
1

Allocation schemes, Architectures, and Policies for
Collaborative Port Scanning Attacks

Yu Zhang, Bharat Bhargava
Department of Computer Science, Purdue University, West Lafayette, USA

Email: {zhangyu, bb}@cs.purdue.edu

Abstract—Most network attackers perform port scanning in-
dividually, without synchronization, to find victim hosts. Such
port scanning schemes suffer from two problems: first, there are
too many duplicate scannings and too much contention among
different port scanners; second, a complete port scanning takes
a long time to finish.

In this paper, we present a fast DHT-based collaborative port
scanning scheme that aims to eliminate duplicate scanning, min-
imize contention, and significantly increase the scanning speed.
In collaborative attacks, attackers communicate and collaborate
with each other to launch much more powerful attacks. In
the DHT-based collaborative port scanning scheme, attackers
collaborate to search the network for ports that could be exposed
to attacks.

We propose different collaborative scanning strategies and
analyze their advantages and disadvantages. We discuss the static,
dynamic, and hybrid target selection and allocation schemes.
We present the algorithm details and discuss the stop and
revisit policy for the collaborative port scanners. We conduct
experiments to evaluate the performance and overhead of the col-
laborative port scanning strategies. Experimental results suggest
that the proposed collaborative port scanning system significantly
increases the efficiency of port scanning and provide insights into
many design and implementation issues.

Index Terms—Port Scan, Collaboration, Network Security.

I. INTRODUCTION

Attackers employ various technologies to launch attacks,
such as Denial-of-Service (DoS), BotNet, Worm, and Virus,
etc. The first step of these attacks is to discover vulnerable
victim hosts.

Nearly all attackers perform port scanning to find vulnera-
bilities on victim hosts. Most existing fast-replicated viruses
and worms [6],[39],[40] perform port scanning to discover
and infect targets. Hence, it is crucial to study port scanning
and explore whether the latest advances in technologies have
changed the horizon of port scanning, including how to
perform port scanning, expedite scanning speed, conduct port
scanning from multiple machines, and defend against modern
port scanners.

Different network protocols employ different ports. Vulner-
abilities exist in all protocols. Hence, to gather information
completely, port scanners have to perform scanning for a large
number of ports. The size of the port space is 65535 [13].
Ports 0 to 1023 are well-known ports, ports 1024 to 49151
are registered ports, and ports 49152 to 65535 are dynamic or
private ports.

Port scanners must run extremely fast. Port scanners have
employed sophisticated techniques to expedite port scanning.

For example, worms can search vulnerabilities on a commonly
used port (e.g., port 21 used by FTP, and port 443 used
by HTTPS). However, a typical complete port scan is time-
consuming. For example, a 65,536-port UDP scan for one
target host could take more than 18 hours [1].

Attackers typically perform port scanning independently,
without coordination, to find victim hosts. If port scanning
software packages are run on multiple machines without
coordination, their search spaces will overlap significantly. The
overlap causes reduction in the performance of the scanning.
The network connections used by the port scanners could get
congested. The buffer size of the network software may not
be large enough to hold all the incoming data. The processing
speed of the computer may not be enough to analyze responses
from all the networks. After all scanning activities end, all the
computers involved in the scanning must communicate to each
other and finalize the search results. Problems arise when their
results differ. Such differences are hard to analyze, due to the
fast-changing nature of computer networks.

As defense technologies evolve, port scanners that exhibit
unusual network behaviors, such as sending requests to all IP
addresses in a Class B network, are more likely to be detected.
Such detection will likely disable the machine performing the
scanning immediately and trigger chained detections of all
other machines involved. Given the fact that virtually all net-
works are protected by firewalls, filters, and monitors, a simple
deployment of identical port scanning software packages to all
computers involved in the scanning is not acceptable.

A key observation to the above deployment plan is that
there is a lack of collaboration among the port scanners. In
the rest of the paper, we use collaboration and coordination
interchangeably.

A simple increase in the number of port scanners creates
too much duplicate work, increases the power of the whole
attack incrementally, and introduces overhead on analyzing,
comparing, and resolving the conflicts in the results. Therefore,
we need a smarter deployment plan which makes full use of
all scanners involved, avoids performing duplicate actions to
the maximum extent, and synchronize actions of participating
nodes properly and efficiently.

We propose a smart and efficient deployment plan of port
scanner software packages to multiple computers, the DHT-
based Collaborative Port Scanning. To address the issues
above, our deployment plan employs the Distributed Hash
Table (DHT) to speed up the scanning, avoid duplicate scan-
ning and contention, and efficiently process and summarize



2

the results from multiple computers. The key idea is to
perform DHT lookups on the target host before initiating any
scanning activity. In general, the idea can be extended to other
collaborative attacks as well.

DHTs [41] are distributed systems that provide essential
functionalities of hash tables (HT). In HTs, one can insert
items and query whether a particular item exists. For each
stored item, an associated value can be retrieved in the HT.
Similarly, in DHTs, one can insert items and query for the
existences of items. (Key, Value) pairs can be stored in DHTs
as well.

The difference between a DHT and a conventional HT is
that the stored items are distributed over multiple computers.
The key advantages of the DHT include:

1) Efficiency: DHT is designed to store information and
perform lookups efficiently.

2) Scalability: DHT is designed to scale to thousands of
computers.

3) Robustness: Most DHTs can let participating computers
to join or leave at any time, and gracefully handle
computer failures.

4) Distribution: Items stored in DHTs are distributed over a
large number of computers. No central server is needed
to answer queries.

Numerous application have employed DHT in the past, such
as BitTorrent and Emule [43],[44].

DHT fits the collaborative port scanners because it allows
efficient lookups of IP addresses (or IP address and port
number pairs). In our deployment plan, each local port scanner
double-checks an IP address in the DHT before the actual
scanning, therefore avoids problems on duplicate scanning and
contention. The DHT database serves as a result repository.
It can store scanned results as the (IP address, scan result)
pairs. Although DHT has associated overhead in insertions
and lookups, it provides higher efficiency by avoiding du-
plicate scanning, contention, and unnecessary data analysis.
Hence, the DHT-based collaborative port scanning scheme
significantly improves over uncoordinated and unsynchronized
scanning.

The rest of the paper is organized as follows. Section II
discusses related work. In Section III, we discuss existing
port scanners. In Section IV, we present the DHT-based
collaborative port scanning scheme. In Section V, we conduct
experiments to measure the performance of the proposed
scheme. Section VI concludes our paper.

II. RELATED WORK

Port Scan. Port scanners employ various techniques. In a
SYN Scan, the scanner produces its own IP packet and sends
TCP SYN packets to victim hosts and analyzes the responses.
In a UDP scan, the scanner sends UDP packets to victim
hosts and checks whether ICMP port unreachable messages
are received afterwards.

Port scanning can be performed on multiple ports. Some
scanners perform the scanning in two-iterations. These scan-
ners scan with one technique, e.g., SYN scan, first before scan-
ning the un-denied ports with other techniques. For instance,

the famous NMAP scanner [1] uses the two-iteration approach
when executed with the -SUV option.

Ref. [37] discussed how to detect coordinated port scans.
However, the author mainly focuses on the detection and did
not provide details of how to coordinate the individual port
scans.

Port scanner needs to scan a large number of ports, as
discussed in Ref. [13]. Example ports include port 7 for echo,
port 21 for FTP, port 22 for SSH, port 23 for Telnet, port 25
for SMTP, port 80 for HTTP, port 79 for finger, port 110 for
POP3, port 139 for NetBIOS, port 143 for IMAP, port 443 for
HTTPS, and port 53 for DNS.

Scan Strategy. Researchers have proposed various scanning
algorithms for port scanner, including: naive random scanning,
in which the port scanner chooses a random address uniformly
from the IPv4 address space [10]; localized scanning, in which
the port scanner scans a local IP address (e.g., addresses
that are in the same subnet as the port scanner) with a
high probability p and scans a random address with a low
probability (1-p) each time [38]; importance scanning, in
which the port scanner assumes that the vulnerable hosts are
unevenly distributed and such distributions are obtainable [23];
self-learning scanning, in which the port scanner estimates
the distribution of the vulnerable hosts [21]. In contrast, our
approach can keep the exact information. The self-learning
worm estimates the distribution of vulnerable hosts based
on information about the infected hosts. If we employ a
combination of scan and attack strategy, we may try a new
strategy (e.g., exploiting a new vulnerability) to avoid making
a premature decision. Another observation is that infection
takes more time than scanning. It does not happen instan-
taneously, and prevents faster spreading; hit-list scanning, in
which the port scanner uses an existing list. e.g., BGP routing
table list, social network list, etc., to look for vulnerable hosts
[14]; permutation scanning, in which the port scanner could
determine whether a host was infected and change scan targets
[14]; sampling scanning, in which the port scanner samples the
target network before spreading to the corresponding subnet
[34]; and passive scanning, in which the port scanner analyzes
the network traffic passively, etc.

Coordination. Port scanners can collaborate with each other
and perform much more efficient reconnaissance. Staniford
et al. [14] discussed the Warhol worm, which propagates
extremely fast by self-coordination with both hit-list and
permutation scanning. Wiley [20] described an abstract dis-
tributed and collaborative worm Curris Yellow. Gates [37]
discussed possible collaborations in port scans. Wang et
al. [32] described an advanced peer-to-peer Botnet. The dis-
tributed.net [47] used distributed computing to break ciphers.
Our work discusses specific issues of the DHT-based scheme,
proposes different allocation strategies, and illustrates the
scanning architectures and policies.

IPv6 Scan. Yang [12] discussed how to defend worms in
IPv6 networks. Bellovin et al. [31] presented worm propaga-
tion strategies for IPv6 networks. Kamra et al. [35] proposed
a DNS-scan method that can achieve high spread rates in IPv6
networks.

Worm Scanning. Ref. [33] discusses characteristics of



3

worms, including protocol, amount of payload and scanning
strategy, etc. Ref. [22] talks about the performance and
models of worm propagations. The authors talk about the
local preference scans. If there are multiple attackers starting
from multiple sources, local preference scans will be much
more powerful. Ref. [27] describes a class of worms that
target network systems such as routers. Ref. [34] discusses
how to minimize the number of scans required to infect
hosts. Wagner et al. [33] presented characteristics of worms,
including protocol, size of the payload, and scanning strategy,
etc. Zou [22] et al. analyzed the performances of different
propagation strategies. Voyiatzis et al. [27] described a class
of worms that target network components such as routers.
Vojnovic et al. [34] discussed how to minimize the required
number of scans to infect hosts. Storm Worm [6], [7] used the
Distributed Hash Table (DHT) protocol based on Kademlia
[8] to control infected nodes. Chen et al. [10] proposed the
Analytical Active Worm Propagation (AAWP) model. Zou et
al. [39] proposed the epidemiological two-factor model. Dagon
et al. [18] discussed taxonomy of Botnets. Zhang et al. [5]
discussed a Fibonacci model of worm propagation.

Defense. Wu et al. [24] proposed a worm detection archi-
tecture for various worm scanning techniques. Twycross et
al. [25] built a virus throttle program that can detect the port
scanner based on their abnormal network behaviors. Jung et al.
[29] developed the Threshold Random Walk (TRW) algorithm
to identify malicious remote hosts. Kumar et al. [36] presented
the analysis of the Witty Worm and inferred about the IP
address where the Witty Worm was released. Staniford et al.
[30] described Spice, a port scanner that can detect stealthy
scans.

III. ISSUES ON PORT SCANNING

Most attacks include the reconnaissance step, in which
attackers explore and discover victim hosts for vulnerabilities
and important information for launching attacks, including op-
erating system and firewall status. Port scanners are regularly
used to perform such activities.

A. Conventional Port Scanners
In a port scan, attackers scan a number of listening ports on

the victim host. This method guarantees that all known vulner-
abilities to attackers on the victim host can be discovered, i.e.,
there is no false negative. However, an exhaustive search is
time-consuming. On the other hand, in a port sweep, attackers
scan a particular port on the a large number of victim hosts.
Port sweep can reduce the size of search space significantly,
but could ignore vulnerabilities on un-searched ports. It is
clear that the optimal strategy is to scan only the common
or vulnerable ports. Such strategy is difficult to achieve in
practice. It is not uncommon to find attackers that employ
a combination of both methods. Note that in a partial scan,
attackers can only scan the ports that match the vulnerabilities
that the attackers want to take advantage of. E.g., if the attacker
could launch FTP and HTTP attacks, ports 21 and 80 could
be the only ports that the attacker scans. If there are multiple
collaborative attackers, one attacker can provide vulnerability

database such as the FTP and HTTP ports mentioned above,
another attacker can perform optimal scanning according to
the available vulnerability database.

For each port scan attempt, the result can be:
1) listening: the scanned port is actively listening. E.g.,

provided that the victim host tries to accept the TCP
connection request, a successful TCP SYN scan receives
a SYN-ACK packet from it.

2) not listening: the scanned port is not listening. E.g., if
the victim host does not listen on a particular UDP port,
a UDP scan directed to that port receives an ICMP port
unreachable packet.

3) unknown: there is no response from the victim host. The
IP packets between the scanner and the victim host may
be lost on the way, filtered by firewall, or blocked by
the anti-virus software.

Successful scans can yield promising results, including the
operating system of the target host, the protocol suite in use,
and the open ports, etc. Note in case 3), victim hosts may not
trust the machine running the port scanner for a number of
reasons, including IP address not recognized, host not residing
on the same LAN, etc. In such cases, a collaborative scan
launched from hosts that are trusted by victim hosts may be
successful. The information gathered by the trusted hosts can
be passed to other malicious computers.

B. Detection of Port Scanners
Security monitors that could detect port scanning activities

normally employ simple rules to label potential port scanning
activities. E.g., the monitors can check whether there are a
large number of probes (denote it as m) within a limited time
period (denote it as n seconds) from a particular machine.
Note n is normally set to a small number to reduce the burden
of the Intrusion Detection Systems (IDS) due to their limited
ability to log and analyze network traffic. Researchers have
proposed new techniques for detecting port scanning activities,
such as advanced techniques that employ machine learning and
probabilistic packet inspection [29]. Port scanners that choose
scan targets randomly are more likely to be detected because
of the large-scale network-indicators generated [17].

C. Collaborative Port Scanners
Individual port scanners have limited power because they

usually employ a specific technology. Ironically, they are more
likely to get detected because they scan all targets individually
and generate excessive network traffic. Collaborative port
scanners can perform the work together. E.g., they can vary
the port scanning technologies, the port scanning locations, the
methods to choose scan targets, and the ways to divide work
among themselves. We discuss possible scanning technologies
and methods below.

C1) Port Scanning Technologies
Collaborative port scanners can choose from a variety

of port scanning technologies, including but not limited
to [26], [29], [30]:

1) Connect scan: The port scanner employs system call
connect() to scan target hosts. This scan does not require



4

special privileges. After a TCP connection is established
to the victim host, the port scanner sends a RST packet
to close the connection. One drawback of this scan is
that the established connections are logged and easily
noticed by security monitors and software packages.

2) Application scan: The port scanner employs particular
application-layer protocols and sends requests according
to the protocol-specifics. Example protocols include
HTTP, FTP, and DNS. If the victim host responds to
such application-layer requests, the port scanner classi-
fies the corresponding ports as active.

3) Ident scan: The port scanner connects to the victim host,
and uses a vulnerability in the ident protocol to retrieve
usernames on the victim host. E.g., if the port scanner
connects to a HTTP server, the ident protocol can be
used to look up the username running it.

4) SYN scan: The port scanner crafts its own TCP packet.
The scanner first sends a SYN packet to the victim host.
The victim host responds with a SYN/ACK packet. The
scanner records this response and classifies the scanned
port as listening and accepting incoming connections.
The scanner could then send a reset (RST) packet to
end the scan. Since the SYN scan does not establish a
full TCP connection, the victim hosts will not run out
of buffer space for accepting incoming connections.

5) UDP scan: The port scanner crafts its own UDP packet.
The scanner sends an arbitrary UDP packet to the victim
host. If an ICMP port unreachable message is received
afterwards, the scanner knows that the port is not active.
However, reply packets might be dropped on the network
route. Certain network security monitors and anti-virus
software packages may filter out the UDP packets.
Therefore, this scanning technology can be unprecise.

6) ACK scan: The port scanner crafts its own probe packet
and set the ACK flag. The scanner sends the probe
packet to the victim host. If an ICMP unreachable
message is received or there is no reply, the port scanner
confirms that the probe packet is filtered by firewall or
security software packages. Therefore, ACK scan is used
to detect whether a particular network link is guarded
by firewall or security softwares. If the network link is
unfiltered, the victim host will return an RST packet.

7) FIN and Null scan: The port scanner produces surreal
scenarios and analyzes the responses from the victim
hosts. In a FIN scan, the scanner sends a FIN packet
to the victim host. If there is no reply from the victim
host, the scanned port on the victim host is classified as
open or filtered, because a closed port would send an
RST packet. Similarly, in a Null scan, the port scanner
produces a TCP packet that does not have any flag, and
sends it to victim hosts. A lack of response suggests that
the target port is either open or filtered.

8) Cloaked scan: In cloaked scans, it is very difficult for
defenders to figure out the identity of the scanners.
Network devices, firewalls, security software packages,
and servers can log potentially malicious activities (e.g.,
a connection without data transfer) and analyze them to
find the scanners. Port scanners can use cloaked scans

in such cases. Example cloaked scans include: a) proxy
scan: in which the victim host sees a proxy machine
rather than the attacker; b) fragmented packet scan: in
which the port scanners send fragmented packets that
can be combined together at the destination; and c)
implementation-flaw scan: in which the port scanners
exploit implementation flaws in the victim host to per-
form scanning. E.g., the old predictable IP ID sequence
number bug [46] (now fixed) can be employed to do
port scanning.

9) Multi-cast scan: The port scanners can send packets to a
multicast address in this case. The packet is then directed
to a large number of victim hosts. The port scanner can
fake the source IP addresses so that responses can be
directed to other collaborative attackers.

C2) Target Selection Methods Collaborative port scanners
can choose from a variety of target selection methods:

1) Naive scanning: The port scanner chooses the next IP
address to scan according to an uniform distribution.
Code red and Slammer worms employed this method.

2) Local scanning: The port scanner gives priority to local
IP addresses. More specifically, with probability p the
port scanner chooses to scan an IP address that shares
the same first x bits (x can be any number from 1 - 31)
with it, and with probability (1-p) it chooses to scan a
random IP address.

3) Importance scanning: The port scanner assumes that
the vulnerable hosts are unevenly distributed, hence
important IP addresses should be scanned first. Ref.
[23] proposes the importance-scanning method, assum-
ing that the vulnerable host distributions exist and are
obtainable. Ref. [21] proposes the static importance-
scanning strategies and assumes that keeping informa-
tion about uninfected hosts is realistic.

4) Sequential scanning (nearest neighbor scanning): The
port scanner chooses to scan the next IP address in the
lexicographical order.

5) Hit-list scanning [14]: The port scanner employs an
existing list of IP addresses and scans those addresses
first. Such tables may be easily obtained from multiple
sources, such as routing tables and social network pro-
files. In particular, the hitlist that has all the addresses
in the BGP routing table is very easily obtained and
effective.

6) Sampling scanning: The port scanner can choose to scan
the representatives of subnets. After successful scans, the
port scanner tries to infect the victim hosts and then start
new scanning from the newly infected hosts.

7) Passive scanning: The port scanner does not send
scanning packets. Instead, it collects and analyzes the
network traffic that pass through it.

IV. BACKGROUND ON DHT
DHTs [41] are distributed systems that provide essential

functionalities of hash tables. In hash tables (HT), one can
insert items and query whether a particular item exists. For
each item stored, a value associated with the item can be



5

retrieved in the hash table. Similarly, in DHTs, one can insert
items and query for the existence of items. (Key, Value) pairs
can be stored in DHTs too.

The difference between DHT and conventional HT is that
the stored items are distributed over multiple distributed com-
puters. The key advantages of the DHT include:

1) Efficiency: DHTs are designed to store information and
perform lookups efficiently.

2) Scalability: DHTs are designed to be able to involve
thousands of computers.

3) Robustness: Most DHTs allow participating computers
to come and go, therefore can gracefully handle com-
puter failures.

4) Distribution: Information stored in DHTs are distributed
over a large number of computers. No central server is
needed to answer queries.

Numerous application have employed DHT in the past, such
as [43],[44].

V. DHT-BASED COLLABORATIVE PORT SCANNERS

The fundamental problem for port scanners is to find
vulnerabilities on all ports of target hosts, build exhaustive
vulnerability database, and prepare for the launch of effective
attacks against target hosts. As discussed in Section I, port
scanning can start from multiple sources instead of only one.
The latter is assumed in current research. Multiple port scan-
ners might perform duplicate scanning or cause contention.

Furthermore, as discussed in Section III-C, port scanners on
different machines can employ different technologies to scan
the target hosts. It is not only inefficient to let all port scanners
try all possible scan methods, but such exhaustive searches are
also likely to trigger the alarms of defense systems.

To avoid contention among port scanners and increase scan-
ning speed and power, the collaborative port scanning scheme
must define clear work allocation methods for all participating
scanners, avoid generating excessive network traffic or leaving
traces for tracebacks, and specify when to stop scanning for
the scanners. We discuss these issues below.

A. Static and Dynamic Allocation of Targets

A number of attackers can perform the port scanning simul-
taneously to make much faster progresses. In this scenario, a
number of attackers can divide the work to scan a large number
of victim hosts. There are two ways to divide the work:

A1) Static Allocation
The Static Allocation (SA) scheme avoids the duplicate

work discussed above. In a SA scheme, the target address
space is divided to all collaborative port scanners before
the launch of the actual attack. Port number and IP address
combinations, scanning technology, and vulnerability checking
methods are divisible as well in this scheme.

Each port scanner gets its own allocation of the target space,
technology (to use), and vulnerability (to check) list. Without
loss of generality, we only discuss the allocation methods for
the target space.

Collaborative port scanners have a number of ways to define
the SA policy to divide the work, i.e., ways to divide the large
target address space. Examples include:

1) Divide the address space by hosts.
In this policy, each collaborating port scanner will be
responsible for all ports on particular hosts. There are
two methods to divide the addresses:

a) random: This policy divides the target address
space randomly to individual port scanners.

b) sequential: This policy divides the target address
space sequentially to individual port scanners. Each
scanner will be responsible for a chunk of the huge
IP address space.

2) Divide the address space by port numbers.
In this policy, each collaborating port scanner will be
responsible for the same port on all hosts. There are
two methods to divide the addresses as well : random
and sequential.

Host-based approaches can suffer from scanning detection
employed at host-level, because the scanning will cover all the
ports on the target host and this could easily trigger the alarm
of the detection system. Port-based approaches, on the other
hand, can avoid such detection. However, the network-level
detection tools may still find the port-based attacks.

The SA scheme does not address a number of issues,
including node failure and dynamic node joining and leaving.
Note that in real attack scenarios, such as the worm scanning
and propagation, newly infected hosts might join the existing
attackers. Also, not all port scanning activities are equal.
For instance, routers and firewalls only filter packets from
particular sources. Hence, port scanning packets from one
scanner may be filtered, while the packets from another may
go through.

Moreover, port scanning can be done in different ways.
One can initiate the port scanning with different power, such
as packet sending rates. One can have unsuccessful scans
due to network data loss and jittering. One can get active
defense from defenders of the target systems and could even
get detected and physically disabled by them. SA scheme fails
to address these issues either.

A2) Dynamic Allocation
The Dynamic Allocation (DA) scheme does not pre-allocate

target spaces and allows the attackers to divide the work on
the fly. In this scheme, attackers can communicate with each
other to dynamically determine the next hosts to scan. A
key advantage of communication between attackers is that the
scanning space can be constantly updated.

In the state-of-the-art port scanners, e.g., the hit-list based
worm scanners, the hit-list is divided by half each time using
a top-down allocation approach when a new propagation is
successful. In contrast, the DA scheme allows the scanning
space to be constantly updated.

In the DA scheme, one can develop distributed lookup
tables to query whether a particular IP address has been
scanned/infected or not.

A3) Hybrid Allocation
The Hybrid Allocation (HA) scheme combines the SA and

DA schemes together. If the number of target hosts is large



6

and the number of available attackers is not small, the system
can divide the target hosts statically in the first step. The
statically divided hosts are then assigned to different groups
of attackers. The attackers for particular groups use the DA
scheme to generate scan targets.

For instance, to scan all target hosts a country, one can
divide them by states, and allocate hosts in different states to
different groups of attackers. The HA scheme is most useful
when there are lots of target hosts and attackers.

B. Synchronization of collaborative port scanners
Based on the above discussion, in order to synchronize the

actions of collaborative port scanners, we need to develop
a dynamic or hybrid allocation scheme that allocates the
scanning targets to individual port scanners. The DA or HA
scheme must be extremely efficient so that it can respond
to multiple requests from a large number of collaborative
port scanners. During the on-the-fly target allocation, the DA
scheme needs to make sure that two conditions are met:

1) No two port scanners will be scanning the same IP
address.

2) A port scanner will not be scanning any IP address that
has already been scanned by another port scanner.

To facilitate our discussion, we define the status of an IP
address based on whether it has been scanned.

Definition 1. Port Scanning Status (PSS)
The Port Scanning Status (PSS) of an IP address is a two-

bit number that indicates its the scanning information. More
specifically, the PSS of an IP address i can be one of the
following:

1) 00 — denotes that the IP address has never been scanned
by any collaborating port scanner;

2) 01 — denotes that the IP address is currently being
scanned by a collaborative port scanner;

3) 10 — denotes that the IP address has already been
scanned by some port scanner.

4) 11 — denotes that the IP address has already been
attacked by some attacker based on the scanning results.

Definition 2. Degree of Collaboration (DC)
The Degree of Collaboration (DC) for a collaborative port

scan is an integer that records the number of active collabora-
tive port scanners. Since individual port scanners may join and
leave at any time during a collaborative port scan, the number
of active collaborative port scanners vary from time to time.
Hence, the DC for a collaborative port scan at time tick t is :

DCt = the number of active port scanners at time t.
Definition 3. Collaboration Architecture (CA)
Collaborative attackers need to communicate to each other

over the network to synchronize their actions. In particular,
collaborative port scanners need to synchronize their scanning
activities on IP addresses.

To effectively communicate the PSS of an IP address and
keep themselves updated about the DC, they need an efficient
and robust distributed query system. The basic functionality
of the query system is to store scanned results and provide
real-time scanning status. Information like the scanned IP
addresses, ports, and vulnerabilities are stored in the system.

Fig. 1. The flooding architecture.

To facilitate discussion, we consider the case that only IP
addresses are stored.

There are a number of possible architectures for this query
system :

1) Flooding architecture: As shown in Fig. 1, in this ar-
chitecture, each collaborating port scanner ”floods”, i.e.,
broadcasts messages to, all known collaborators to query
the scanning status of a particular IP address. While
robust against node failures, this architecture requires
that each node stores its own scanning status information
and incurs significant network overhead due to the huge
amount of query traffic.

2) Collaboration-server based architecture: As shown in
Fig. 2, in this architecture, each collaborating port scan-
ner registers itself at a collaboration server dedicated to
monitoring scanning status, and joins the collaborating
port scanner group. If a collaborating port scanner stops
the scanning activities, it will notify the collaboration
server. The collaboration server is responsible for storing
the scan status and results for all port scanners. each col-
laborating port scanner queries the collaboration server
for real-time scanning status and makes decision on the
next scan target. While efficient, the reliability of this
architecture depends on that of the collaboration server.
If the collaboration server has limited bandwidth, it will
not able to handle the large amount of network traffic
generated by individual port scanners.
Moreover, the collaboration server is a single failure
point. The collaborative port scan could not proceed if
the server is down. Even if a new collaboration server
can be established, a lot of efforts and time need to be
spent in the recovery. The collaboration-server architec-
ture is vulnerable to defense as well, e.g., the defenders
can analyze the traffic patterns of the collaboration
server, determine that it is acting as a communication
and command center, and take it down to shut down
the whole collaborative port scan. In the real world,
researchers have proposed traffic analysis methods to
defend against Botnets based on IRC channels [18],[19].

3) Distributed architecture: As shown in Fig. 3, in this
architecture, the scanning status of all collaborating port



7

Fig. 2. The collaboration-server based architecture.

Fig. 3. The distributed architecture.

scanners are distributed over all the scanners. Therefore,
each collaborating port scanner issues queries to the
distributed information system based on themselves.
The distributed information system acts as the efficient
storage and query server, scales to a large number of
nodes, and provides high reliability.
This architecture eliminates the concentration of infor-
mation and network traffic on the collaboration server.
Its efficiency is much higher than the flooding architec-
ture. However, each port scanner has to both perform
scanning and serve as a active node in the distributed
information system.

4) Hybrid collaboration architecture: As shown in Fig. 4,
in this architecture, there are two groups of collaborating
attackers: the first group of them is the traditional port
scanner group, and the other is the information group,
i.e., the one responsible for the distributed information
system discussed in the distributed architecture. The
attackers from the first port scanner group query the
attackers from the information group for IP address
scan status. The attackers from the information group
builds, indexes, and stores all scan status information
efficiently. Attackers from the port scanner group view
the distributed information system as a collaboration
server discussed in 2).

Fig. 4. The hybrid architecture.

The hybrid collaboration architecture combines the
collaboration-server based architecture and the dis-
tributed architecture. Compared to the distributed archi-
tecture, the hybrid architecture relieves the port scanners
from infrastructure issues, i.e., storing scanning status
information and answering IP scan status queries. It
specifies a dedicated group of attackers responsible
solely for the distributed information system on scanning
status. Hence, attackers do not have to balance their re-
sources between the actual attacks and the infrastructure.
By such task division and collaboration, attackers take
advantage of the benefits of both collaboration-server
based and the distributed architectures. Therefore, they
are more likely to increase the efficiency and the scala-
bility of their systems and launch much more powerful
attacks.

C. The DHT-based Contention-Avoidance Allocation
Scheme

1) Overview: We need a distributed port scanning system
that can avoid duplicate scanning and contention among col-
laborative port scanners. Duplicate scanning and contention
include simultaneous scanning of an identical victim host,
generation of excessive network traffic on the same network
link, and duplicate work of distributed port scanners, i.e.,
scanning the same port on the same victim host for an identical
vulnerability.

The proposed DHT-based collaborative scanning scheme
can elegantly avoid duplicate scanning and contention. The
scheme incorporates the well-designed distributed lookup sys-
tem, the DHT, that stores scanning status information and
answers queries from collaborative port scanners. The DHT
provides distributed look-up services.

Based on the discussion in Section V-B, the collaborative
port scanning scheme employs the distributed/hybrid architec-
tures because they provide higher efficiency and scalability.

Traditional port scanners send probing packets and analyze
responses from victim hosts. In the collaborative port scanning
scheme, each collaborative port scanner queries the DHT
before each scanning. Note besides DHT, there are other
candidates for the distributed information storage and query



8

system, such as the Big Table [2]. If false positive can be
tolerated, Bloom Filter [4] can help with the query system as
well.

2) The DHT-based scanning algorithm: Each collabora-
tive port scanner runs the new DHT-based scanning algorithm
in the proposed scheme.

The algorithm for the collaborative port scanner is presented
in Algorithm 1. The collaborative port scanner randomly picks
up an IP address and a port number, and checks if the
IP address and port number combination has been scanned
already.

If not, the port scanner performs port scanning activities
using a randomly chosen scanning technology discussed in
Section III-C, and records the scanned results. There are
two important methods for the collaborative port scanner: the
GET() method, responsible for checking the scan status for IP
address and port number combinations, and the SET() method,
responsible for recording the scanned results.

The algorithm for the GET() method in the scanner is
presented in Algorithm 2. The GET() method processes the
(IP address, port number) pair, and looks it up in the DHT to
check its scan status. If there is a match, the GET() method
returns a variable indicating that the (IP address, port number)
pair has already been scanned. Otherwise the GET() method
returns a variable indicating that the pair has not been scanned.

To perform look-ups in the DHT, the GET() method can
employ RPC calling mechanisms. Note that DHT performance
optimizations allow fast lookups. E.g., caching and the hy-
brid architecture discussed above can significantly reduce the
lookup latency.

The algorithm for the SET() method in the scanner is
presented in Algorithm 3. The SET() method processes the (IP
address, port number) pair, and records its status in the DHT.
Note the SET() method must take concurrency control issues
into consideration because no concurrent GET() and SET()
should be allowed on the same (IP address, port number) pair
to ensure correctness of the whole system.

Although concurrent GET() accesses are allowed, no two
SET() methods should be modifying the scanning status of the
same (IP address, port number) at the same time. This prob-
lem is similar to the reader/writer lock problem: concurrent
GET()s is allowed while concurrent SET()s and concurrent
GET()s/SET()s are prohibited. The GET() and SET() methods
can implement a reader/writer lock in this case to improve the
lookup performance.

Another way to improve the performance is to lock only part
of the DHT. By default, given an (IP address, port number)
pair, the SET() method can request to lock certain IP address
ranges instead of the whole IP range. E.g., if the SET() method
requests to lock only the Class B network that the given IP
address belongs to, other SET() methods can write to other
class B network addresses, which improves the performance
of the whole system.

D. Detection Avoidance
An effective way to detect traditional port scanners is to

watch for abnormal network traffic patterns. As discussed in

Algorithm 1 The Collaborative Port Scanner
// Get an unscanned IP address and port number combina-
tion.
repeat

// Do preprocessing works.
//
ip = ChooseIPAddressToScan();
port = RandomlyPickUpAnPortNumber();

// Check with the DHT to see if the IP address
// and port number combination has been scanned already.
// The GET() method returns NOT SCANNED if the
// IP address and port number combination has not been
// scanned yet.
scan status = GET(ip, port);

until scan status = NOT SCANNED

// Perform the scanning activities. The scanning method
// is generated randomly from the scanning technology
// database, including the ones discussed in Section III-C.
scan method = RandomlyPickUpScanningMethod();
scan method.Send(probing packets, victim);
scan method.Receive(responses, victim);
scan method.scan result = Analyze(responses);

// Record the result of the scanning to the DHT.
SET(ip, port, scan method.scan result);

// Return.
return OK;

Section I, thresholds such as excessive number of pings within
a certain time period can be set up to trigger alarms for
port scanning activities. An obvious ”solution” is to perform
”stealth scans”, e.g., perform scanning activities slowly for
several months and gather the results. Such solution cannot
get enough information quickly and is not desirable for the
port scanners.

Collaborative port scanners can distribute the work among
a large number of machines that are in different geographical
areas, thus reduce the network traffic generated by individual
port scanners and avoid detection. An optimal scanning strat-
egy for detection avoidance is to ”blend into the crowds”, i.e.,
to mix scan traffic into normal network traffic and make it
difficult for defenders to notice. E.g., smart scanning schemes
that resemble the collaborative port scanners as web crawalers,
bots, or spiders could successfully foil a large number of
defense systems.

Moreover, by employing the distributed and the hybrid
architectures discussed in Sec.V-B to distribute network traffic,
collaborative port scanners can escape detection of intelligent
defenders. Methods that analyze the network traffic using data
mining techniques [19] to identify command centers of col-
laborating malicious computers will fail to locate collaborative
port scanners.



9

Algorithm 2 The GET Method
// The GET() method :
// takes:
// (ip address, port number) pair as inputs; and
// returns:
// NOT SCANNED : if the pair has not been scanned yet;
// SCANNED : if the pair has been scanned already.

Require: IP address and port number are correctly passed in
as arguments.

// Do preprocessing works.
ip port pair = GeneratePair(ip, port);

// Contact the DHT to read information.
RPCCallBack = SetupRPCCall();
RPCCallBack.Run();
WaitForRPC();

// Get the scanning status for the (IP address, port number)
// pair.
scanning status = ProcessRPCResults();

// Return.
if scanning status = 0 then

return NOT SCANNED;
else

return SCANNED;
end if

E. Stop Policy

A critical problem for the collaborative port scanners is
to determine when to stop the scanning activities. Optimally,
the collaborative port scanners stop after all hosts has been
scanned for every possible vulnerability. In practice, this
mission is difficult to accomplish because each host needs to
make its own stop decision based on its knowledge of the
global scanning activities.

Ref. [15] proposes an autonomous design. In their design,
each host employs a Sum-Count-X method to determine when
to stop, and communication among hosts is necessary to
improve the precision of stop estimation. Ref. [16] proposes
a quorum-sensing design. However, they did not consider
the network topology. Also, after the stopping of the worm
propagation, a worm user needs to manually restart it.

In our approach, The DHT records all scan statuses. We
can constantly monitor the uninfected nodes as long as there
are empty entries in the collaboration table. Therefore, the
stop condition for the collaborative port scanners can be
defined as all (IP address, port number) pairs have been
scanned, as reflected in the DHT. We believe the collaborative-
table approach is faster and more efficient since the DHT
serves as the monitor and recorder of all status messages. No
approximate calculation is used. If not all hosts or ports need
to be scanned, users can relax the definition of the stop policy.
E.g., collaborative port scanners can be defined to stop after

Algorithm 3 The SET Method
// The SET() method :
// takes:
// (ip address, port number) pair and
// the scanned result as inputs;
// performs:
// DHT information updates.

Require: IP address, port number, and the scanned result are
correctly passed in as arguments.

// Do preprocessing works.
ip port pair = GeneratePair(ip, port);

// Request exclusive access for the DHT.
// The granularity can be :
// for the whole IP range (slowest);
// for the whole Class A address (slow);
// for the whole Class B address (medium);
// for the whole Class C address (fast); or
// no exclusive access (fastest).
Lock(starting IP address, ending IP address);

// Contact the DHT to write information.
RPCCallBack = SetupRPCCall();
RPCCallBack.Run();
WaitForRPC();

// Check if the update was successful.
CheckSuccess();

Ensure: Update is successful.

// Release the lock.
Unlock(starting IP address, ending IP address);

Ensure: lock is released.

// Return.
return OK;

90 percent of all hosts are scanned.

F. Target Selection and Revisit Policy
A key step in the DHT-based collaborative port scanning is

to generate random IP addresses and port numbers. Random
number generators can be exploited to analyze the bandwidth
of worm senders [36]. Hence, one enhancement to the scheme
is to employ a variety of random number generating methods.
By varying the way to generate random IP addresses and port
numbers, the collaborative port scanning becomes polymor-
phic, and is much more resistant to analysis and defense.

To improve the efficiency of the collaborative port scanners,
learning algorithms can be employed. The DHT stores a lot of
information, which can be analyzed to improve future scanning
activities. Moreover, the collaborative port scanners can scan
a portion of all IP addresses and port numbers to reduce the
scanning time. For example, they can selectively scan only



10

one IP in a Class C subnet, and use the scanning results to
infer information about other target hosts that reside in the
same subnet. Some IP addresses are employed by honeynets.
To prevent collaborative port scanners from being detected and
analyzed by such honeynets, the corresponding entries in the
DHT for these addresses can be marked as ”do not scan”.

Host configurations and vulnerability statuses change over
time. To capture the changes, collaborative port scanners
should revisit the hosts. Some hosts have dynamic IP ad-
dresses. In such cases, collaborative port scanners can peri-
odically revisit them and update the information on the hosts
and IP addresses. A simple revisit policy is the Age Policy. In
the Age Policy, there is an age attribute for each DHT entry.
The age is increased by the DHT automatically and checked
against a threshold. If the age reaches the threshold, the system
purges its entry from the DHT to initiate a new scan. Note that
researchers have studied revisit policies for web crawlers [42]
and such policies could be adapted.

The DHT-based scheme needs to handle errors of partici-
pating nodes. E.g., participating nodes may provide incorrect
scanning results. A simple solution to this problem is to set
the revisit policy to allow each target to be scanned twice
within each scanning period. Then the system could compare
the results to decide if the results are usable.

G. Comparisons and Caveats
The DHT-based collaborative port scanning scheme can

scan multiple vulnerabilities on multiple ports. In contrast,
Botnets and the Curious Yellow worm [20] typically propagate
by exploiting a known vulnerability on a certain port. In
practice, if the target hosts do not have such vulnerability or
have applied patches to fix it, the propagation will fail.

Some real-world worms, e.g., the Witty Worm [11] can
check for multiple vulnerabilities. In the DHT-based scheme,
attackers share knowledge about the progress and information
with each other. Therefore, attackers can check for a large
number of vulnerabilities and choose one to exploit.

While the extended hit-list methods consist of information
on IP addresses, the DHT-based scheme records information
on not only IP addresses, but also attributes for each host or
subnet. Example attributes include whether the hosts are web,
mail, or DNS servers, a ranked list of existing vulnerabilities,
and the name and version of the host operating system. Dur-
ing the collaborative port scanning information regarding the
configuration of victim hosts can be fingerprinted to facilitate
the launch of future attacks.

VI. EXPERIMENTS

In this section, we present the experimental evaluation of the
DHT-based collaborative port scanning scheme. We conduct
experiments to verify our theoretical analysis, in particular:
the impact of the DHT-based scanning scheme.

A. Experiment Setup

The experimental network consists of Intel Dual Core work-
stations and virtual machines running Windows XP. Without

loss of generality, we use IPv4 networks and set the size of
target IP address space to 232. The scanning methods used
in the experiment include TCP scanning, UDP scanning, and
version detection [1] that could return the system and version
information running on the target hosts. We ran port scans
on the target hosts to understand the latencies associated with
scanning. Such latency information are used to simulate port
scanning. OpenDHT [45] is also used to understand the laten-
cies with DHT systems. We employ the hybrid architecture
discussed in Section V-B.

B. Experiments on the performance of the DHT-based collab-
orative scanning scheme

We conduct experiments to study the performance of the
proposed collaborative port scanning scheme. In our experi-
ment, there are 1,000 target hosts that need to be scanned. We
compare the performance of 4 different scanning setups:

1) 10 collaborative port scanners. In this setup, there are 10
collaborative port scanners that employ the fast intelli-
gent DHT-based collaborative scanning scheme. The 10
collaborative port scanners divide the 1,000 target hosts
into 2 groups. Each group has 500 target hosts. They
conduct the scanning group by group, i.e., they only
start to scan the second group of targets after finishing
scanning the first group of targets. (We discuss more
on the collaboration methods in the next experiment.)
The collaborative scanners keep each other informed of
the progress of the whole scanning through the DHT.
The algorithms employed by the 10 collaborative port
scanners are discussed in Section V.

2) 10 port scanners that operate with the static division
scheme. In this setup, the 10 port scanners are divided
into 2 groups, and each group has 5 port scanners. The
two groups of scanners operate individually. Within a
group, the 5 port scanners divide the targets statically
into 5 parts, and each of them will be responsible for
approximately one fifth of the target hosts.

3) 10 port scanners that operate individually. In this setup,
there are 10 port scanners, but they just scan randomly
without communicating with each other. As soon as the
port scanner finishes scanning 50 hosts (one twentieth
of all target hosts), it reports the results to a central
node, and waits for the signal from the central node.
The central node collects the scanned results from all
scanner nodes, and combines their results. As soon as the
central node finishes combining scanning results from
all 10 scanners, it sends signals to all 10 port scanner
nodes. In the next round, each port scanner only scans
targets that have not been scanned in previous rounds.
This procedure is repeated until all hosts are scanned.

4) a single port scanner. In this setup, there is only one
port scanner. It is responsible for scanning all the target
hosts.

All port scanners scan the well known ports for each victim
host in this experiment. We impose a limit of 20 on the number
of connections which a single port scanner can initiate to
a target host. A typical DHT lookup takes approximately 3



11

Fig. 5. The performance of the DHT-based collaborative scanning scheme.

seconds with 10 active scanners. Note that a scanner has to
write the results to DHT after a successful scan. A typical
port scanning for one victim host that covers TCP ports and
version information takes 2 minutes.

Fig. 5 shows the number of successfully scanned hosts over
time for the 4 scanning setups.

We observe that, for the DHT-based 10 collaborative port
scanner setup, on average, the time of the work spent in
the core port scanning part constitutes most of the total
operation time. It takes the collaborative port scanners 216
minutes to scan all the target hosts. The overhead ratio of
the collaboration, including storing and retrieving the scanning
status for the target hosts, is approximately 8 percent.

Our results show that the DHT-based 10 collaborative
port scanners clearly outperform the other 3 non-DHT-based
setups, and that the performance of the single port scanner
is the worst among all setups. The explanation is that the
DHT-based collaborative port scanners are able to perform port
scanning concurrently with much more resources and minimal
contention.

The experimental results verify our analysis and confirm the
performance of DHT-based collaborative port scanners.

C. Experiment on the Number of Participating Collaborative
Scanners

In our first experiment, 10 DHT-based collaborative port
scanners collaborate with each other to conduct port scanning.
Questions then arise as how would the performance of the
collaborative port scanners change, as the number of partici-
pating nodes change. One would expect that a larger number
of participating nodes increase the number of scanned target
hosts within a specific time.

However, more scanner nodes could generate more network
traffic and impose larger overhead on the DHT due to a large
number of scanning status lookup and store requests. In the ex-
treme case, an infinite number of participating nodes generate
excessive traffic and overburden the DHT, effectively rendering
a Distributed Denial-of-Service (DDoS) attack. Therefore, we
cannot arbitrarily increase the number of scanner nodes.

We conduct experiments to find out the relation between
the collaborative port scanners and the number of participating
scanner nodes. Note that different DHT systems and scanning
methods have different latencies and could affect such relation.

Fig. 6. The performance of collaborative scanners with different participants.

Hence, in our experiments, we vary the scanning methods and
use different gateways of the DHT system to create different
latencies.

More thorough scans and farther gateways typically have
higher latencies. If scanning latency is extremely low when
compared to DHT latency, a small number of participating
scanner nodes that employ the static division scheme would
perform well. The reason is that a large number of nodes
overburden the DHT, increase DHT latency, and slow down
the whole port scan.

When scanning latency is extremely high when compared to
DHT latency, a large number of participating scanner nodes
perform better. The explanation is that a smaller number of
nodes neither have enough parallelism nor fully utilize the
DHT system. The most interesting scenario is when neither
scanning nor DHT latency is too high or too low . In such
cases, a large number of participating scanner nodes incur
overhead on the DHT system, but could also overcome the
slowness of the scanning itself.

Fig. 6 shows the number of successfully scanned hosts
over time for different number of participating scanner nodes.
We observe that the performance of DHT-based collaborative
port scanners increase as the number of participating scanner
nodes increases. However, the efficiency of the DHT-based
collaborative port scanner scheme decreases as the number
of participating scanner nodes increases, which confirms our
analysis above.

If the number of participating scanner nodes is approxi-
mately the ratio of scanning latency to DHT latency, a good
balance between the costs for maintaining a large number of
scanner nodes and the performance of the collaborative port
scanning can be struck.

Our theoretical analysis is as follows. Denote the number
of target hosts as M, the scanning latency as S, the average
DHT latency as D, the actual DHT latency as d, the number
of collaborative port scanners as n, the ratio of the scanning
latency to the DHT latency as k, we have:

k =
S

D

The actual DHT latency increases as the number of collab-
orative port scanners increases. We assume that the increase
is linear, hence:



12

d = D ∗ n

The total latency L for one parallel scan is the sum of the
scanning latency and the DHT latency :

L = S + d

The number of parallel scans needed for M hosts P is

k =
M

n

Hence, the total scanning time

T = P ∗ L

= (S +D ∗ n) ∗ M
n

= (D ∗ k +D ∗ n) ∗ M
n

= M ∗D ∗ (1 + k

n
)

(1)

Note that n should be no more than M. When n = M, the total
scanning time reaches its minimum at M * D.

In the real world, we may not be able to include M scanners.
However, when n is equal to k, the total scanning time is
simplified to 2 * M * D, which is at least half as fast as the
fastest possible scanning.

In our experiments, the scanning and DHT latencies are 2
minutes and 6 seconds (on average with 10 collaborative port
scanners), respectively. Hence, the optimal number of scanner
nodes is

120
6 = 20.

The experimental results confirm our analysis. With 10
scanner nodes, the overhead of the DHT-based collaborative
scanning scheme is approximately 8 percent. With 20 scanners
nodes, the overhead is approximately 10 percent. With 50
scanner nodes, the overhead is approximately 30 percent. Note
that the quality of the DHT system affects the overhead with
respect to different number of scanner nodes. In the real
world, if more efficient systems can be utilized, the number
of collaborative port scanners can be very large and still does
not incur too much overhead. We discuss this issue more in
Section VI-E.

D. Experiments on the impact of revisit policy

As discussed in Section V, collaborative port scanners can
implement revisit policies. Questions then arise as whether the
revisit policy would have a large impact on the performance of
collaborative port scanners and how to devise a revisit policy.
In this experiment, we quantitatively measure the impact
of revisit policy on the performance of collaborative port
scanners. There are 20 collaborative port scanners and 1,000
target hosts in this experiment. The 20 scanners are divided
into 2 groups that collaborate through the DHT. Scanning of
one target host takes 2 minutes to finish. For the revisit policy,
making a target host revisit-able is implemented as removing
its scanning status entry in the DHT. Our experimental revisit
policies include:

1) Make the target hosts revisit-able after 50 minutes.

Fig. 7. The performance of the scanning with different revisit policies.

2) Make the target hosts revisit-able after 100 minutes.
3) Make the target hosts revisit-able after 150 minutes.
4) Make the target hosts revisit-able after 500 minutes.
Fig. 7 shows the numbers of scanned hosts with different

revisit policies. The no revisit line depicts the regular col-
laborative scanning scheme that does not implement a revisit
policy.

We observe that revisit policy has a large impact on the
performance of the collaborative port scanners. Specifically,
the revisit time significantly affects the number of scanned
hosts over time. We observe that as the collaborative scan
progresses, the revisit policy kicks in at a certain point,
depending on the pre-set revisit time.

Since a lot of hosts scanned in the beginning can ”expire”
according to the revisit time, the revisit policy causes a
reduction in the number of hosts that the system considers
as ”scanned”. The number of scanned hosts then fluctuates
as the collaborative port scanners scan the expired hosts and
other hosts become expired.

Although the number of scanned hosts is not constant as
the number of rounds increases, we observe that the system
reaches an equilibrium around a certain number of hosts. As
the revisit time increases, the equilibrium number increases as
well.

However, there is a tradeoff. The revisit time cannot be
arbitrarily increased because longer revisit time means that
the scanning results for the target hosts are less up-to-date.
The revisit time cannot be arbitrarily decreased either. If the
revisit time is set as the time required to perform scanning on
one host, as soon as the scanning of one target host completes,
the scanning results for another target host could expire and
arbitrarily delay the whole port scanning. Note if the revisit
time is approximately twice as much as the time required to
scan all victim hosts, the system will scan all target hosts
again, which renders low efficiency.

We infer some guidelines for setting up the revisit policy.
If the Age Policy discussed in Section V-F is employed, the
scanning latency for one target host takes time t, the size
of target host space is h, the number of scanners is s, it is
recommended that the system makes the target hosts revisit-
able after at least

ht
s time.

In our experiment, the recommended revisit time is



13

1000∗2
20 = 100 (minutes),

and the system is able to maintain scanning results for
approximately half of all hosts. Note the Age Policy might not
be the best policy. As discussed in section V-F, more complex
revisit policies can be employed to improve the efficiency of
the system.

E. Discussions on Deployment and Defense

In our experiments, we have examined the performance of
the DHT-based scanning system. Large-scale deployment of
the DHT-based collaborative attack scheme in the real world
needs attention on a number of issues. Defenders of collab-
orative port scanners can mitigate the attacks by employing
countermeasures to these issues.

Detection Avoidance. Certain routers and firewalls check
network traffic against pre-set thresholds. Defense mechanisms
such as the communication pattern analysis [19] could reveal
the centralized servers. The DHT-based collaborative attack
scheme could employ several methods to avoid detection: 1)
limit the rate for sending and receiving packets; 2) create de-
centralized traffic that obfuscate the communication pattern
analysis; and 3) employ encryption for the DHT-related pack-
ets whenever possible, since most existing defense systems
cannot analyze encrypted traffic.

Integrity of the DHT. DHT functionality is crucial in the
collaborative port scanning scheme. If the defenders can locate
the DHT servers, they could try to disconnect, mislead, and
defend against them by offense [9]. Hence, protecting the DHT
against misuse, errors, and attacks is very important for the
real-world collaborative scanners. Mechanisms that can help
protect the DHT include user authentication and encryption
of the stored IP address, port number, and scanning status
values. User authentication may introduce extra communi-
cation latency and hurt the performance of the DHT-based
collaborative scanning scheme, while the encryption of the
information stored in DHT may increase the time to store and
look up scanning statuses.

Scale of the DHT. In practice, the collaborative port scan-
ning system may implement its own fast DHT system. We
have seen similar large-scale system in industry, including
BigTable [2] of Google and Dynamo [3] of Amazon. The
DHT system can run on a large number of attacker nodes
in the hybrid mode, e.g., 10,000, in practice. If more attacker
machines are allocated to the DHT system, however, there will
be fewer hosts responsible for the actual scanning, which can
result in deteriorated scanning performance. If the collabora-
tive port scanning system can utilize some publicly-available
infrastructure and leverage its power, the overall scanning
performance could improve significantly.

VII. CONCLUSION

In this paper, we study the collaborative port scanning, in
which attackers collaborate to search the network for open
ports that could be exposed to attacks. We propose different
collaborative scanning strategies and analyze their advantages
and disadvantages. We discuss the static, dynamic, and hybrid
allocation schemes and how to employ DHT in the system. We

conduct experiments to evaluate the performance and overhead
of the collaborative port scanning system.

Our results show that DHT-based collaborative port scan-
ning is a promising approach. It provides good performance,
and proves that attacks can be launched by collaboration.
As network speed increases in the future, we may witness
an increased number of sophisticated collaborative attacks
that orchestrate the computing power of a large number of
attackers.

Our results suggest that issues like the number of collabora-
tive attackers in the system, different methods of collaboration,
and revisit policy all significantly affect the performance of the
collaborative port scanners. We discuss issues that need con-
sideration in real-world deployment and defense mechanisms
that could mitigate the collaborative port scanners.

There are a number of ways to enhance or defend the
collaborative scanning scheme, which are the subjects for
future work.

First, the port scanners can employ the insider collaboration
technique and attack from multiple strategic locations. In the
insider collaboration attack, an insider gathers the knowledge
about vulnerable hosts. The outsider launches port scanning
with the pre-acquired knowledge from the insider. In this case,
the knowledge of vulnerable hosts can be gathered offline
rather than online. Another point worth mentioning is, outside
attacks can easily be blocked by firewall, while insider attacks
normally can bypass firewall checks.

Second, port scanners can also employ heuristics and more
intelligent algorithms. For example, learning algorithms can be
utilized. However, such port scanners may scan very slowly
due to the complicity of the algorithms. Solutions include
offline training of the scanner with a lot of log data. Smarter
revisit policies can be employed as well. Handling dynamic IP
address change and improving the efficiency of the scanners
are of interest as well.

Third, collaborative port scanners can employ the passive
and stealth technique. For example, they can passively log and
analyze the network traffic. Such techniques could enhance
the collaborative port scanners and challenges the defense
systems.

Fourth, we could fingerprint the collaboration methods
employed by the collaborative attackers. Defense systems can
implement algorithms that learn and classify the communi-
cation patterns like the flooding, server-based, and distributed
architectures. Then, they can monitor and analyze the network
traffic to detect these collaboration patterns and flag corre-
sponding nodes as possible collaborative attackers.

Finally, addressing the real-world issues and implementing
the DHT-based scanner idea as a large-scale system are the
most interesting piece of future work.

ACKNOWLEDGMENT

The authors would like to thank Dr. Yi Mao for helpful
discussions.

REFERENCES

[1] http://nmap.org/book/man-performance.html



14

[2] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber. Bigtable: A Distributed Storage
System for Structured Data. In Proc. of the 7th Symposium on Operating
System Design and Implementation, 2006.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels, Dynamo: ama-
zon’s highly available key-value store, Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, October, 2007

[4] Burton H. Bloom, Space/Time Trade-offs in Hash Coding with Allowable
Errors, Communications of the ACM, Vol.13, 1970

[5] Y. Zhang and B. Bhargava, The Effects of Threading, Infection Time,
and Multiple-Attacker Collaboration on Malware Propagation, The 28th
IEEE International Symposium on Reliable Distributed Systems (SRDS
2009), September, 2009. Niagara Falls, New York, U.S.A

[6] S. Sarat, A. Terzis, Measuring the Storm Worm Network. Technical
Report 01-10-2007, http://hinrg.cs.jhu.edu/uploads/Main/STORMTR.pdf

[7] C.Kanich, K.Levchenko, B.Enright, G.M.Voelker and S.Savage, The
Heisenbot Uncertainty Problem: Challenges in Separating Bots from
Chaff, Proceedings of the USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET), San Franciso, CA, April 2008

[8] Kademlia Specification http://xlattice.sourceforge.net/components/
protocol/kademlia/specs.html

[9] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker,
DDoS Defense by Offense, ACM SIGCOMM 2006, Pisa, Italy, Septem-
ber 2006

[10] Z. Chen, L. Gao, and K. Kwiat, Modeling the Spread of Active Worms,
IEEE INFOCOM 2003

[11] http://www.caida.org/research/security/witty/, last accessed Apr 20, 2008
[12] J. Yang. ”Fast Worm Propagation in IPv6 Networks”

http://www.cs.virginia.edu/ jy8y/publications/cs85104.pdf
[13] http://en.wikipedia.org/wiki/List of TCP and UDP port numbers
[14] S. Staniford, V. Paxson and N. Weaver. ”How to Own the Internet

in Your Spare Time” In Proceedings of the 11th USENIX Security
Symposium, August 2002

[15] J. Ma, G. Voelker and S. Savage, Self-stopping Worms, Proceedings
of the ACM Workshop on Rapid Malcode (WORM), Washington D.C.,
November 2005.

[16] R. Vogt, J. Aycock, and M. Jacobson, Jr. Quorum Sensing and Self-
Stopping Worms. Proceedings of the 5th ACM Workshop on Recurring
Malcode (WORM 2007), Alexandria, VA, November,2007.

[17] Detecting and Recovering from a Virus Incident
http://www.sans.org/reading room/whitepapers/malicious/903.php

[18] D. Dagon, G. Gu, C. Lee, and W. Lee. ”A Taxonomy of Botnet Struc-
tures.” In Proceedings of the 23 Annual Computer Security Applications
Conference (ACSAC’07), Miami Beach, FL, December 2007.

[19] G. Gu, J. Zhang, and W. Lee. ”BotSniffer: Detecting Botnet Command
and Control Channels in Network Traffic.” In Proceedings of the 15th An-
nual Network and Distributed System Security Symposium (NDSS’08),
San Diego, CA, February 2008

[20] B. Wiley, Curious Yellow: The First Coordinated Worm Design,
http://blanu.net/curious yellow.html, Accessed Apr 20, 2008

[21] Z. Chen and C. Ji, A Self-Learning Worm Using Importance Scanning,
ACM CCS Workshop on Rapid Malcode (WORM05), 2005

[22] C. Zou, D. Towsley, and W. Gong. ”On the Performance of Internet
Worm Scanning Strategies,” Elsevier Journal of Performance Evaluation,
July 2006

[23] Z. Chen and C. Ji, Optimal Worm-Scanning Method Using Vulnerable-
Host Distributions International Journal of Security and Networks: Special
Issue on Computer and Network Security, vol. 2, 2007

[24] J. Wu, S. Vangala, L. Gao, and K. Kwiat, An Effective Architecture and
Algorithm for Detecting Worms with Various Scan Techniques, Network
and Distributed System Security Symposium 2004

[25] J. Twycoss, M. Williamson: Implementing and Testing a Virus Throttle.
In: Proceedings. 12th USENIX Security Symposium, Washington, 2003

[26] M. Vivo, E. Carrasco, G. Isern, G. Vivo, A review of port scanning
techniques, ACM Computer Communications Review,Volume 29, Apr.
1999

[27] A. Voyiatzis, D. Serpanos: Pulse: A Class of Super-Worms against
Network Infrastructure. ICDCS Workshops 2003

[28] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, ”Survey and taxonomy
of ip address lookup algorithms,” IEEE Network Magazine,vol.15,Mar.-
Apr. 2001

[29] J. Jung, V. Paxson, A. Berger, and J.Balakrishnan, Fast Portscan
Detection Using Sequential Hypothesis Testing, In Proc. of the IEEE
Symposium on Security and Privacy, May 2004

[30] S. Staniford, J. Hoagland, J. McAlerney: Practical Automated Detection
of Stealthy Portscans. Journal of Computer Security 10(1/2), 2002

[31] S. Bellovin, B. Cheswick, A. Keromytis. Worm propagation strategies in
an IPv6 Internet. http://www.cs.columbia.edu/ smb/papers/v6worms.pdf,
LOGIN, Vol 31. No.1.

[32] P. Wang, S. Sparks, C. Zou. ”An Advanced Hybrid Peer-to-Peer Botnet”,
preprint, IEEE Transactions on Dependable and Secure Computing, 2009

[33] A. Wagner, T. Dubendorfer, B. Plattner, R. Hiestand, Experiences
with Worm Propagation Simulations ACM Workshop on Rapid Malcode
(WORM), 2003

[34] M. Vojnovic, V.Gupta, T.Karagiannis, and C.Gkantsidis, Sampling
Strategies for Epidemic-Style Information Dissemination, IEEE Infocom,
2008

[35] A. Kamra, H. Feng, V. Misra and A. Keromytis, The Effect of DNS
Delays on Worm Propagation in an IPv6 Internet, Proceedings of IEEE
Infocom, IEEE, Miami, FL, USA, 2005.

[36] A. Kumar, V. Paxson, N. Weaver, Exploiting Underlying Structure for
Detailed Reconstruction of an Internet-scale Event. In the proceedings of
ACM IMC, New Orleans, LA, Oct 2005.

[37] C. Gates, Co-ordinated Port Scans: A Model, A Detector and An
Evaluation Methodology. PhD Thesis. Dalhousie University. Feb., 2006

[38] S. Friedl, Analysis of the new ”Code Red II” Variant,
http://www.unixwiz.net/techtips/CodeRedII.html, Last Accesses Apr
15, 2008

[39] C. Zou, W. Gong, D. Towsley. ”Code Red Worm Propagation Modeling
and Analysis,” 9th ACM Conference on Computer and Communication
Security (CCS’02), Nov. 18-22, Washington DC, USA, 2002

[40] D. Moore, C. Shannon, and J. Brown. Code-Red: a case study on the
spread and victims of an Internet Worm. In Proc. ACM/USENIX Internet
Measurement Workshop, France, November, 2002

[41] H. Balakrishnan, M.Kaashoek, D.Karger, R.Morris, and I.Stoica. Look-
ing up data in P2P systems. In Communications of the ACM, February
2003.

[42] J. Cho, H. Garcia-Molina ”Effective page refresh policies for Web
crawlers.” ACM Transactions on Database Systems, 28(4): December
2003.

[43] http://www.bittorrent.com/
[44] http://www.emule-project.net/
[45] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,

I. Stoica, and H. Yu. OpenDHT: A Public DHT Service and Its Uses.
Proceedings of ACM SIGCOMM 2005, August 2005.

[46] Strange Attractors and TCP/IP Sequence Number Analysis - One Year
Later, http://www.iu.hio.no/ haugerud/ids/SAATSNA OYL.pdf

[47] http://www.distributed.net/


