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Abstract—With the development of cloud computing, more andmore data owners aremotivated to outsource their documents to the

cloud and share themwith the authorized data users securely and flexibly. To protect data privacy, the documents are generally

encrypted before being outsourced to the cloud and hence their searchability decreases. Thoughmany privacy-preserving document

search schemes have been proposed, they cannot reach a proper balance among functionality, flexibility, security and efficiency. In this

paper, a new encrypted document retrieval system is designed and a proxy server is integrated into the system to alleviate data owner’s

workload and improve the whole system’s security level. In this process, we consider amore practical and stronger threat model in which

the cloud server can collude with a small number of data users. To support multiple document search patterns, we construct two AVL

trees for the filenames and authors, and a Hierarchical Retrieval Features tree (HRF tree) for the document vectors. A depth-first search

algorithm is designed for the HRF tree and the Enhanced Asymmetric Scalar-Product-Preserving Encryption (Enhanced ASPE)

algorithm is utilized to encrypt the HRF tree. All the three index trees are linked with each other to efficiently support the search requests

with multiple parameters. Theoretical analysis and simulation results illustrate the security and efficiency of the proposed framework.

Index Terms—Cloud computing, privacy-preserving, searchable encryption, document ranked retrieval

Ç

1 INTRODUCTION

CLOUD computing is widely treated as a promising infor-
mation technique (IT) infrastructure because of its pow-

erful functionalities. It can collect and reorganize huge
resources of storage, computing, communication and appli-
cations. This makes the cloud users can access the IT serv-
ices in a flexible, ubiquitous, economic and on-demand
manner [1]. Attracted by these excellent properties, more
and more data owners tend to outsource their local docu-
ment management systems to the public cloud. However,
an accompanying challenge is how to protect the privacy of
sensitive information while maintaining the usability of the
uploaded data [2]. Clearly, all these documents need to be
encrypted before being outsourced and hence it is severe to
design proper mechanisms to realize basic operations on
the encrypted document collection. In general, the basic
functionalities of a document management system include
INSERT, DELETE, MODIFY and SEARCH. The first three
operations on encrypted database will be discussed in Sec-
tion 6.3 and we now mainly focus on document retrieval
mechanism over encrypted cloud files.

Many encrypted document retrieval schemes have been
proposed and they can be divided into several categories
based on their functionalities, including single keyword Bool-
ean search schemes [3], [4], [5], [6] single keyword ranked
search schemes [7], [8], [9], [10], [11] andmulti-keyword Bool-
ean search schemes [12], [13], [14], [15], [16], [17], [18], [19],
[20]. However, these schemes cannot fully satisfy the data
users in terms of document retrieval. In real life, it is extremely
common for us to use a set of keywords, such as “searchable”,
“encryption”, “cloud” and “document”, to search the inter-
ested files in a particular field. Moreover, we hope that the
returned results should be sorted in order based on the corre-
lations to the provided keywords. Unfortunately, none of the
above schemes can completelymeet these requirements.

Recently, privacy-preserving multi-keyword ranked doc-
ument search schemes have gained extensive attentions of
researchers [21], [22], [23], [24], [25]. These schemes make
the data users able to retrieve encrypted documents based
on a set of keywords and the search processes are similar to
that on the plaintext documents from the perspective of
data users. Compared with multi-keyword Boolean search,
these schemes are more practical and in conformity with
the users’ retrieval habits. However, these schemes can be
further improved in the following aspects.

First, most existing schemes assume that all the data users
are trustworthy. This assumption is almost impossible in real
life. In fact, the cloud server can easily disguise itself as a data
user to wheedle the secret keys out from the data owner with
an extremely low cost. Once the cloud server gets the secret
keys, all the encrypted documents can be easily decrypted
and this is indeed a great blow to the existing schemes. This is
the most important cause of designing a novel and practical
framework for secure document retrieval in encrypted cloud
file systems. Another challenge is that the disguised data
users may distribute the decrypted documents to the public.
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Fortunately, many schemes [26], [27], [28] have been pro-
posed to track the source of file leakage and this can effec-
tively prevent the documents from leaking. Considering that
this doesn’t fall in the scope of this paper, we ignore this chal-
lenge in the rest.

Second, most existing schemes focus on only one type of
document retrieval manner and the data users’ search expe-
rience can be further improved. In reality, the data usersmay
need to search a set of documents by providing filenames,
authors, several keywords or any combination of them. Intu-
itively, we can treat the filenames and authors as common
keywords like most existing schemes. However, this manner
may decrease the search accuracy. For example, a data user
wants to search all the research papers of author “Bob” who
is a well-known computer scientist. Clearly, except for Bob’s
papers, keyword “Bob” also appears in many other papers
that reference Bob’s work and most of these papers should
also contain keyword “computer”. Therefore, the data user
cannot accurately obtain the interested papers by searching
keywords “Bob” and “computer”. Another possible method
is integrating the multi-keyword Boolean query schemes
[12], [13], [14], [15] to the multi-keyword ranked search
schemes in [21], [22], [23], [24], [25]. Specifically, the key-
word-based Boolean search can first return the candidate
documents that contain specific filenames and authors; then,
multi-keyword ranked search schemes can rank the candi-
date documents and return the documents related with the
keywords contained in the search request. However, this
method is extremely time-consuming considering that the
complexity of keyword-based Boolean search is linear to the
size of the whole document collection. Therefore, we need to
design a totally new framework to satisfy the data users
rather than simply combine two types of existing document
search schemes.

Third, the search efficiency can be further improved. In
multi-keyword ranked document search schemes, a key-
word-based index tree is used to search the interested docu-
ments. However, it is extremely difficult to design a
keyword-based index tree which can perfectly balance the
search efficiency and accuracy. Though the keyword-bal-
anced binary tree can provide accurate search results, its effi-
ciency is sensitive to the input order of the document vectors
[22]; in contrast, the hierarchical-clustering-based index tree
provides a better-than-linear search efficiency but result in
precision loss [23]. Moreover, searching a keyword tree con-
sumesmuchmore time comparedwith that of searching a fil-
ename tree or an author tree considering that the keyword
tree is muchmore complex.

To improve the security and user experience of encrypted
document retrieval system, we consider a stronger threat
model in which the cloud server can collude with a small
number of data users to collect private information of the
documents and index structures. Then, this paper designs a
new encrypted document storage and retrieval framework
in which a proxy server is employed to act as a bridge
between the cloud server and data users. Three index trees
including filename tree, author tree and HRF tree, are con-
structed. In this way, the filenames, authors and common
keywords in search requests are of different weights and
they are treated differently. The nodes in the three trees are
linked with each other based on document identifiers to

efficiently support the search requests with multiple param-
eters. A methodical mechanism is designed to make full use
of the information in a query. To support multi-keyword
ranked search, the widely used TF-IDFmodel is employed to
model the documents and queries as vectors. Then, the
Enhanced Asymmetric Scalar-Product-Preserving Encryp-
tion (Enhanced ASPE) algorithm is utilized to encrypt the
HRF tree and query vectors while ensuring the accurate rele-
vance score calculation. In addition, a depth-first search algo-
rithm for the HRF tree is also proposed. A theoretical
demonstration is provided to illustrate that our scheme can
defend against the chosen-plaintext attack model. Mean-
while, simulation result shows that our scheme also greatly
outperforms existing schemes in terms of efficiency.

Our contributions are mainly summarized as follows:

� This paper considers the chosen-plaintext attack
model which is much stronger than ciphertext-only
attack model employed in most existing schemes.

� Anew encrypted document storage and retrieval sys-
tem is designed to improve system security in which
a proxy server is employed. The new framework can
providemulti-type document search services.

� A complete search mechanism is proposed to
improve the search efficiency. Moreover, we propose
an updated mechanism for the HRF tree to support
dynamic document collection.

� A set of analysis and experiments are conducted to
evaluate the performance of the proposed frame-
work in terms of security and efficiency.

The rest of this paper is organized as follows: In Section 2,
we summarize the related work. Section 3 states the prob-
lem of privacy-preserving multi-keyword ranked search.
We present the balanced binary tree and HRF tree in Sec-
tions 4 and 5, respectively. The details of the secure docu-
ment search framework are presented in Section 6. We
analyze the security of our framework in Section 7 and fur-
ther evaluate its efficiency in Section 8. At last, Section 9
concludes this paper.

2 RELATED WORK

Cao et al. first propose the privacy-preserving multi-key-
word ranked search problem in [21] and they design an ini-
tiatory scheme named MRSE. Each document is mapped to
a document vector based on term frequencies of the words
in the document. A query is transferred to a query vector
based on inverse document frequencies of the keywords in
the whole document collection. The correlation between a
query and a document is then calculated based on the TF-
IDF model. The retrieval results of a query are the top-k rel-
evant documents to the query. To protect privacy of docu-
ments, both the document vectors and query vectors are
encrypted based on secure kNN algorithm [29]. Moreover, a
set of strict privacy requirements are established for the fol-
lowing schemes in this field [30]. The disadvantage of
MRSE is that all the documents need to be scanned to get
the search results of a query and the search efficiency is lin-
ear with the cardinality of the document collection. Because
the search efficiency of MRSE is low, it cannot be directly
used to process extremely large document collections.
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To improve document search efficiency of MRSE, two
index structures for the encrypted documents are pro-
posed. Xia et al. [22] propose the Keyword Balanced Binary
tree (KBB tree) and design a “Greedy Depth-First Search”
algorithm for the tree. In KBB tree, each entry in an inter-
mediate node is not smaller than that of all the child nodes.
This property performs an important role in pruning
redundant searching paths. Moreover, they can dynami-
cally update the index tree with a moderate workload.
Though KBB tree greatly improves the search efficiency,
the document vectors in the tree are organized chaotically
and some redundant paths still need to be visited in docu-
ment search process. Clearly, the search efficiency can be
further improved.

To further optimize the structure of KBB tree, Chen et al.
[23] design a novel hierarchical-clustering-based index
structure in which the document vectors are organized
based on similarities. Specifically, similar document vec-
tors are close with each other in the tree, and vice versa. In
this way, it is likely that the retrieval results of a query
locate close with each other in the tree and hence most
paths in the tree can be pruned in the search process. Sim-
ulation results illustrate that the scheme is of a better-than-
linear search efficiency. In addition, a verification process
is also integrated into their scheme to guarantee the cor-
rectness of the results. However, as discussed in [23], this
tree cannot guarantee the optimal search accuracy and it is
severe to get a balance between search efficiency and
accuracy.

Fu et al. [24] assume that the data users cannot select
the most proper keywords to search the results. There-
fore, they design an interest model for the users to fulfill
and revise the provided keywords. Specifically, the inter-
est model of a data user is constructed based on WordNet
[31]. However, the document vectors in this paper are
constructed based on the whole document collection and
hence this structure cannot be dynamically updated. This
scheme employs the MDB-tree to improve the search
efficiency.

A common vulnerability of the above schemes is that
they all employed the ciphertext-only attack model which is
a weak threat model in real life. Once the cloud server col-
ludes with a set of data users to conduct the chosen-plain-
text attack, the cloud server can recover all the plaintext
documents and the vectors. This can be explained by the
fact that the data users can access the secret keys.

Recently, some privacy-preserving semantic document
search schemes are proposed [32], [33], [34], in which the
documents are summarized by the important and simpli-
fied sentences rather than the keywords. To our knowl-
edge, semantic document search is a new direction in
cloud computing and how to securely share the abstract
data for resource-limited data users in cloud computing is
discussed in [35]. Moreover, the security problems of exist-
ing searchable encryption schemes are discussed in [36],
[37], [38], [39]. To define the security clearly, four leakage
profile levels are extracted from existing searchable
encryption schemes. For different leakage profiles, corre-
sponding attack models are proposed though they mainly
focus on single keyword or multi-keyword Boolean search
schemes.

3 PROBLEM STATEMENT

3.1 Notations

� F – The owner’s document collection, denoted as
F ¼ fF1; F2; � � � ; FNg, which is composed of N file.
Each document Fi comprises three parts: filename,
authors and main body. The main body is treated as a
sequence of keywords. Each file has a unique identi-
fier. For convenience, we employ “a document” to rep-
resent the “themain body of a document” in the rest.

� FN – The filename collection of the documents,
denoted as FN ¼ fFN1; FN2; � � � ; FNNg. Without
loss of generality, each document is assumed to have
only one unique filename.

� AU – The author collection of the documents in F ,
denoted as AU ¼ fAU1; AU2; � � � ; AUKg. We assume
that each document can have several different authors
and in totalK authors exist.

� C – The encrypted document collection stored in the
cloud server, denoted as C ¼ fC1; C2; � � � ; CNg. The
ciphertexts in C are obtained by encrypting the files
in F with independent symmetric secret keys s ¼
fs1; s2; � � � ; sNg, i.e., C ¼ esðFÞ.

� W – The keyword dictionary with in total m key-
words, denoted as W ¼ fw1; w2; � � � ; wmg. The dic-
tionary is used to generate the vectors of documents
and search requests.

� I – The encrypted index of F , denoted as I ¼
fI1; I2; I3g, where I1 is the index tree of filenames, I2
is the index tree of authors and I3 is the encrypted
HRF tree of the main bodies.

� SR – The search request of a data user, denoted as
fFN;AU ¼ ðAU1; � � � ; AUtÞ;MKg where FN is a file-
name, AU is a set of authors and MK is a set of key-
words. Note that, at least one of the three parameters
needs to be provided and the default values are set
to null.

� T D – The trapdoor of a request SR , denoted as T D¼
fhFN; ðhAU1

; � � � ; hAUtÞ; EQg. Specifically, hFN; hAUi
are

the corresponding random numbers of FN and AUi,
and EQ is the encrypted query vector of MK. A trap-
door is the encrypted format of a search request and
it can be employed by the cloud server to search the
encrypted index I .

� R – The encrypted result for a search request and it
is returned from the cloud server to the proxy server.

� PR – The plaintext of R which will be returned to
the data users from the proxy server.

� SK – The pre-set secret keys include two bit-vectors
S1 , S2, and two invertible matricesM1,M2.

3.2 System Model

As shown in Fig. 1, the encrypted document retrieval sys-
tem involves mainly four entities: data owner, data user, proxy
server and cloud server.

Data owner has a collection of documents F ¼ fF1; F2;
� � � ; FNg and he is responsible for collecting newly generated
files. Then, data owner outsources the encrypted documents to
the cloud server with the help of the proxy server. Specifically,
once a new document is ready to issue, the data owner directly
sends it to the proxy server where the other steps will be
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completed. Moreover, the data owner can also delete or mod-
ify the files in the cloud by sending requests to proxy server.

Proxy server is a trusted agency and it links the other
three entities. Having received the files from data owner, the
proxy server is responsible for analyzing and encrypting
them. An encrypted index structure I is constructed based
on filenames, authors and the document vectors. Both the
encrypted index I and encrypted document collection C are
sent to the cloud server. When a query request SR is received
from an authorized data user, a trapdoor T D for SR will be
generated and sent to the cloud server. At last, the received
search results from the cloud server will be decrypted as PR
which is sent to the data user. We assume that the proxy
server can securely communicates with data owner and data
users by symmetric encryption.

Data users are the authorized ones to access the documents.
Once a request SR is sent to the proxy server, a set of docu-
ments will be received from the proxy server and the search
process is transparent to the data user. In fact, the data users do
not access any private information of the documents directly
such as the secret keys SK and keyword distributions ofF . In
this paper, we assume that the filename-based search and
author-based search are accurate searches, i.e., the provided
filename and authors must be accurate and only the matched
documents are returned. In themultiple keywords search, the
documents are returned in order according to the relevance
scores between the document vectors and query vectors. The
three search patterns are complementary with each other and
they provide a better search experience to the data users.

Cloud server stores the encrypted documents collection C
and encrypted searchable index I which are generated by
the proxy server. Once a trapdoor is received, it needs to
search I and send the search resultR, i.e., a set of encrypted
documents that match SR, to the proxy server. It also needs
to update C and I in time according to the instructions pro-
vided by the proxy server.

3.3 Threat Model

Cloud server model. Similar to the threat models in [21], [22],
[23], [24], [25], the cloud server is considered as “honest-
but-curious”, which is widely employed in the field of
encrypted document retrieval. Specifically, the cloud server
properly executes the instructions and however, it is curious
to infer and analyze all the received data. We also assume
that the cloud sever tries to pretend and bribe data users to
get the secret information.

Data user model. In this paper, a small number of data
users are assumed to be unreliable and they can leak all
their private information to the cloud server. In most exist-
ing schemes [21], [22], [23], [24], [25] the authorized data
users are assumed to be reliable. They need to hold the
secret keys fS1; S2;M1;M2g to generate the trapdoors and
hold the symmetric keys fs1; s2; � � � ; sNg to decrypt the
received results. Note that, the secret keys of all the data
users are the same with each other. In this case, if a data
user colludes with the cloud server, it is easy to calculate all
the document vectors in the index structures based on
fS1; S2;M1;M2g. Moreover, if fs1; s2; � � � ; sNg is also leaked
to the cloud server, all the plaintext documents are known
to the cloud server. Information leakage problem is an
inherent threat to these schemes.

Proxy server model. We assume that the proxy server is
controlled by the data owner and it is trusted. The proxy
server can properly execute instructions and do not leak its
private information to any other entity.

Chosen-plaintext attack model. Considering that the cloud
server colludes with a small set of data users, we consider a
stronger attack model compared with that in existing
schemes [21], [22], [23], [24], [25] i.e., the adversary conducts
the chosen-plaintext attack to recover the plaintext docu-
ments, filenames, authors and document vectors.

3.4 Design Goals

Flexibility. The data users can flexibly provide multi-type
parameters to search the interested documents, such as a file-
name, some authors, keywords or any combination of them.

Accuracy. The search results are accurate according to the
data users’ search requests and system settings.

Efficiency. The search process achieves logarithmic search
efficiency in general and at least sub-linear search efficiency
in the worst case.

Dynamicity. The document collection and corresponding
index structures can be updated dynamically with a small
burden.

Security. In our scheme, we prevent the cloud server from
learning the private information about the encrypted docu-
ment collection. The detailed privacy requirements are sum-
marized as follows:

1) Document privacy. The plaintexts of the documents
should be strongly protected from the adversaries.

2) Privacy of FN-AVL tree and AU-AVL tree. Each node in
these two trees represents a filename or an author.
Given a node, the corresponding information about
filename and author should be protected.

3) Privacy of HRF tree. The underlying contextual infor-
mation of the documents, such as the unencrypted
document vectors and the TF, IDF values of key-
words, should be protected from the adversaries.

4 FILENAME/AUTHOR BALANCED BINARY SEARCH

TREE

4.1 Structure of Filename AVL Tree and Author AVL
Tree

Self-balancing binary search trees, such as AVL tree [40],
have been widely used to organize data for fast queries. In

Fig. 1. Encrypted document retrieval system model.
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this paper, we first assign a unique and random number to
each filename and author by one-way functions. Without
loss of generality, we assume that the filenames, authors can-
not be recovered based on the random numbers. Then we
build a filename AVL tree called FN �AVL tree and an
author AVL tree called AU �AVL tree based on the random
numbers to support filename-based search and author-based
search. In both of the trees, the left child nodes of a parent
node have smaller numbers and the right child nodes have
larger numbers. This property significantly improves the
efficiency of searching a specific number corresponding to a
filename or an author. The time complexities of inserting,
deleting and searching a number in the FN �AVL tree are
all OðlnðNÞÞ, where N is the number of the filename, and
that in AU �AVL tree are all OðlnðKÞÞ, whereK is the num-
ber of authors.

4.2 Construction of Filename AVL Tree and Author
AVL Tree

For a filename FNi, the corresponding node u in the FN �
AVL tree is defined as follows:

u ¼ IDFN ; func FNið Þ; Pleft; Pright

� �
; (1)

where IDFN is the identifier of the file with FNi as filename,
funcðFNiÞ is the random number corresponding to the file-
name, Pleft and Pright are the pointers to the left and right
child of node u. The default values of the pointers are set to
null.

Different from document filenames, each document may
have several authors and it is unwise to treat all the authors
for a document as an entirety considering that it is very dif-
ficult for the data users to accurately provide all the authors
of a file. In the AU �AVL tree, each author is treated as an
independent entity. For an author AUi, the node v in the
tree is defined as follows:

v ¼ SIDAU; func AUið Þ; Pleft; Pright

� �
; (2)

where SIDAU is a set of file identifiers with AUi as an
author, funcðAUiÞ is the random number corresponding to
the author AUi, Pleft and Pright are the pointers to the left
and right child of node v. The default values of the pointers
are set to null. Note that, the number of the nodes in the
AU �AVL tree equals to the number of all the authors in
the document set. Considering that each document can
have several authors and each author can have several files,
a file may correspond to several nodes in the AU �AVL
tree and each node can also correspond to several files that
contain the author represented by the node. When a data
user provides several authors, we hope to employ each of
them to filter the results collaboratively and hence, in AU �
AVL tree, the authors contained in a same file are linked
together. In this way, the files with several authors can be
easily obtained by intersecting the file sets of author.

Based on the random numbers corresponding to the file-
names and authors, we build and update the FN �AVL
tree and AU �AVL tree according to the algorithm pro-
posed in [40]. In FN �AVL tree, we employ binary search
algorithm to search the tree for a query. To search the files
containing a set of authors, we first search the first author

and get a set of file candidates. Then, we find the second
author through links and update the file candidates. The
above process is iterated until all the authors are scanned
and get the final search result.

5 HIERARCHICAL RETRIEVAL FEATURE TREE

5.1 Document/Query Vectors and Relevance Score
Function in Multi-Keyword Document Search

In this paper, the main body of each document is treated as
a stream of keywords and we use the normalized TF vector
to quantize the documents [41]. The TF value of keyword wi

in Fj is defined as:

TF 0j;wi
¼ ln 1þ fj;wi

� �
; (3)

where fj;wi
is the number of times that it appears in Fj. We

then normalize TF value of wi in Fj as follows:

TFj;wi
¼

TF 0j;wiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
wk2W ðTF

0
j;wk
Þ2

q (4)

At last the normalized vector of Fj is constructed as
follows:

Vj ¼ TFj;w1
; TFj;w2

; � � � ; TFj;wm

� �
: (5)

The above constructed document vectors have two
advantages. First, the normalized TF vector is a good sum-
mary about the content of a document. Second, the normal-
ized TF vector is an inherent property of a document and it
is independent of the document collection which may
change dynamically. For convenience, we employ the term
“document vectors” to represent the “normalized document
vectors” in the rest.

As for a query request, consider a game that a data user
is interested in a set of documents and he tries to employ a
set of keywordsMK to describe the documents as clearly as
possible. Obviously, he should provide some important
keywords with strong capability of locating the interested
documents rather than some common words. Therefore,
each word needs a weight to reflect its capability, and in
this paper, we employ IDF value as the weight of a key-
word. The IDF value of wi is defined as IDFwi

¼ lnðN=Nwi
Þ,

where N is the number of documents in the whole docu-
ment collection and Nwi

is the number of documents that
contain keyword wi. Further, the query vector is repre-
sented as VQ ¼ ðq1; q2; � � � ; qmÞ where qi is 0, if wi =2MK; and
qi is IDFwi

, if wi 2MK. It can be observed that the IDF value
of a keyword is related with the whole document collection
and independent of specific documents.

At last, we adopt the widely used “TF-IDF” measure-
ment to calculate the relevance score between a document
and a query as follows:

RScore Vj; VQ

� �
¼ Vj � VQ: (6)

5.2 Structure of an HRF Tree

In this paper, we use hierarchical retrieval feature (HRF)
tree to organize the document vectors. As shown in Fig. 2,
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an HRF tree is a height-balanced tree and each node in the
tree maps to a cluster of document vectors. Each leaf node is
composed of a set of similar document vectors and its HRF
vector is extracted from the document vectors. The similar
leaf nodes agglomerate with each other to compose the non-
leaf nodes until all the document vectors belong to a huge
cluster at the root node. Clearly, a higher node in the tree
maps to a larger cluster and the root node maps to the clus-
ter composed of all the document vectors.

Two branching factors, B1; B2, are employed to control
the tree’s structure. Specifically, a leaf node Li contains at
most B1 document vectors and its retrieval vector (RV) is
defined as follows:

Li ¼ HRF; V1; � � � ; Vkð Þ ; k � B1 (7)

where HRF is the HRF vector of the cluster, Vl is the l-th
document vector in the cluster. Each non-leaf node or the
root node NLi contains at most B2 child nodes and its RV is
defined as follows:

NLi ¼ HRF;HRF1; child1; � � � ; HRFk; childkð Þ; k � B2;

(8)

where HRF is the HRF vector of the cluster, HRFl is the
HRF vector of the l-th sub-cluster and childl is a pointer to
the child node corresponding to the sub-cluster.

An HRF vector is a summarization about the correspond-
ing cluster. Given P m-dimensional document vectors, fVjg,
where j ¼ 1; 2; � � � ; P , the HRF vector of the cluster is
denoted as HRF ¼ ðP;LS; VmaxÞ, where LS ¼

PP
j¼1 Vj, Vmax

is calculated as:

Vmax i½ � ¼ max V1 i½ �; V2 i½ �; � � � ; VP i½ �ð Þ; i ¼ 1; 2; � � � ;m:

(9)

Based on the definition of HRF vector, we can infer that
the HRF vectors of the non-leaf nodes and the root node
can be calculated based on the HRF vectors of all their child
nodes.

Moreover, given an HRF vector, the centroid of a cluster
C can be easily calculated as follows:

c ¼ LS=P: (10)

The relevance score between cluster C and document
vector Vj is defined as follows:

RScore C; Vj

� �
¼ c � Vj: (11)

The relevance score between cluster C and query vector
VQ is defined as follows:

RScore C; VQ

� �
¼ c � VQ: (12)

5.3 Constructing an HRF Tree

We construct an HRF tree in an incremental manner.
The process of inserting Vj into the tree is presented in Algo-
rithm 1. As shown in line 1 to line 6, Vj iteratively descents
the HRF tree by choosing the closest child node based on
(11) until it reaches a leaf node. After inserting Vj into the
leaf node, we update all the infected nodes in a bottom-up
manner as shown in line 7 to line 16. In the absence of a split,
we simply update the HRF vectors. However, if a leaf node
contains more than B1 document vectors or a non-leaf node
contains more thanB2 child nodes, we need to split the node
to two new nodes. In this paper, we split a node by choosing
the farthest pair of document vectors as seeds, and then
redistribute the remaining document vectors based on the
closest criteria. A leaf node split requires us to insert a new
leaf node to the parent node. In some cases, we may have to
split the parent node as well, and so up to the root node. If
the root node is split, the tree height increases by one.

Algorithm 1: HRFConstruction (a HRF tree root r, a
document vector VV jj)

1: Stack:pushðrÞ; u r ;
2: while u is not a leaf node
3: Calculate all the relevance scores between the child

nodes of uwith Vj based on (11);
4: u the most relevant child node;
5: Stack:pushðuÞ;
6: end while
7: Insert Vj into u;
8: while Stack is not empty
9: u Stack:popðÞ;
10: if u breaks the limitation of B1 (for a leaf node) or B2

(for a non-leaf node)
11: Split node u into two nodes and recalculate their HRF

vectors;
12: Update the pointers and the corresponding HRF vec-

tors of the two newly generated nodes in the parent
node;

13: else
14: Update the HRF vector of node u directly;
15: end if
16: end while

As the HRF tree is constructed incrementally, it naturally
supports the insert update. However, it is also valuable for the
HRF tree to support the delete update. If the data ownerwants
to delete the document vector of file Fj from the HRF tree, he
needs to send the file to the proxy server and then the proxy
server is responsible for updating the tree. The detailed pro-
cess of deleting Vj from theHRF tree is presented as follows:

� Identifying the document vector: The proxy server first
finds the corresponding number of Fj’s filename and
then identify the node in FN �AVL tree. Further, Vj

can be identified in the HRF tree based on the links
between the trees.

Fig. 2. The structure of an HRF tree.
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� Modifying the leaf node: The leaf node Li containing Vj

first deletes the pointer to Vj and then updates its
HRF vector. Then Li scans all the child nodes and if
two leaf nodes can combine with each other, they are
combined to one node. We combine the nodes in
order to make the tree compact and this process can
be ignored if a small number of vectors are deleted.

5.4 Searching an HRF Tree

As shown in Algorithm 2, we design a depth-first search
algorithm for the HRF tree. After initializing RList, the
smallest relevance score is used to prune the search paths
based on (12). We employ the variable Stack to store the
nodes which need to be searched in the future. Once the
Stack is empty and all the candidate paths are searched, we
can guarantee that the retrieval result is accurate.

Algorithm 2: HRFSearch (an HRF tree root r, a
document vector VV QQ)

1: Locating the closest leaf node in a similar manner to
Algorithm 1;

2: Initialize RList by selecting the most relevant k
document vectors as defined in (12);

3: Stack:pushðrÞ;
4: while Stack is not empty
5: u Stack:popðÞ;
6: if the node u is not a leaf node
7: if RScoreðVu;max ; VQÞ > kthScore
8: Push all the children of u into Stack;
9: else
10: break;
11: end if
12: else
13: Update RList by calculating the relevance scores

between VQ and the document vectors in the leaf node;
14: end if
15: end while
16: return RList;

In the following, we present the search process in detail
and analyze why the structure of the HRF tree can greatly
improves the search efficiency. In an HRF tree, the similar
document vectors trend to be assigned to the same cluster.
Consider a query VQ and two document vectors V1 and V2

where V2 ¼ V1 þ V 0, the relevance scores between the query
and document vectors are VQ � V1 and VQ � V2, respectively.
Then the difference between these two relevance scores can
be calculated as follows:

VQ � V1 � VQ � V2 ¼ VQ � V 0 �j jVQ

�� �� V 0j j: (13)

If V1 and V2 are closewith each other, jV 0jwill be small and
the relevance scoreswill be very similarwith each other. Con-
sequently, organizing the document vectors based on their
similarities can significantly simplify the search process.

We use an example to introduce the simple retrieval pro-
cess. For a 2-D keyword dictionary, all the document vectors
are located on a quarter of a unit circle according to the defi-
nition of a document vector. As shown in Fig. 3, the docu-
ment vectors are divided to 6 clusters fa; b; c; d; e; fg. A data
user generates a query vector and cluster d is the most

relevant cluster. Assume that the accurate top-k relevant
documents are needed and k is much smaller than the num-
ber of document vectors in a leaf node. It is time-consuming
to scan all the document vectors in the tree and hence we
need to prune the search paths dynamically.

If we can accept an almost accurate result rather than the
definitely accurate top-k relevant documents, the search
process is extremely easy. Given a query vector VQ, we first
locate the most relevant leaf node in a top-down manner.
Specifically, starting from the root node, the query vector
VQ recursively descends the tree by choosing the most rele-
vant cluster according to (12) until the most relevant leaf
node is located. Then, the top-k relevant document vectors
in the leaf node are returned as the search result. However,
we cannot guarantee that the returned vectors are the accu-
rate result though they are good candidates compared with
most other vectors in the tree.

To get the accurate result, we need to further search some
nearby clusters. Assume that the relevance score between
VQ and the k-th relevant document vector Vd; k in the leaf
node d is VQ � Vd; k. Another cluster d0 should be searched if
and only if the maximum relevance score between VQ and
the vectors in cluster d0 is larger than VQ � Vd; k. In other
words, if VQ � V d0;max � VQ � Vd; k, it is unnecessary to further
search cluster d0. Assume that VQ � Vd; k � VQ � Vd;min, as
shown in Fig. 3, only cluster c and e need to be searched,
and the other clusters can be ignored. In particular cases,
the size of cluster d may be smaller than k and we need to
replace it by the second most similar cluster to guarantee
the robustness of our scheme. If the document database is
large enough, the spatial region of a cluster represented by
a leaf node is extremely small and we can prune most of the
redundant paths in the tree. We will further evaluate the
search efficiency of the HRF tree in Section 8.

6 SECURE DOCUMENT RETRIEVAL

6.1 Linking the Three Retrieval Trees

To efficiently search the documents based on all the param-
eters in a query, we need to link all the three retrieval trees
together. Each node in the FN �AVL tree represents a
unique document and each node in the AU �AVL tree rep-
resents an author. Consequently, all the nodes in these two
trees should be linked to some other nodes in the other
trees. However, in the HRF tree, only the elements in leaf
nodes correspond to documents directly and only these ele-
ments need to be linked with the nodes in the other two
trees. Because each document has a unique identifier in the

Fig. 3. An example search process with two keywords.
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whole document collection, we can link the nodes that con-
tain the same document identifiers in different trees. Once a
set of candidate documents are filtered based on one type of
search parameters, we can easily access other information
about the candidates based on the links between the trees.
In this way, we can further refine the search results from the
candidates easily and finally get the accurate result. When a
tree is updated, the positions of some nodes may change
and the information must be delivered to the other trees
based on the links to synchronize the link structure.

6.2 Framework of Privacy-Preserving Document
Retrieval

In this section, we present the overall document retrieval
framework by mainly employing the functionalities of the
proxy server and cloud server.

� SK  SetupðÞ: In the initialization phase, the proxy
server needs to generate the secret key set SK ,
including: 1) two randomly generated ðmþm0Þ-bit
vectors S1 and S2, and 2) two ( mþm0Þ � ðmþm0Þ
invertible matrices M1 and M2. Note that, S1 must
containsm zeros andm0 ones.

� I  BuildIndexðF ;SKÞ: For each document, three
types of information are first extracted including its
filename, all the authors and the main body. We then
build the FN �AVL tree, AU �AVL tree and HRF
tree. The three index trees need to be linked together
based on document identifiers. The first two trees
can be directly outsourced to the cloud server,
because they store only a set of random numbers
rather than the plaintext filenames and authors. In
contrast, the HRF tree needs to be encrypted before
being outsourced to the cloud. Note that, parameter
P in an HRF vector needs not to be encrypted. We
treat LS and Vmax equally to document vectors and
encrypt them in the same way. Before encrypting a
document vector Vj in the HRF tree, we first extend
it to ðmþm0Þ dimensions where m0 � 0. Specifically,
if S1i ¼ 0 , the i-th dimension of Vj corresponds to a
keyword wr which is extracted from W in order and
Vj½i� is set to TFj;wr ; otherwise, this dimension is an
artificial dimension and Vj½i� is set to a random num-
ber. Note that the last inserted random number must
be a nonzero number and the artificially added
dimensions of all the document vectors share the
same randomly generated numbers. These rules are
related with the structure of the trapdoors and we
will discuss it in the following. Further, we spilt each
dimension of Vj½i� into Vj½i�0 and Vj½i�00. Specifically, if
S2i ¼ 0, Vj½i�0 and Vj½i�00 will be set equal to Vj½i�; oth-
erwise, Vj½i�0 and Vj½i�00 will be set as two random
numbers whose sum is equal to Vj½i�. We then
encrypt Vj as Ej ¼ fM1

TVj
0;M2

TVj
00g. At last, the out-

sourced index I consists of the FN �AVL tree, AU �
AVL tree and the encrypted HRF tree.

� C ! EncDocumentsðF ; sÞ.: In this paper, the proxy
server adopts a secure symmetric encryption algo-
rithm to encrypt the documents in F . based on a set
of symmetric secret keys s ¼ fs1; s2; � � � ; sNg , i.e.,
C ¼ esðFÞ. Specifically, for each document, a random

key of 256 bits is generated. The document identifiers
and secret keys are organized in pairwise. Mean-
while, the identifier attribute is set as the main key in
the database and hence we can search the secret keys
based on the document identifiers through the
binary search algorithm. In this way, we can flexibly
find the key to encrypt or decrypt a document. Note
that, except for the proxy server, all the other entities
in the document retrieval system cannot access these
keys. At last, the encrypted document collection C is
also outsourced to the cloud server.

� T D  GenTrapdoorðSR;SKÞ.: Once a search
request SR is received by the proxy server, it first
extracts its parameters including FN; ðAU1; � � � ; AUtÞ
and MK. For the filename and authors, they are
mapped to corresponding numbers by the one-way
function funcðÞ and we get hFN; hAU1

; � � � ; hAUt . Then,
the proxy server constructs query vector VQ based
on MK and W as discussed in Section 5.1. We then
extend it to ðmþm0Þ dimensions. Specifically, if
S1i ¼ 0 , the i-th dimension of VQ corresponds to a
keyword wr. which is extracted from W. in order
and VQ½i� is set to IDFwr ; otherwise, this dimension is
an artificial dimension and VQ½i� is set to a random
number. Note that, the value of the last artificial
dimension is not a random number and it should be
calculated carefully to guarantee that the dot product
of the artificially added dimensions in the document
vectors and that in VQ is always 0. Further, we spilt
VQ½i�. into VQ½i�0 and VQ½i�00. Specifically, if S2i ¼ 1,
VQ½i�0 and VQ½i�00. will be set equal to VQ½i�; otherwise,
VQ½i�0 and VQ½i�00 will be set as two random numbers
whose sum is equal to VQ½i�. Finally, we encrypt VQ

as EQ ¼ fM1
�1VQ

0;M2
�1VQ

00g. Clearly, the relevance
score of Vj and VQ. can be calculated as:

RScore Vj; VQ

� �
¼ Vj � VQ ¼ Ej � EQ: (14)

� The trapdoor T D. composed of the mapped num-
bers of the filename and authors, and EQ are finally
sent to the cloud server.

� R  RSearchðT D; I ; CÞ: Three index trees are con-
structed in our framework and, for different search
parameters provided by the data users, the search
process is different. In summary, the filename has the
highest importance degree and the keywords have
the lowest importance degree. For example, if a query
includes a filename and some extra information, we
first search the FN �AVL tree to find the legal candi-
dates and then filter the candidates based on the other
parameters until the final result is obtained. The
detailed process of searching is presented in Algo-
rithm 3. Once the cloud server gets the search result,
it extracts the corresponding encrypted documents
from the stored document collection C based on their
identifiers. At last, the encrypted documents are sent
to the proxy server.

� PR  DecDocumentsðR; sÞ: Once the proxy server
receives the encrypted search result of a query, it
decrypts the encrypted files and finally sends them
to the data user.
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Algorithm 3:R  RSearchðT D; I ; CÞ
1: if hFN 6¼ null
2: Search the FN �AVL tree to find the document whose

filename correlates with the random number hFN . We
denote the document asD1;

3: if ðhAU1
; � � � ; hAUt Þ 6¼ null

4: Search the AU �AVL tree;
5: if the random numbers of D1’s authors don’t contain

the values in ðhAU1
; � � � ; hAUtÞ;

6: The result is empty and return null;
7: else
8: ReturnD1 as the result;
9: end if
10: else (i.e., ðhAU1

; � � � ; hAUtÞ ¼ null)
11: ReturnD1 as the result;
12: end if
13: else (hFN ¼ null)
14: if ðhAU1

; � � � ; hAUt Þ 6¼ null
15: Search the AU �AVL tree to find a set of documents,

denoted asD2, that contain all the hash values
ðhAU1

; � � � ; hAUtÞ;
16: if EQ 6¼ null
17: Sort the documents inD2 based on the relevance

scores with EQ and return the most relevant top-k
documents in order;

18: else (i.e., EQ ¼ null)
19: Return all the documents inD2;
20 end if
21: else (i.e., ðhAU1

; � � � ; hAUtÞ ¼ null)
22: if EQ 6¼ null
23: Search the HRF tree to find the most relevant k

documents with EQ and return the most relevant k
documents in order;

24: else (i.e., EQ ¼ null)
25: The result is empty and return null;
26: end if
27: end if
28: end if

6.3 Dynamic Document Collection

In general, three types of update operation, including
INSERT, DELETE and MODIFY, should be supported in a
database. For brevity, we execute a MODIFY request by
combining an INSERT and a DELETE operation and hence
only two requests need to be designed. Corresponding
operations on the cloud server are inserting and deleting a
node to all the three trees, respectively.

We assume that the proxy server stores a copy of the
FN �AVL tree, AU �AVL tree and the unencrypted HRF
tree locally. We first discuss how to update the HRF tree.
Since inserting documents into the collection affects the key-
word dictionary W, we need to update the document vec-
tors before updating the structure of the HRF tree. To solve
this problem, we preserve some blank entries in W and set
corresponding values in document vectors as 0. If a new
keyword is added into W, we just need to replace a blank
entry by the new word and then generate new document
vectors based on the updated dictionaryW.

The update process of the unencrypted HRF tree in the
proxy server has been discussed in Section 5.3 and we need

to synchronize the encrypted HRF tree in the cloud server
to the unencrypted tree. Specifically, there are three types of
update operations: updating the HRF vector of a node, splitting
a node and combining two nodes. Correspondingly, three
types of update requests are sent to the cloud server from
the proxy server. The processes of generating the requests
are presented in the following:

� Generation of an HRF vector update request: An HRF
vector update request for node u in the encrypted
tree is defined as fu;HRFnewg, where u is the
updated node and HRFnew is the new HRF vector of
the node. For brevity, the proxy server can put all
the HRF vector update requests, caused by an inser-
tion or delete operation, into one message.

� Generation of a splitting request: A splitting request for
node u is defined as fu; u0; HRF 0; p0; u00; HRF 00; p00g,
where u is the split node, u0, u00 are the new gener-
ated nodes, HRF 0, HRF 00 are the HRF vectors of the
nodes, and p0, p00 are the pointers to the child nodes
of u0 and u00, respectively.

� Generation of a combining request: The request of com-
bining two nodes u0, u00 is defined as fu0; u00; u;
HRFnewgwhere u0 and u00 are the two combinednodes,
u is the new node,HRFnew is theHRF vector of u.

� Based on the update request, the detailed process of
updating the encrypted HRF tree in the cloud server
is presented as follows:

� Updating the HRF vector of a node: Once an HRF vector
update request fu;HRFnewg is received, the cloud
server replaces the original HRF vector of u by
HRFnew.

� Splitting a node: Once a splitting request fu; u0; HRF 0;
u00;HRF 00g is received, the cloud server first finds the
parent of u and deletes the pointer to u. Then two
new pointers to u0 and u00 are inserted to the parent
node. In addition, the pointers, p0, p00, to the child
nodes need to be added into u0 and u00.

� Combining two nodes: Once a combining request
fu0; u00; u;HRFnewg is received, the cloud server first
find the parent node of u0 and u00, and then delete the
pointers to u0 and u00. At last, the pointer to u is
inserted to the parent node.

We then discuss how to update the two AVL trees. Once
the data owner wants to insert a document into the collec-
tion, the proxy server needs to send the corresponding num-
bers of the filename and authors, and the encrypted
document to the cloud server. The encrypted document is
immediately inserted to the document collection. Then the
cloud server inserts a new node into the FN �AVL tree. For
each author, the cloud server checks whether it has been
inserted to the AU �AVL tree already. If the author already
exists in the tree, the identifier of the document is inserted to
the author node; otherwise, a new node is inserted into the
tree. At last, the links among the three trees are updated. If a
document is deleted from the data set, the proxy server
needs to send the random numbers of the filename and
authors to the cloud server. The cloud server first locates the
node in the FN �AVL tree and then deletes the node. Obvi-
ously, the structure of the tree also needs to be updated [18].
For an author, the cloud server first locates it in the AU �
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AVL tree based on its corresponding number, and then dele-
tes the identifier of the document from the node. If the node
contains some other identifiers, the node will be kept in the
tree, otherwise the node will be deleted. At last, the links
between the trees are updated.

7 SECURITY ANALYSIS

In this paper, the proposed scheme employs several crypto-
graphic algorithms and they are summarized as follows.

� Symmetric encryption algorithms are employed in
the process of encrypting documents as discussed in
Section 3.

� One-way functions are employed when constructing
the FN-AVL and AU-AVL trees as discussed in
Section 4.

� Enhanced Asymmetric Scalar-Product-Preserving
Encryption (Enhanced ASPE) algorithm [29] is
employed in the process of constructing the
encryptedHRF tree as discussed in Section 6.

We first need to declare that the proposed scheme is built
on the above cryptographic algorithms and hence the secu-
rity of our scheme strongly relies on that of these employed
algorithms. Considering that the security proof of these
existing cryptographic algorithms doesn’t fall in the scope
of this paper, for simplicity, two basic assumptions about
the employed algorithms are first given as follows:

Assumption 1. In the employed symmetric encryption algo-
rithm, the plaintexts of encrypted documents cannot be recov-
ered without the symmetric secret keys.

Assumption 2. In the employed one-way function, the filenames
and authors cannot be recovered given only their mapped ran-
dom numbers.

In our scheme, the employed symmetric encryption algo-
rithm and one-way function are not strictly restricted to par-
ticular types. However, the assumptions are reasonable
considering the basic properties of symmetric encryption
algorithms and on-way functions [42].

Based on the assumptions provided above, we analyze
the security of the proposed scheme. As discussed in Sec-
tion 3.4, we mainly focus on the security of document files
and index structures.

7.1 Document Privacy

In existing schemes [21], [22], [23], [24], all the data users
preserve the secret keys fs1; s2; � � � ; sNg to decrypt the
searched documents. In our new threat model, the cloud
server can easily recover the plaintexts of encrypted docu-
ments once a small number of data users are compromised.
However, our framework stores the keys in the proxy server
and this properly protects the privacy of documents. In this
paper, the ciphertexts of documents are constructed by
encrypting the plaintext files with a set of symmetric secret
keys. The encryption process is presented as follows:

C ¼ es Fð Þ; (15)

where C is the encrypted documents, F is the plaintext
documents, and s is a set of secret keys fs1; s2; � � � ; sNg.

Note that, different documents are encrypted by different
and independent keys. Moreover, the secret keys in s are
totally controlled by the proxy server and hence the cloud
server and data users cannot obtain them.

As discussed in Section 3.3, the cloud server can access all
the encrypted documents and the data users can access a set
of plaintext documents. Considering that a small number of
data users may collude with the cloud server, the adversary
can easily obtain a set of encrypted documents and the corre-
sponding plaintexts, as shown in the following:

InformationLeakage ¼ Fi; Cið Þ; � � � ; Fj; Cj

� �� �
; (16)

whereFi is the plaintext ofCi. Based onAssumption 1,we can
infer that they cannot get any information about the plaintexts
of other encrypted documents, because the symmetric secret
keys are independent with each other. Therefore, document
privacy is properly protected in our framework.

Another problem is that the malicious data users may
leak a small number of plaintext documents to the public.
This phenomenon can be alleviated by tracking the source
of file leakage [26], [27], [28] and limiting the number of
documents requested by a data user in a period. We do not
discuss these techniques in detail here considering that they
don’t fall in the scope of this paper.

7.2 Privacy of FN-AVL Tree and AU-AVL Tree

The FN �AVL tree and AU �AVL tree are stored in the
cloud server. By colluding with the data users, the cloud
server can get some plaintext filenames and authors, and their
corresponding randomnumbers, as shown in the following:

InformationLeakage ¼ Hi;FAið Þ; � � � ; Hj; FAj

� �� �
;

(17)

where FAi is a filename or an author, Hi is the random
number corresponding to FAi. Note that, Hi ¼ funcðFAiÞ
and funcðÞ is the one-way function employed by the proxy
server. Based on Assumption 2, we can infer that the plain-
text filenames and authors of other nodes in the tree cannot
be recovered even their random numbers are given.

Another challenge is that the adversary may calculate
and store the random numbers of the filenames and authors
in advance. However, this problem can be alleviated as fol-
lows. We can completely cut off the relations between the
corresponding numbers to the filenames and authors by
randomly selecting a set of numbers for them rather than
generating the numbers based on the filenames and authors.
Clearly, the cloud server cannot calculate and store the ran-
dom numbers in advance even the filenames and authors
are given. An extra workload for the proxy server is that it
needs to maintain a table to retrieve the random numbers
for filenames and authors. Considering that many mature
data structures have been designed to manage the pairwise
data, the workload is an acceptable price for the security of
the system. As a consequence, the FN �AVL tree and AU �
AVL tree are secure in our scheme.

7.3 Privacy of HRF Tree

In our scheme, the encrypted document vectors stored in
the HRF tree are strongly related with the contents of the
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documents and they are of great importance. In this section,
we theoretically prove that the encrypted HRF tree can
defend against the chosen-plaintext attack model presented
in Section 3.3. We first describe the challenging game as
follows:

Init. The challenger selects a set of documents F from the
data owner and randomly generates a set of secret keys
SK ¼ fS1; S2; M1;M2g. Note that, the challenger keeps all
the keys secret from the adversary. Without loss of general-
ity, the length of S1; S2 is set asm, i.e., no artificial attributes
are added. (Note that, the addition of artificial attributes
will only increase the security of the tree.)

Setup. The challenger runs BuildIndexðF ;SKÞ algo-
rithm and gives all the encrypted document vectors to the
adversary.

Phase 1. The adversary is allowed to issue queries for the
encrypted vectors for a set of documents in P 	 F .

Challenge. The adversary submits two other documents
D0 and D1 out of F to the challenger. The challenger ran-
domly chooses a bit b 2 f0; 1g and maps Db to a document
vector Vb based onW and S1. Then, the encrypted vector Eb

is constructed based on Vb and the secret keys S2; M1; M2.
At last, the challenger sends Eb. to the adversary.

Phase 2. Phase 1 is repeated.
Guess. The adversary outputs a guess b0 of b.
The advantage of an adversary in this game is defined as

Prðb0 ¼ bÞ � 1
2 . We say that the privacy of encrypted HRF

tree is secure in chosen-plaintext attack model if all polyno-
mial-time adversaries have at most a negligible advantage
in the chosen-plaintext attack game.

We theoretically prove the security of HRF tree in
Theorem 1.

Theorem 1. For the encrypted HRF tree constructed in this
paper, there exists a negligible advantage � for all the polyno-
mial-time adversaries under the assumed system model and
threat model presented in Section 3 such that:

Pr b0 ¼ bð Þ � 1

2
� �: (18)

Proof. In our scheme, two steps are needed to get the
encrypted document vectors of D0 and D1. First, the
proxy server needs to map D0; D1 to plaintext vectors
V0; V1 based on the normalized TF model (as discussed in
Section 5.1) with S1; W as secret keys. Without loss of
generality, we assume that the entries in the document
vectors are constructed based on alphabetical order of
keywords. Then, the plaintext vectors V0; V1 are mapped
to encrypted vectors E0; E1 based on secure kNN scheme
with S2; M1; M2. as secret keys. tu

To distinguish E0; E1 and output a correct guess b0 of b,
the adversary first needs to distinguish V0; V1 and make the
first guess V 00 ; V 01 of them based on D0; D1. For simplicity,
we denote V0 ¼ ftfðD0Þ and V1 ¼ ftfðD1Þ. The advantage is
this process is defined as �1 and we get:

Pr V 00 ¼ ftf D0ð Þ; V 01 ¼ ftf D1ð Þ
� �

� 1

2
þ �1: (19)

Clearly, if we provideW and S1 to the adversary, �1 will
be 1=2. However, the secret information is stored in the

proxy server and we can infer that �1 trends to be smaller
than 1=2. Without loss of generality, we get:

�1 �
1

2
: (20)

Then, in the second guess, the adversary should make
full use of query phases. In phase 1 and phase 2 of the
game presented previously, we assume that the adversary
obtains a set of pairwise relations between documents P
and their encrypted vectors E, where P 	 F and Ei ¼
BuildIndexðPi;SKÞ for all Pi 2 P . In this case, the adver-
sary needs to distinguish the two encrypted vectors E0; E1

based on the following knowledge:

InformationLeakage ¼ I ; P; Ef g: (21)

We can improve the success rate of adversary’s guess by
extending P to fP; V g where Vi is the normalized TF vector
of Pi for all Pi 2 P . For simplicity, we denote E0 ¼ fknnðV0Þ
and E1 ¼ fknnðV1Þ.

In this paper, we encrypt the vectors based on S2; M1;M2

and the adversary cannot access these secret keys which are
stored in the proxy server. Under this situation, the second
guess game, i.e., making the guessE00; E01 ofE0; E1 based on
V0; V1 and the queried information, is strictly the same with
the level-3 attack game in [29]. Based on Theorem 6 in [29],
we can infer that there exists a negligible advantage �2 for the
polynomial-time adversaries such that:

Pr E00 ¼ fknn V0ð Þ; E01 ¼ fknn V1ð Þ
� �

� 1

2
þ �2: (22)

By combing (19), (20) and (22), we get:

Pr b0 ¼ bð Þ ¼ Pr V 00 ¼ ftf D0ð Þ; V 01 ¼ ftf D1ð Þ
� �


 Pr E00 ¼ fknn V0ð Þ; E01 ¼ fknn V1ð Þ
� �

� 1

2
þ �1

� 	

 1

2
þ �2

� 	

¼ 1

4
þ 1

2
�1 þ

1

2
�2 þ �1�2

� 1

2
þ �2

(23)

Considering that �2 is a negligible advantage, we prove
that Equation (18) is always satisfied. Consequently, we
claim that the encrypted HRF tree is secure under the pro-
posed threat model.

In real life, data users search documents based on a set of
keywords in most cases and the privacy of trapdoors is also
very important. Fortunately, we can prove that the privacy
of data users’ search requests is also properly protected in
our scheme. Considering that the proof process is similar to
that of Theorem 1, we don’t prove it here.

Based on Theorem 1, we can infer that though the cloud
server knows the encrypted index structures, the semantic
meanings underneath the encrypted vectors cannot be recov-
ered. To further hide the relationships between the trapdoors,
in [21], [22], [23], a random factor is added into the trapdoors
and hence the relevance scores between query requests and
document vectors are also modified. Consequently, the accu-
racy of the search results decreases which cannot be
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controlled by the data users. Though the random factors are
not employed in our scheme, wewill evaluate the search pre-
cision of HRF tree with different random factors in
Section 8.3.

8 PERFORMANCE EVALUATION

The overall document retrieval efficiency is affected by both
the index structures and the time consumptions of execut-
ing basic operations. We first theoretically analyze the effi-
ciency of the three proposed index trees in Section 8.1 and
then evaluate the overall efficiency of the scheme by experi-
ments in Section 8.2. At last, the search precision is dis-
cussed in Section 8.3.

8.1 Efficiency Analysis

The heights of FN �AVL tree and AU �AVL tree are about
logðNÞ and logðKÞ, respectively, where N is the number of
the documents and K is the number of the authors. As a
consequence, the time complexities of inserting, deleting
and searching a specific node in the trees are all OðlogðNÞÞ
and OðlogðKÞÞ [40], respectively. Both filename-based and
author-based search are accurate searches, i.e., the returned
documents contain the filenames or authors, and this search
process is equal to search a specific node in the trees.

Different from the above two trees, the structure of the
HRF tree is related with the distribution of the document
vectors. In the best case, all the leaf nodes contain B1 chil-
dren and all the non-leaf nodes contain B2 children, and
hence the depth of the HRF tree is about logB1

ðN=B2Þ. In
this case, the time complexities of inserting, deleting and
searching a specific node in the tree are all OðlogB1

ðN=B2ÞÞ.
However, if each non-leaf node contains only K1B1

(0 � K1 � 1) children and each leaf node contains K2B2

ð0 � K2 � 1Þ child nodes, the depth of the tree will be
logK1B1

ðN=ðK2B2ÞÞ. In addition, the multi-keyword ranked
search process is much complex than searching a specific
node in the HRF tree though most of the search paths are
pruned. The accurate time complexity is hard to estimate
which depends on the distribution of document vectors and
the query vector. We will evaluate the search time by
experiments in Section 8.2.

To test the efficiencies of the three trees, we compare the
trees with the KBB tree proposed in [22] on two and
three dimensional spaces, i.e., each document vector is rep-
resented by a 2-D or 3-D dimensional vector. We choose the

KBB tree as the benchmark because it can return accurate
search results similar to the designed trees in this paper. In
our simulation, the number of HRF tree’s leaf nodes is set to
1000 and the number of documents ranges from 10,000 to
500,000. For each random search query, the top-10 relevant
documents are returned. We employ the search proportion
measurement to simulate the trees’ efficiency and it is calcu-
lated by the number of searched document vectors to the
number of all the document vectors. We execute the simula-
tion for 100 times and the average simulation results are
presented in Figs. 4 and 5.

It can be observed from Fig. 4 that more than 80% docu-
ment vectors in KBB need to be searched for both 2-D and 3-D
document vectors to obtain the accurate results. This can be
explained by the fact that the document vectors in KBB tree
are organized chaotically. Consequently, KBB tree cannot
lead a query request to the proper position of the tree to obtain
the search results efficiently. The HRF tree organizes the vec-
tors based on their similarities. In the search process, the
search paths are properly leaded by the HRF vectors of the
nodes and most of the search paths are pruned. Compared
with the KBB tree, the HRF tree is much more efficient. While
the number of document vectors increases from 10,000 to
500,000, the search proportion of the HRF tree decreases from
8.8% to 0.8%. Correspondingly, the search time is significantly
shortened. Another interesting observation is that the differ-
ence values of the search proportion for 3-D vectors and 2-D
vectors decreases with the increasing of the document
vectors’ number. We also evaluate the two AVL trees and in
fact their search proportion is so small that the search time
can be ignored comparedwith that of the KBB andHRF tree.

Considering that the document vectors are organized as
clusters, the number of the leaf nodes also affects the effi-
ciency of the HRF tree and the simulation results are pre-
sented in Fig. 5. With the increasing of the number of
clusters, the search proportion for both 2-D and 3-D docu-
ment vectors decreases. The difference values between
them also decrease. Except for the search proportion, the
size of the tree also greatly affects the search efficiency and
to get a balance between them, we adjust B1; B2 to make the
tree includes about 500 leaf nodes.

Some important properties of theHRF tree are summarized
as follows: 1) Searching the “nearly” accurate result is very
easy and guaranteeing the strict accuracy of the search results
is much more difficult; 2) For a constant number of clusters,

Fig. 4. Search proportion for KBB tree, HRF tree and AVL trees. Fig. 5. Search proportion with different numbers of clusters with the
same size of the document set,N ¼ 100; 000.
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the search proportion decreases with the increasing of docu-
ment vectors’ number; 3) The dimension of the document vec-
tors has a large affection on the search proportion and a high
dimensional vector spacemakes a high search proportion.

8.2 Efficiency Evaluation

In this section, we evaluate the proposed framework on the
Enron Email Data Set [43] and 10,000 records are randomly
chosen as our experiment corpus. All the algorithms are
implemented on a 2.60 GHZ Intel Core processor, Windows
7 operating system with a RAM of 4 GB. The document
retrieval system is mainly composed of four functionalities
including constructing the index structure, generating the
trapdoor, searching and updating the index structure. The
efficiencies of the four functionalities are evaluated respec-
tively in the following.

1) Index Structure Construction
The processes of constructing the two AVL trees are

straightforward and include mainly two steps: 1) mapping
the filenames and authors to the random numbers, and 2)
organizing the numbers by two AVL trees. Clearly, the time
costs of building the two AVL trees depend mainly on the
numbers of the documents and authors in the document col-
lection. Constructing the encryptedHRF treemainly includes
three phases: 1) mapping the documents to document vec-
tors, 2) building the HRF tree of the document vectors and 3)
encrypting the HRF tree. The major computation steps to
encrypt a document vector includes a splitting process and
two multiplications of a ðmþm0Þ-dimensional vector and a
ðmþm0Þ � ðmþm0Þmatrix. To encrypt the whole HRF tree,
the total time complexity is OðNðmþm0Þ2Þ and hence the
time cost for building the encrypted HRF tree mainly
depends on the number of documents in the document col-
lectionF and the number of keywords in dictionaryW.

Fig. 6a shows that the time costs of constructing the HRF
tree and the index structure in MRSE are nearly linear with
the number of documents. This can be explained by the fact
that most time is consumed in the process of constructing
the document vectors which is linear to the number of docu-
ments. However, compared with the index structure in
MRSE, the HRF tree consumes more time because the docu-
ment vectors are further organized based on their similari-
ties. The two AVL trees are much more time-efficient
because they do not need to scan all the words in a docu-
ment and just need to scan the filename and authors. Fig. 6b
shows that the time costs of building an HRF tree and the
index structure in MRSE are nearly proportional to the
number of keywords in the dictionary. The time costs of

constructing the AVL trees are independent to the size of
keyword dictionary. Though constructing the index struc-
tures is of high computational complexity, it is acceptable
considering that this is a one-time operation.

2) Trapdoor Generation
Given a query request including a filename, several

authors and t keywords, the generation of a FN trapdoor or
a AU trapdoor incurs Oð1Þ. Building the HRF trapdoor
incurs a vector splitting operation and two multiplications
of a ðmþm0Þ-dimensions vector and a ðmþm0Þ � ðmþm0Þ
matrix. Consequently, the time complexity is Oððmþm0Þ2Þ
which agrees with the simulation results in Fig. 7a. The
number of keywords in the query has very slight affection
on the time costs of generating trapdoors as shown in
Fig. 7b. Building an HRF trapdoor consumes slightly more
time than that in MRSE because of the dimension extension.

3) Search Efficiency
When a data user executes a filename search or authors

search, the cloud server needs to execute only logðNÞ or
logðKÞ comparison operations and the time complexities are
OðlogðNÞÞ and OðlogðKÞÞ. In a multi-keyword search, the
time complexity of computing a relevance score between a
trapdoor and a document vector is Oðmþm0Þ, and the
height of the HRF tree is about logK1B1

ðN=ðK2B2ÞÞ. Thus, the
time complexity of searching a path from the root to the leaf
node is OðlogK1B1

ðn=ðK2B2ÞÞ
ðmþm0ÞÞ. If a percent of all
the paths need to be accessed, the upper bound time cost
of executing a multi-keyword search is Oða
ðmþm0Þ

ðN=ðK2B2ÞÞ
logK1B1

ðN=ðK2B2ÞÞÞ.
As shown in Fig. 8a, in MRSE, all the document vectors

need to be scanned to obtain the search result and the time
cost is linear to the number of the documents. The search
time of HRF tree is much smaller than that of MRSE. The two
hash index trees perform much better. Fig. 8b presents the

Fig. 6. Time costs of constructing index structures. (a) For the different
sizes of document set with fixed keyword dictionary, m ¼ 3; 000. (b) For
the different sizes of dictionary with the same document set,N ¼ 5; 000.

Fig. 7. Time costs of constructing trapdoors. (a) For the different sizes of
dictionary with fixed number of query keywords, t ¼ 10. (b) For the differ-
ent numbers of query keywords with fixed dictionary,m ¼ 3; 000.

Fig. 8. Time cost of executing a query. (a) For the different size of data
set with fixed keyword set, m ¼ 3; 000. (b) For the different number of
retrieved documents with fixed document set and keyword dictionary,
N ¼ 5; 000,m ¼ 3; 000.

1258 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:34:08 UTC from IEEE Xplore.  Restrictions apply. 



search efficiency with the increasing number of retrieved
documents. It can be observed that the search time of all the
index structures keep relatively stable with the increase of
retrieved documents.

4) Update Efficiency
When a document vector is inserted or deleted from the

HRF tree, about OðlogK1B1
ðN=ðK2B2ÞÞÞ nodes on the tree

need to be updated. Since updating a HRF vector takes Oð1Þ
time and the encryption process consumes ðmþm0Þ2 time,
the overall time complexity of an update operation on the
HRF tree is Oððmþm0Þ2logK1B1

ðN=ðK2B2ÞÞÞ. We illustrate
the time cost of executing an update operation through
inserting a node into the tree. Note that, we ignore the perfor-
mance of MRSE in terms of update efficiency in this section
considering that no index tree is constructed in that scheme.
It can be observed from Fig. 9a that when the dictionary is
fixed, inserting a document vector into the HRF tree cost
nearly logarithmic time with the size of document set.
Though the time costs for the AVL trees also increase with an
increasing number of document set, it can be ignored com-
pared with that of updating the HRF tree. Fig. 9b shows that
the update time of the HRF tree is nearly linear to the size of
the dictionary with a fixed document set. Similarly, the
update time costs of the AVL trees are much smaller than
that of the HRF tree. This is reasonable considering that these
two trees aremuch simpler comparedwith theHRF tree.

8.3 Search Precision of HRF Tree With Different
Random Factors

In our framework, three encrypted index trees are con-
structed. The search results on the two AVL trees are accu-
rate and hence the search precision is always 100%. In the
following, we focus on the search precision of HRF tree
with different random factors. Similar to the schemes in
[21], [22], [23], a random number can be added to the rele-
vance score between a query vector and a document vector
as presented as follows:

RScore0 Vj; VQ

� �
¼ Vj � VQ þ d ¼ Ej � EQ þ d; (24)

where d is randomly selected from a uniform distribution
Uð0; bÞ. In this way, the search results are slightly different
even for the same query request and hence the privacy of
access patterns is protected. As shown in Fig. 10, the search
accuracy monotonously decreases with the increasing of b.
This is reasonable considering that a larger b increases
the error of relevance score which misleads the selection
process of top- k documents. In conclusion, there exists an

interesting tradeoff between search precision and privacy of
access patterns. Fortunately, parameter d can be selected by
the data users according to their requirements.

9 CONCLUSION

In this paper, a flexible, secure and efficient privacy-preserv-
ing document search framework is proposed based on cloud
computing. It supports not only the accurate document search
based on filenames and authors, but also the multi-keyword
ranked document retrieval. Three tree-based index structures
are constructed and an accurate depth-first search algorithm
on theHRF tree is designed.When a set of parameters are pro-
vided by the data user, the parameters are collaboratively
employed to efficiently locate the candidates until the accurate
result is finally extracted from the document collection. In our
framework, a stronger and more practical threat model is
employed in which the cloud server can collude with a small
set of data users. Under this assumption, the adversary can
execute the chosen-plaintext attack to recover the files, file-
names, authors and document vectors. In this case, existing
schemes cannot properly protect the privacy of document col-
lection. To defend this new attack, a proxy node is employed
in our system to improve the security of thewhole system and
alleviate the workload of the data owner and data users. Both
theoretical analysis and experimental results demonstrate the
reliability and efficiency of the proposed framework.

The secure document retrieval framework can be further
improved in several aspects. First, the returned top-k relevant
documents may not satisfy the data users’ requirements and
they naturally attempt to obtain the next k relevant docu-
ments. Consequently, it is a meaningful futurework to design
a search scheme that supports dynamic parameter k in the
search process. Second, the proxy server is responsible for
generating the update information for the HRF tree which is a
heavy workload. A better strategy is that the proxy server
focuses on security control and the update operations are
directly executed by the cloud server. Third, in real life, data
users may require more search patterns and somemore mod-
ules need to be designed and integrated into our framework.
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Fig. 9. Time cost of inserting a new document. (a) For the different sizes
of document set with fixed keyword dictionary,m ¼ 3; 000. (b) For the dif-
ferent sizes of dictionary with fixed size of document set,N ¼ 5; 000.

Fig. 10. Search precision of HRF tree with different b.
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