use some ideas
from the encryption schemes in [1], [24].

Several anonymity systems are proposed on peer-to-peer systems. Crowds[8] forms groups (crowds) of nodes
(jondo). A crowd collaborates to protect anonymity of a jondo from outsider. The size of a crowd determines the
level of anonymity. However, a local eavesdropper may break anonymity. Sender, receiver, publisher anonymity
on peer-to-peer storage systems have been studied in Freenet [4] and Freehaven [5]. An encryption scheme is
used while broadcasting requests and anonymously accessing storage providers. Tarzan [9] establishes a random
tunnel between two communicating peers to protect their anonymity. Since none of the peers on a tunnel know
the whole path, an adversary can not figure out communicating peers. MorhpMix [26] defines a peer-to-peer mix
network with a collusion detection mechanism. Like Tarzan, random mix nodes are selected during an anonymous
communication. All these peer-to-peer schemes do not provide protection against a global passive adversary.

Anonymity on Chord have been studied by using recursive, randomized, indirect, split, bidirectional routing
[27], and virtual nodes [28]. Achord [3] proposes enhancements to provide censorship resistance on Chord. These
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TABLE I

PRELIMINARY NOTATIONS

Notation Description
UBS , RBS the bootstrap server’s public and private keys

Pi a peer with identifier i

IDi Pi’s pseudonym in the service network

TIDi Pi’s pseudonym in the trust network

Ui, Ri Pi’s public and private key in the service network

TUi, TRi Pi’s public and private key in the trust network

OUi, ORi Pi’s public and private key for oblivious replying
operations in the trust network

K(M) encryption of M with key K

H[M ] hash digest of M

X|Y concatenation of X and Y

schemes strengthen the responder anonymity in a probabilistic model but do not protect anonymity against global
passive adversaries.

A similar study to our scheme, Trustme [6], uses an encryption framework to access trust holders anonymously.
Peers flood trust queries to the network. Trust holders can send anonymous, authenticated replies to trust queries.
Large number of possible repliers in broadcasting provide a probabilistic anonymity protection for a trust holder.
However, flooding causes excessive network traffic and does not protect a trust holder against a global passive
adversary.

A stronger form of anonymity scheme, dining cryptographer networks (DC-net) [29], provides unconditional
anonymity protection for the sender of a message in a group of participants. Assuming the group size is N , this
approach requires O(N2) message exchange for each message sending. Furthermore, before each message sending,
O(N2) encryption keys should be distributed among N participants using an external secure method. This makes
DC-nets impractical for real life scenarios.

III. ARCHITECTURE

Most peer-to-peer networks need a bootstrap server to provide a connection point to the network for new peers.
There might be multiple bootstrap servers to provide tolerance to failures and attacks. For simplicity of the notation,
the rest of the paper will consider one bootstrap server. Peers register themselves to the bootstrap server (BS) when
joining the network for the first time. In our scheme, it is also a basic certification authority for pseudonyms and
keys of peers. The bootstrap server has a public/private key pair UBS , RBS . We assume all peers learn the public
key, UBS , in a secure way e.g. through a secure web site.

Pi denotes a peer with identifier i. IDi is the pseudonym of Pi in the service network. IDi is randomly selected
by Pi before registration. Similarly, TIDi is the pseudonym of Pi in the trust network. TIDi is assigned by the
bootstrap server during the registration operation. IDi and TIDi have no relation with each other. Pi has one
public/private key pair, {Ui, Ri}, for the service network operations and two public/private key pairs, {TUi, TRi}
and {OUi, ORi}, for the trust network operations. All key pairs are randomly selected by Pi and have no relation
with each other. We assume that peers have good random number generators to prevent brute force guessing attacks
on key pairs.

We give simple notations to describe message formats. K(M) stands for the encryption of M with key K which
can be a public, private, or symmetric key. H[M ] is the hash digest of M . X|Y denotes the concatenation of X

and Y . Table I lists the notations for easy reading of the following sections.
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A. Adversary Model

An adversary passively observes (sniff) the trust network to reveal pseudonym (TID) or IP number of a trust
holder. It1 does not have active attack capabilities such as dropping, modifying, forging network packets. It has
polynomial time computational capabilities and can not break cryptographic algorithms in polynomial time. We
also assume searching all pseudonym space in brute force manner is computationally infeasible.

We first assume that an adversary has only local passive observation capabilities. Such an adversary can observe
packets destined to itself or its local network and may learn about other peers by generating arbitrary number of
query packets. We explain two previously studied methods to counter this adversary (Section IV-A and IV-B).

In Section IV-C, we extend our scheme for global passive adversary model [1], [2] who can observe all traffic on
the trust network. Furthermore, if the global adversary can compromise (or collaborate with) some peers, we show
that the scheme protects anonymity of a trust holder as long as the compromised peers behave semi-honestly. In semi-
honest model[30], an adversary follows the protocols properly but passively observes the network communication.
Privacy literature commonly uses this adversary model.

B. Peer Registration

We assume that Pi is joining the network for the first time. It registers itself to the bootstrap server as follows:

1) Pi starts the registration operation by sending a registration request, UBS(IDi|Ui|TUi|OUi|r1), to the boot-
strap server. Due to encryption with UBS , only the server can read the request. The server decrypts the
message and stores IDi, Ui, TUi, OUi for future accountability. r1 is a random value selected by Pi.

2) The server selects another random value, r2, and sends back Ui(TS|r1|r2) to Pi as a challenge. Since the
whole message is encrypted with Ui, only Pi can decrypt the message. Pi verifies r1 value. If r1 value is
correct, the server is authenticated. TS is a time-stamp representing the time of message creation.

3) Pi sends Ri(TRi(TS|r2)|ORi(TS|r2)) to the server. The server decrypts the message and verifies TS, r2

values. If these values match, the server has verified that Pi has Ri, TRi, ORi keys. Otherwise, an adversary
could be replying Pi’s message or Pi is trying to certify keys which may belong to others.

4) After passing the challenge/response protocol, the server selects a TIDi value representing Pi’s pseudonym in
the trust network. It sends Ui(RBS(IDi|Ui|TS)|RBS(TIDi|OUi|TS)) as a reply. RBS(IDi|Ui|TS) part is
a service certificate. This certificate proves Pi’s registration to other peers. RBS(TIDi|OUi|TS) part informs
Pi about its TIDi and is used as a certificate during oblivious reply operations explained later in Section
IV-C. Since these certificates are encrypted with RBS , Pi or another peer can not forge them. Pi decrypts
the message using Ri, UBS and verifies TS value. If TS value is same as the previous value, the server is
sending the message. Pi stores these certificates for future use.

5) The bootstrap server randomly selects several trust holders for Pi. Let Pj be such a trust holder. The server
sends Ui(RBS(IDi|TUj |MTIDj |THNi|TS)) to Pi. The inner part RBS(IDi|TUj |MTIDj |THNi|TS) is
a trust certificate. It tells Pi that a trust holder is charged to store Pi’s trust information. Pi can not learn
Pj’s pseudonym in the trust network since TIDj is not added into the certificate. MTIDj is an anonymized
version of TIDj explained in Section IV. Using MTIDj value, Pi or another peer can access the trust
information stored by Pj . THNi is the number of trust holders assigned to Pi.

6) The bootstrap server sends a trust holder certificate to each trust holder. For example, Pj’s trust holder certifi-
cate is TUj(RBS(H[IDi]|TUj |TS)). This certificate tells that Pj is charged to hold Pi’s trust information.
Pi’s pseudonym in the service network is not added to protect the anonymity of Pi. However, using H[IDi]

1Considering an adversary is a peer, we will use ”it” to refer the adversary.
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Fig. 1. Registration of Pi to the bootstrap server

TABLE II

NOTATIONS ABOUT THE CERTIFICATES ISSUED BY THE BOOTSTRAP SERVER

Notation Description
MTIDj a masked version of TIDj

THNi number of trust
holders assigned for Pi

TS time-stamp

RBS(IDi|Ui|TS) Pi’s service certificate

RBS(IDi|TUj |MTIDj |THNi|TS) Pi’s trust certificate
about trust holder Pj

RBS(TIDi|OUi|TS) Pi’s certificate for
oblivious replying operations

RBS(H[IDi]|TUj |TS) Pj ’s trust holder certificate
about Pi

field, Pj can still answer trust queries about Pi. TUj is added into the certificate to distinguish the certificates
of other trust holders.

Figure 1 briefly explains the peer registration operation. In step 1, Pi sends the necessary information to the
bootstrap server. The server sends back a random challenge in step 2. After Pi sends a response to the server’s
challenge (step 3), the server sends back a service certificate and a certificate for trust network operations in step
4. Then, the server selects Pj as a trust holder of Pi and sends a trust certificate about Pj (step 5). In the last step,
the server sends a trust holder certificate to Pj . For the rest of this section, we assume that Pi is a service provider,
Pj is a trust holder of Pi, and Pr is requesting a service from Pi.

C. Searching a Service Provider and Sending a Trust Query

Pr sends a query to the service network to find a service, e.g., a particular file. As a service provider, Pi sends
its service certificate, RBS(IDi|Ui|TS), to Pr. Pr decrypts the certificate with UBS and runs a challenge/response
protocol to make sure that Pi is a registered service provider and the owner of the certificate. Additionally, an
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Fig. 2. Pr is searching for a service provider (Pi) and querying its trust information in the trust network

adversary may pretend to be Pi by replying Pi’s certificate. Thus, Pr prepares a challenge using Ui and sends it to
Pi. Only Pi can respond to the challenge so Pr verifies Pi’s identity. This step is very similar to challenge/response
steps during the peer registration.

Pi sends its trust certificates to Pr. In our case, Pi sends RBS(IDi|TUj |MTIDj |THNi|TS) to inform Pr

about Pj . Using UBS , Pr decrypts the certificate and compares IDi with the value from the service certificate. If
IDi values match, Pj is a legitimate trust holder. By examining the certificate, Pr verifies the authenticity of Pj

without knowing its identity.
Pi may cooperate with some trust holders to elevate its trust level and try to avoid involvement of other trust

holders. To achieve this, Pi may not send certificates of other trust holders to Pr. However, THNi value informs
Pr about the existence of other trust holders and forces Pi to send all certificates to the requester.

Then, Pr sends a trust query, MTIDj |TS′|TUj(Krj |TUj |H[IDi]), to the trust network. TS′ is a time-stamp
and is unique among all queries of Pr. Krj is a session key randomly created by Pr. Due to encryption with TUj ,
only Pj can read TUj(Krj |TUj |H[IDi]) part and learn Krj key. TUj and H[IDi] fields prevent forgery of the
encrypted part. When a query arrives to Pj , it checks TUj to understand if the query is destined to itself. It looks
up H[IDi] value in its trust holder certificates.

The trust query is routed in the trust network till Pj receives it. When Pj gets the trust query, it sends back with
a trust reply message. The details of routing and replying operations are explained in Section IV. Figure 2 shows
the message exchanges during a service and a trust query.

IV. k-ANONYMITY CHORD

Chord [12] can provide efficient access to trust information. However, Chord does not provide anonymity for
the responder of a search request since peers can partially learn the network structure using finger tables. Peers
forwarding a search request may guess where the search will end. Additionally, a peer may learn more about a
portion of the address space by sending excessive finger requests [3].

We propose k-anonymity Chord to provide k-anonymity protection [31] for peers. k-anonymity Chord performs
peer join, leave, and finger table maintenance operations like a normal Chord structure. In our case, trust network
is overlaid on a k-anonymity Chord structure. A peer joins the network with its TID value, e.g., Pj joins with
TIDj . Thus, k-anonymity Chord can be thought as a network of trust holders that is organized according to TID
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values. When a trust holder replies to a trust query, its identity can not be distinguished from k other peers. A trust
holder has k-anonymity protection when answering trust queries.

Let Pi be a service provider, Pj be a trust holder of Pi and Pr wants to get a service from Pi. After receiving Pi’s
service and trust certificates, Pr sends a trust query destined to Pj . Since neither Pi nor Pr know TIDj , the trust
query contains MTIDj value. MTIDj is an anonymized version of TIDj where the last m bits are set to zero.
In the trust query operations, MTIDj represents a range of pseudonyms between MTIDj and MTIDj + 2m.
We call this range as search range and the peers in the search range as target peers. The bootstrap server decides
the value of m so that the expected number of target peers is equal to k. Since the bootstrap server registers all
peers, it can compute m precisely. To explain MTIDj selection, we give a numerical example:

Chord peers are located on a 2n circular address space. We assume the bootstrap server uniformly distributes
TID values on the address space. Suppose n = 32, k = 64, TIDj = 0× 12345678 and there are 216 peers in the
network. Let X be an indicator random variable that represents if there is a peer on a particular location in the
address space (When X = 1, there is a peer on a that location). The probability of X = 1 is

P (x = 1) =
216

232
=

1
216

and the expected number of nodes on a particular location is

E[X] =
∑

x

x · P (x) = 1 · P (x = 1) + 0 · P (x = 0) =
1

216

Let Y be a random variable representing the number of peers that fall into a search range. The bootstrap server
selects a search range which has Y ≥ k = 64 expected number of peers. Let S be the number of locations in the
search range. Due to the uniformity of distribution, the expected number of peers in the search range is

E[Y ] = E[X] · S =
1

216
· S ≥ 64

The bootstrap server finds that S ≥ 224. This inequality suggests us to select m ≥ log2 S = log2 224 = 24. Then,
the bootstrap server computes MTIDj as follows:

MTIDj = (0× 12345678) ∧ (0× FF000000)

= 0× 12000000

MTIDj = 0× 12000000 means that Pj has a TIDj between 0× 12000000 and 0× 12FFFFFF . The expected
number of peers in this range is 64 due to our selection.

Let P0, P1 . . . Pk−1 be k target peers located between MTIDj and MTIDj +2m range. We define a two-phase
routing method for trust queries. First phase is a recursive Chord search operation to find the successor of MTIDj

which is P0. Pr starts this search operation by sending a trust query, MTIDj |TS′|TUj(Krj |TUj |H[IDi]), to its
closest finger preceding P0. The receiving peer forwards the query by looking up MTIDj value. Forwarding peers
store the query for a period of time. Stored messages will be used later to forward Pj’s reply back to Pr. TS′

value gives a hint for the expiration time of the query. Forwarding operation continues until P0 receives the query.
After the query reaches to P0, the second phase starts.

In the following sections, we explain three methods for the second phase. The first two methods are already used
in several previous proposals. These methods are vulnerable to global sniffing. In the third method, we describe
our oblivious replying scheme to protect anonymity against a global passive adversary. In the attack scenarios, Pr

tries to identify Pj . Note that, Pi may pretend to be Pr to learn Pj’s identity.
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Fig. 3. Two-phase trust query forwarding with random replying

A. Naive Replying

After receiving Pr’s query, P0 tries to decrypt TUj(Krj |TUj |H[IDi]) part. If TUj key does not match, P0

forwards the query to its successor P1. If P1 is not the receiver, it forwards the query to P2. This process continue
until Pj receives the query. If Pj is not online, the query reaches to the last target peer, Pk−1. In this case, Pk−1

sends back a no reply message or ignores the query. When Pj receives the query, it searches H[IDi] value in its
certificate database. It sends a trust reply, MTIDj |TS′|Krj(TVi|H[IDi]|TS′), to its predecessor. All target peers
forwards the reply to their predecessors until P0 receives it. P0 forwards Pj’s reply to the peer who forwarded
Pr’s query. All peers on the query path between P0 and Pr do the same operation. Finally, Pr receives the reply
message and checks H[IDi] and TS′ values. If the values are correct, TVi value is authentic.

This method protects the authenticity and integrity of the trust reply. A malicious target peer can not obtain Krj

key and forge a reply message. If Pr has only local observation capability and out of the search range, Pj can not
be distinguished from other k−1 target peers. Thus, Pj has k-anonymity protection [31] if Pr has local observation
capability.

If Pr falls into the search range by chance, or succeeds to inject some decoy peers into the search range
(Sybil attack [32]), or compromises some target peers, it may guess Pj’s identity. The number of possible repliers
decreases as the trust query advances to Pk−1. If Pj is close to Pk−1, target peers preceding Pj may guess Pj

more accurately. Furthermore, if Pr has global observation capability, it can learn Pj’s identity. Pr can observe that
Pj neither forwarded the query message nor got a reply message from a successor. Thus, naive replying does not
protect anonymity against global passive adversaries and collaborating adversaries.

B. Random Replying

P0 and all target peers forwards the query to their successors until Pk−1 receives it. Only Pj can decrypt the
content of the query. Pj sends the reply to a random target peer except P0. 2. Receiving target peer forwards the
reply to another random target peer with a pf probability. A peer may forward the same reply several times. A
forwarder only knows its preceding hop, but can not be sure if the preceding hop is Pj . Finally, a peer decides

2We assume target peers already know about each other. Peers may exchange IP addresses during the query forwarding
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not to forward and sends the reply message to P0. As in the naive method, the peers between P0 and Pr forwards
the reply message until Pr receives it. Figure 3 depicts two-phase routing of the trust query with random replying.
Points on the circular Chord ring represent the peers involved in the routing of Pr’s query. Gray points denote the
target peers. The black point represents Pj . Normal and dashed arrows represent the paths of Pr’s query and Pj’s
reply respectively.

As in the naive method, random replying protects anonymity of Pj if Pr is a local passive adversary. In case of
a collaboration between Pr and some target peers, Pj has probable innocence [8] if

k ≥ pf

pf − 1/2
(c + 1) (1)

k is the number of target peers and c is the number of collaborators of Pr. Random replying provides a probabilistic
anonymity protection for Pj but does not eliminate the chance of being identified. If c > k

2 −1, there is no probable
innocence for Pj . Thus, random replying does not protect anonymity when Pr compromises half of the target peers.
If Pr is a global passive adversary, Pj has no anonymity. Pr can observe all traffic among peers even they randomly
forward the reply.

C. Oblivious Replying

Oblivious replying is a secure method to protect anonymity of Pj against a global passive adversary. Moreover,
this method is resistant against collaborating passive adversaries in semi-honest adversary model [30]. The basic
idea is that each target peer generates a reply message and Pr receives k replies which can not be linked with the
senders. Pj’s reply is one of these k replies.

We assume that target peers already know each other and exchanged RBS(TIDi|OUi|TS) certificates. Public
key encryption is assumed to ensure semantic security [33]. This implies that encryption of a message depends on
the message and a sequence of coin tosses. Encryption of a plaintext with the same public key results in a different
ciphertext in each trial. However, the decryptions of these ciphertexts with the private key gives the same plaintext.

As in the random replying method, Pr’s query message is forwarded in the search range until Pk−1 receives it.
Pk−1 tries to decrypt TUj(Krj |TUj |H[IDi]) part. If the decryption is successful, it prepares Ok−1

k−2 as follows:

Ok−1
k−2 = OUk−2(OUk−3(. . . OU1(OU0(Krj(TVi|H[IDi]|TS′))) . . .))

Ok−1
k−2 denotes Pk−1’s oblivious reply which is to be delivered to Pk−2. If the decryption fails, Pk−1 prepares a

similar reply but the innermost layer of Ok−1
k−2 contains Krandom(RTV |RHID|TS′) part. Krandom is a randomly

generated key. RTV and RHID are randomly selected trust and hash values respectively. These random values
have the same amount of bits as authentic values.

Pk−1 sends MTIDj |TS′|Ok−1
k−2 to its predecessor, Pk−2. Pk−2 decrypts the top layer of Ok−1

k−2 which becomes
Ok−1

k−3 . Then, Pk−2 prepares Ok−2
k−3 and sends MTIDj |TS′|(Ok−1

k−3 ∪Ok−2
k−3) to Pk−3. The operation ∪ denotes the

concatenation of Ok−1
k−3 and Ok−2

k−3 in a random order. Since Ok−1
k−3 and Ok−2

k−3 are encrypted and contain the same
number of bits, Pk−3 can not distinguish these replies after the randomization. Pk−3 peels off the top layer from
Ok−1

k−3 and Ok−2
k−3 . It creates Ok−3

k−4 and sends MTIDj |TS′|(Ok−1
k−4 ∪Ok−2

k−4 ∪Ok−3
k−4) to Pk−4.

This process is repeated by all target peers until P0 receives MTIDj |TS′|(Ok−1
0 ∪Ok−2

0 ∪ . . .∪O2
0 ∪O1

0). After
peeling off the last layers, P0 adds its own reply message and sends all replies to Pr as described in the previous
reply methods. Pr decrypts all replies using Krj . The reply containing the correct H[IDi] and TS′ values is the
reply of Pj . Figure 4 shows the flow of oblivious replies among target peers.

If Pr is a global passive adversary, Pj has k-anonymity. Pr can observe communication of a target peer but it
can not link any incoming reply of the peer with an outgoing reply. Because, decryption of top layers of incoming
replies and randomization of outgoing replies on each target peer and our semantic security assumption do not
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Fig. 4. Message communication among target peers in oblivious replying method

allow Pr to track down the replies. Identical reply sizes make all replies look same. To demonstrate this, we present
some lemmas and theorems.

Lemma 1: Pr can not get any information about the sender of an oblivious reply by sniffing incoming and
outgoing replies of a target peer.

Proof: Let Px be a target peer where 0 < x < k− 1. Px receives MTIDj |TS′|(Ok−1
x ∪Ok−2

x ∪ . . .∪Ox+1
x )

from Px+1. Pr can not learn any information about the content of Ok−1
x , Ok−2

x , . . . , Ox+1
x by sniffing the network.

Since Pr does not know ORx . . . OR0 keys, it can not decrypt these replies. This situation is same for the outgoing
replies.

Pr may try to link Px’s outgoing replies with incoming replies. If Pr can establish such links, it observes all
communication among peers and links each reply with a sender. However, Pr can not do this, as explained below.

Px decrypts top layers of Ok−1
x , Ok−2

x , . . . , Ox+1
x and sends MTIDj |TS′|(Ok−1

x−1 ∪Ok−2
x−1 ∪ . . .∪Ox+1

x−1 ∪Ox
x−1)

to Px−1. Due to the semantic security, Pr can not get Ok−1
x by encrypting one of Ok−1

x−1, O
k−2
x−1, . . . , O

x+1
x−1, O

x
x−1

with OUx key3. Furthermore, randomized order of outgoing replies and identical reply sizes do not allow Pr to
find a link between Ok−1

x and any of Px’s outgoing replies. This case is the same for Ok−2
x , Ok−3

x . . . , Ox+1
x . None

of the incoming replies can be linked to an outgoing reply without knowing ORx key. Thus, learning a peer’s
incoming and outgoing replies does not give any information about sender of a reply.

Theorem 1: If Pr has global passive observing capability, oblivious replying provide k-anonymity for Pj .
Proof: Pr can observe all incoming and outgoing messages of P0, P1, . . . , Pk−1, but can not obtain any

information about the senders of replies due to Lemma 1. Pr can decrypt P0’s outgoing replies since last layers
of all replies is encrypted with Krj . It can learn Pj’s reply. However, it can not find a link between Pj’s reply

3Pr can learn OUx key by sniffing the messages during the exchange of RBS(TIDi|OUi|TS) certificates
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and any of P0’s incoming replies due to randomization of outgoing replies and encryption with OR0. Pr can not
distinguish Pj’s reply from other k − 1 replies so Pj has k-anonymity protection.

Pr may succeed in injecting decoy peers into the search range (Sybil attack [32]) or compromise some target
peers. With the help of collaborators, Pr may track down some replies and identify Pj’s reply. We claim that if
compromised target peers behave semi-honestly, replies of honest target peers can not be trackable. In this case,
Pj’s anonymity is proportional to the number of honest target peers. A more precise proof is as follows.

Lemma 1: If all except two target peers are collaborators of Pr, replies of two honest target peers can not be
distinguished from each other as long as collaborators behave in semi-honest adversary model.

Proof: Without loss of generality, let Px and Py be two honest target peers where 0 < x < k−2 and x+1 <

y ≤ k− 1. Since all other peers are compromised, Px+1 and Px−1 are two compromised peers. All peers between
Pk−1 and Px+1 except Py are collaborators so Px+1 can identify Py’s reply. When Px+1 receives incoming replies,
it creates Ox+1

x , peels off top layers of incoming replies and sends MTIDj |TS′|(Ok−1
x ∪Ok−2

x ∪. . .∪Ox+2
x ∪Ox+1

x )
to Px. Then, Px repeats the same operations and sends MTIDj |TS′|(Ok−1

x−1∪Ok−2
x−1∪ . . .∪Ox+2

x−1∪Ox+1
x−1∪Ox

x−1) to
Px−1. Knowing oblivious replies of all collaborators, Px−1 can figure out replies of Px and Py . However, it can not
distinguish Oy

x−1 and Ox
x−1 from each other. Since Px peels of the top layer of Oy

x and randomizes outgoing replies,
Px−1 can not find a link between Oy

x and any of Oy
x−1 or Ox

x−1. In Px−1’s view, Oy
x−1 and Ox

x−1 are equally likely
to be sent by Py or Px. Neither Px+1 nor Px−1 can distinguish the replies of Px and Py . Other collaborators can
not learn further information than Px+1 and Px−1. Hence, Pr and its collaborators can not distinguish the replies
of Px and Py from each other.

Theorem 1: If Pr collaborates with m target peers, oblivious replying provides k−m anonymity protection for
Pj as long as compromised peers behave in semi-honest adversary model.

Proof: Immediate from Lemma 2. If there are k −m honest target peers, Pr and its collaborators can not
distinguish k−m honest replies from each other and can not track down the sender of each reply. Then, Pj’s reply
can not be linked to any of k −m honest peers and Pj has k −m anonymity protection.

We conclude that oblivious replying provides k-anonymity protection to Pj against global passive adversaries
and semi-honest collaborators. For a better understanding of our encryption scheme, similar schemes in [1], [24],
[29] can be used.

D. Security Analysis of Oblivious Replying

We identify several active and passive attacks that may break our scheme. Following scenarios can be expanded
for single and collaborative adversaries.

Active adversaries. The proposed scheme does not protect anonymity against active adversaries. Identifying
vulnerabilities of the scheme is helpful to design more secure schemes in the future research. Thus, we outline
several active attacks as follows:

• Pr may forge all incoming replies of an honest target peer, say Px. After adding its own reply, Px sends
outgoing replies as the normal operation. When Pr receives all replies, it checks for Pj’s reply. If Pj’s reply
is found, Pr understands that Pj is located in Px . . . P0 range.

• Assume that Px+1 is Pr’s collaborator. Px+1 can skip Px and send replies to Px−1. If Pr does not receive Pj’s
reply, it concludes that Px = Pj . To perform this attack, all peers between Pk−1 and Px must be compromised.
Otherwise, Px+1 and Pr can not decrypt replies of honest peers located between Pk−1 and Px+1 due to the
encryption layer with ORx key.

• Pr injects many peers into the network [32] and tries to fill up a search range with own decoy peers. More
decoys make the guessing of Pj easier. To mitigate this attack, the server can limit the number of peers that
can be registered from an IP address. Thus, an adversary will need to compromise many computers to create
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TABLE III

PERFORMANCE COMPARISON OF REPLY METHODS

Phase 1 Phase 2 Total

Naive O(log N) O(log N) O(log N)

Random O(log N) O(log N) O(log N)

Oblivious O(log N) O((log2 N)/η) O((log2 N)/η)

decoy peers. Another approach is to ask a puzzle that a computer can not solve[34]. Thus, automated decoy
peer creation can be slowed down.

• Pr may intercept all communication to some selected target peers, so only allowed target peers know about
the query and replies. If Pr does not get Pj’s reply after sending a trust query, one of the intercepted peers is
Pj . By repeating this process, Pr can narrow down the candidates for Pj .

Long term tracing attacks. If Pr observes a search range for a long time and sends trust queries periodically, it
may catch an instance when Pj is off-line. Pj can not answer a query off-line so Pr may guess Pj’s identity. There
is no complete solution to this attack since it is independent from security of the reply method. Even a protocol
secure against some active adversaries [15] is vulnerable to this attack.

In a probabilistic approach, a larger search range might be selected using results of empirical studies [35], [36]
about join and leave behavior of peers and their online periods. Thus, with a high probability, a search range
may contain at least O(k) offline and O(k) online peers in any time interval. This can provide off-line/online
k-anonymity for Pj .

Arranged query attacks. If the second phase operations are not designed carefully, Pr may figure out Pj using
arranged trust queries. Pr sends a trust query directly to a target peer, say Px. Px forwards the query to its successor.
The target peers located after Px may think that the search range consists of Px . . . Pk−1. They may assume Px

is the start of the search range, and thus, do not add encryption layers for target peers in Px−1 . . . P0 range. Px

receives all replies and sends them to Pr. Pr decrypts the replies and looks for a reply from Pj . If there is a reply,
Pr sends another query to a target peer between Pk−1 and Px+1. After sending several queries, Pr can reduce the
number of possibilities for Pj .

To counter this attack, every target peer should know the boundaries of the search range very well. If a target
peer is the first peer of a range (P0), it can accept every trust query. Otherwise, a target peer should check the
sender of a query by requesting RBS(TIDr|OUr|TS) certificate and running a challenge/response protocol. If the
sender of the query is its predecessor, it accepts the query. Otherwise, the query is rejected.

However, a collaborator in the search range may want to start a search query. For example, Px−1 may directly
send a query to Px. To prevent this attack, we have to force that a query should start from P0. Every target peer
adds a signature and its RBS(TIDr|OUr|TS) certificate to the trust query. A target peer verifies the signatures of
previous target peers before forwarding a query. For example, Px checks the signatures of target peers in Px−1 . . . P0

range. If a signature is missing, Px drops the query.

E. Further Discussion

Performance of k-anonymity Chord. Let N is the number of peers in the network. Phase 1 (recursive Chord
search) takes O(log N) time in all reply methods. Phase 2 (receiving replies from target peers) takes O(k) time in
the naive replying. For the random replying, phase 2 takes O(k) time with a high probability [8].

In the oblivious replying method, more than one oblivious reply may be send in the same network packet. Assume
that η is the number of replies that fit into a network packet. Efficient implementation of layered encryption and
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compression can increase η. In the search range, k(k − 1)/2 replies are transmitted. Thus, phase 2 takes up to
O(k2/η) time in oblivious replying.

If k = O(log N), we can maintain a performance close to Chord. Asymptotic running times of reply methods
are given in Table III when k = O(log N). By trading off the level of anonymity, our scheme has significant
performance advantage comparing to O(N2) cost of the flooding approach [6].

Multiple trust holders. A trust holder may occasionally go off-line. Redundant trust holders increase availability
of the trust information. Moreover, redundancy helps to prevent false replies of malicious trust holders. We assume
that majority of a peer’s trust holders are not malicious due to random selection. Thus, a false reply can be detected
by doing majority selection. In case of detecting a malicious reply, a complaint can be sent to the bootstrap server
about the malicious trust holder. Replies of all trust holders can be added to the complaint as an evidence. The
server can figure out the malicious peer and select a new trust holder.

Sending trust holder certificates. In Section III-B, the bootstrap server sends a trust holder certificate to each
trust holder (it is Pj in our scenario) in step 6. If a global passive adversary observes the bootstrap server during
this messaging, it can easily learn the identity of a trust holder. Therefore, this step of registration should be done
using k-anonymity Chord operations. In our case, the bootstrap server prepares a special message containing Pj’s
certificate, such as MTIDj |TS′|TUj(RBS(H[IDi]|TUj |TS))|”Cert”. Then, it sends this message to the trust
network like sending a normal trust query. The last field in the message indicates that this message is not a regular
trust query (The bootstrap server should be a member of the trust network like a normal peer to be able to send
this message.). Pj read this message as in the oblivious replying protocol and get its certificate anonymously. Thus,
an adversary can not learn Pj’s identity.

Certificate renewal. A service certificate and related trust certificates expire according to the TS field. The owner
of an expired service certificate requests a new one from the bootstrap server. The server reissues related certificates
for the requester and its trust holders.

V. FUTURE WORK

Forcing semi-honest behavior. The semi-honest model might be a weaker assumption in case of collaboration.
As explained in Section IV-D, a malicious target peer may forge its outgoing replies or skip next target peer
without needing a special ability. These attacks decrease the number of candidates and makes guessing the trust
holder easier. In order to prevent such attacks, a target peer must be forced to follow oblivious replying protocol.
Goldreich [30] shows that semi-honest behavior can be forced by compiling each instruction (message). Thus, a
semi-honest protocol can be extended against active adversaries. Compilation process requires commitment schemes
and zero-knowledge protocols. This means that more CPU and network resources need to be used for each message
sending operation. Ahn et al. [15] presents such an approach by using a secure multiparty sum protocol which relies
on a commitment scheme and a zero-knowledge protocol. However, this approach requires sending of up to O(b4)
bits for each b anonymous bits. In a future work, we are planning to force semi-honest behavior in our scheme
with a better performance trade off.

Search range management. Peers in a search range should know each other to protect k-anonymity. How they
securely learn about each other is a question to be studied. Handling dynamic changes on the trust overlay,
determining search range size and managing (merging, splitting) search ranges under high churn are some issues.
As explained in Section IV-D, a search range size should be large enough to guarantee online and offline anonymity
with a high probability. Additionally, search range size might be adjusted according to the probability of that an
adversary can inject a decoy peer in the search range [15].

Growing network. As more peers join the network, search ranges should shrink. The bootstrap server should
adjust m to keep k = O(log N). Otherwise, a reply may create excessive network traffic in the second phase.
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The server may recompute m and send new MTID values during the certificate renewal operations. This might
reveal information about trust holders. An adversary observing a search range for a long time might guess a trust
holder after shrinking of the search range. Therefore, a complete rearrangement of trust holders might be needed.
This process requires a study of how certificates are renewed and how new and old trust holders exchange trust
information.

Excessive finger requests. If an adversary do not have global observation capability, it can still learn some
information about a search range by sending many finger requests on Chord. This information can be used to
launch long term observation attacks as explained in Section IV-D. Achord [3] defines some constraints for finger
requests on Chord. A peer can not send a finger request to every peer. Achord can be adapted for our scheme to
prevent a peer from learning all peers in a search range.

VI. CONCLUSION

k-anonymity Chord and oblivious replies provide us an efficient and anonymous access scheme. Trust holder
anonymity is used as a case scenario to explain our scheme. Trust holders have k-anonymity protection against a
global passive adversary. For collaborating adversaries, the scheme protects anonymity in semi-honest adversary
model. The replies of trust holders are authenticated through an encryption scheme so fake anonymous replies are
prevented. To guide the development of more secure systems, vulnerabilities of the scheme have been explained
on several attack scenarios. Although our scheme is vulnerable to active attacks and long term tracing attacks, it
provides a good trade off between performance and anonymity.

Our scheme can be extended to support requester anonymity. A group of peers create an anonymous request
so identity of the requester is protected. Various anonymity requiring applications may adapt k-anonymity Chord
for service provider/requester operations. Additionally, the ideas presented on this research can be used to design
anonymity schemes on the other DHT structures such as CAN [13] and Tapestry [14].
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