
Scalable Learning Through Error-correcting Codes based Clustering in Autonomous
Systems

Ganapathy Mani∗, Bharat Bhargava†

Department of Computer Science & CERIAS
Purdue University

West Lafayette, USA
manig@purdue.edu∗, bbshail@purdue.edu†

Abstract—Intelligent Autonomous systems (IAS) continu-
ously receive large streams of diverse data from numerous
entities operating and interacting in their environment. It is
vital that the learning models in IAS to scale up to the new
and unknown data items that were not present in the training
or testing datasets. Scalable learning is nothing but a method to
achieve maximum classification without rejecting any unknown
data item as anomalies. In this paper, we present Perfect Error-
correcting Codes (PEC) clustering technique to approximate
the classes of multi-feature data items by reversing standard
forward error correction coding. Approximating classes prob-
lems generally arise in information systems that are processing
fuzzily cataloged data items. These data items can be classified
by applying binary vectors to their corresponding features (1:
feature is present or 1: feature is absent) to obtain message
words. These codewords can be used as cluster centers. In
PEC clustering, binary vectors of 23 bits are mapped into
codewords (labels or indices) of 12 bits. Two binary vectors with
the Hamming distance of 2 will have a few common labels thus
classified accordingly. PEC clustering has 223 codeword space,
which makes it ideal for scalability in clustering of thousands
of categories. With reasonable redundancy, the clustering can
be accomplished in O(N) time. In addition, we present an
information processing model for on-the-fly processing of data
streams with multi-processor pipeline: Read, Analyze, and
Toggle (RAT) model.

Keywords-error-correcting codes; clustering; scalable learn-
ing; deep learning; fuzzy logic; autonomous systems;

I. INTRODUCTION

Classification problems generally arise in dynamic en-
vironments with many classes [1], in which IAS operate.
As Figure 1 shows, the large data streams can only be
analyzed in indirect ways where they can be either sampled
or classified into clusters. But sometimes, sampling may
produce very skewed results [2]. Hence, clustering can be a
right option to process big data. One well-known example
is recognizing thousands of visual data items—one of the
biggest challenges in computer vision and big data pro-
cessing. The vast number of classes make the conventional
one-verses-all multi-class paradigm to be very expensive
in terms of time and space. The time complexity grows
linearly with number of categories, which makes training
and testing prohibitive for real-time practical applications

such autonomous robots. These autonomous systems require
high throughput with low latency.

Figure 1. Categorizing large data streams

Most classification methods that are used for classifying
data with thousands of diverse categories merge into models
built based on trees [3] [4]. In [4], the authors propose a state
of the art label tree-based model that performs significantly
well during testing. Each node in a label tree is associated
with a few classes and a classifier (linear) that decides which
branch to follow. But this model has several limitations
in terms of learning. The technique involves one-vs-all
classifiers for training and the classifier is costly. The label
trees are allowed to overlap, which increases the complexity.
Similar to this technique, other tree-based models [5] [6]
utilize expensive multi-class classifiers.

In order to provide scalability to the ever growing number
of classes in dynamic and unpredictable environment, label-
ing categories and creating clusters based on those categories
must be (a) fast and efficient to process data streams and (b)
accurate to be used for practical applications. In this paper,
we present a clustering scheme—PEC clustering—that is
based on reversing the standard forward error-correcting
codes. With the combination of 23 bits in a binary vectors
223 clusters (categories) can be created. We also propose
a data stream processing structure—RAT multi-processor
pipeline—that can process data items in parallel.

The rest of the paper is organized as follows. Section II

presents the related work, section III summarizes the PEC
clustering technique with the explanation of perfect codes
and parallel processing of data streams, section IV evaluates
the scheme and compares the time complexities with other
clustering techniques, we finally conclude along with our
future work in section V.

II. RELATED WORK

Categorizing large number of image data items has re-
ceived significant attention in computer vision after datasets
of very large object classes such as ImageNet [7] became
publicly available. One category of work focuses on efficient
feature categorization and achieving significant performance
increases [8] [9]. Another category focuses on optimizations
using tree-based models [10] [11]. Recent advances in deep
learning has lead to the proposal of state-of-the-art perfor-
mance challenges [12]. These models assume that there is
always a prior probability available for entire training data.
These mechanisms work relatively well if the goal is just to
store maximum number of classes.

Error-correcting codes have played vital part in develop-
ing machine learning tools [13]. A fault-tolerant indexing
scheme has been proposed in [14] that takes advantage of the
perfect codes and our current work is directly inspired from
their project. These codes provide a robust classification
mechanisms when the data can only be categorized in a
fuzzy manner.

III. PERFECT ERROR-CORRECTING CODE (PEC)
CLUSTERING

In conventional forward error correction techniques, re-
dundant parity bits are joined with a data word to create a
codeword. In case of any discrepancies during transmission
of the codeword, parity bits are used to restore the initial
data word. In PEC clustering scheme, we use a perfect
(23, 12, 7) error correction scheme. It has the minimum
hamming distance of 7. So up to 3 bits of errors can
be corrected if there are discrepancies. Codewords become
spheres (clusters) with unique 23-bit binary vector as hash
index. The explanation of mapping data word space to
codewords can be found in [15].

A. Perfect Error-correcting Code

Hamming bound for error correcting codes is defined as,
for any code E,

E = (Mn, Dk, Hd) (1)

Here Mn is the length of codeword, Dk is the dimension
(length of the data word), and Hd is the minimum Hamming
distance between two codewords and Hd ≤ 2e + 1. It
satisfies,

|E|
e∑

i=0

(
Mn

i

)
≤ 2Mn (2)

PEC with (23, 12, 7) code satisfies the Hamming bound
equality as follows (Mn = 23, Dk = 12, and Hd = 7),

212 ·
∑3

i=0

(
23
i

)
= 212 · 211 = 223

Here,

211 =
(
23
0

)
+
(
23
1

)
+
(
23
2

)
+
(
23
3

)
B. PEC Clustering

(23, 12, 7) has one-to-one relationship between codeword
and data word. There are 223 codewords and 212 data words.
If the codeword space assumed to be a binary cube with 23
dimensions, it can be split equally into 212 spheres. Thus
each codeword sphere will consists of 211 = 2048 binary
vectors of the size of 23 bits. Since PEC can correct mistakes
up to three bits, 23-bit vectors inside the spheres are within
Hd = 3 Hamming distance from the centroid 23-bit vector.
Since PEC focuses on Hd = 3, the clustering scheme will
be interested in

(
23
3

)
= 1771 23-bit binary vectors that are

3 Hamming distance away from center. Other vectors with
even just 1 more bit variation will be sent to a different
sphere (cluster). 1771

2048 ≈ 86% of the vectors will stay close
to the center where as 277

2058 ≈ 14 will be assigned to new
cluster’s hash index.

Figure 2. PEC Clustering Technique

PEC clustering technique (Figure 2) applies 23-bit binary
vector to extracted features (1 for presence of feature and 0
for the absence) or predefined features and clusters them in
appropriate hash indexes (cluster labels). Predefined feature
extraction works as follows: assume a system that is clas-
sifying images of the city Washington D.C. The user can
set the features and program the software to look for those
features and apply the 23-bit vector. For example, F1: Does
the image has sharp triangle shaped white pillar?, F2 Is there
a street sign(s) with an alphabet and number? etc. Based on
the detected features, the 23-bit binary vector (e.g. 0, 1, 0,
0, 1, ...) will be created and will be assigned to a specific

cluster in the hash indices. The vector does not need to be 23
bits long since the scheme supports even fewer parameters.

Another advantage of PEC clustering is that the 23-bit
binary vectors can be used for autonomously generating 23-
bit labels to be applied for a specific type of data item.
If unknown data (that was not present in either training or
testing dataset) appears then a new template (label) can be
generated autonomously, creating a new cluster. The newly
generated template can be applied to similar data in the
future.

C. Parallel Processing of Data Streams

Information processing required for PEC clustering
scheme to classify data streams requires multiprocessor
pipeline. The PEC clustering technique must be capable
of on-the-fly processing of data streams: distributed data
processing can accommodate simultaneous processing of
sequential/parallel data streams: the key idea behind the
parallel processing is to host distributed data processing units
(DDPU) that can (a) read (R) to load the data, (b) Analyze
(A) to process and classify the data, and (c) toggle (T) to
shift to/from read or analyze.

Figure 3. RAT processing of intensive data streams

The RAT processing model (Figure 3) allows any random
algorithm to be performed on a data item on-the-fly with
sufficient number of data processors. The processing model
provides an efficient structure to transfer the states from one
state to another in different processors (e.g. CPU processing
cores). The system uses overlapping of data items through
segmentation constraints (memory or hardware) imposed by
processing module. The data streams can be autonomously
partitioned and scheduled to move through the pipeline and
to be added to the corresponding clusters. One of the unique
features of RAT pipeline structure is that it does not require
any conventional parallel processing techniques but can be
accomplished by sequential processors.

IV. EVALUATION

One of the main disadvantages of popular clustering
algorithms is their time complexity. Conventional clustering
algorithms with rich functionalities operate in exponential
time. Hence they are prohibitive in preprocessing intense
real-time data streams. PEC clustering operates on hash

Table I
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF CLUSTERING

ALGORITHMS

Clustering Algorithms Time Complexities
k-means O(nkd)

Hierarchical Clustering O(n2)
Clustering using REpresentatives (CURE) [16] O(n2 log n)

ROCK [17] O(min(n2, nmmma))
CLICK [18] O(n log n)

PEC O(n)

indices for cluster assignment. Once the 23-bit binary vector
is applied to a data item, the algorithm needs to search the
related cluster in the hash and store it. In the best case
scenario, hash search can be completed in constant time
(O(1)) and in the worst case scenario the hash search can
take O(n) time. Thus the PEC clustering takes O(n) time.
There are other clustering mechanisms such as Fuzzy c-
means clustering [19] and BIRCH clustering [20] that can
complete the task in O(n) time but they are not equipped to
deal with large continuous stream of data. Comparison with
existing clustering methods is given in Table I.

Table II
AVERAGE CLUSTER SIZE WITH RANDOM 23-BIT BINARY VECTORS WITH

DIVERSE PROBABILITIES FOR ”1” OCCURRING

Position of 1 Average cluster size
1 11
5 10
10 8
15 8
20 18
23 14

Table II shows the average cluster sizes for the position of
1 in the 23-bit binary vector. The probability is determined
by Pr(1i) = i

23 where i = 1, ..., 22. The result shows the
cluster sizes are some what relatively distributed.

V. CONCLUSION

In this paper, we proposed PEC clustering based on (23,
12, 7) perfect error-correcting codes. Reversal of this error-
correction scheme results in a robust clustering technique
for stream data processing. The scheme offers 23-bit binary
vector label for each data time and producing up to 223

combinations of clusters. Hence the scheme can be used for
classifying data with thousands of categories. It can correct
up to 3 bits of errors in that 23-bit binary vector thus the
scheme offers some fault tolerant. One of the most important
qualities of PEC clustering is that it operates in O(n) time
complexity. Compared to traditional and rich functionality
clustering algorithms, PEC is fast and fault-tolerant. We
also proposed a multi-pipeline processing structure that can
efficiently process intensive data streams. We intend to apply
this technique to computer vision problems such as large-
scale image classifications in dynamic environments, and

integrate the PEC clustering technique with deep learning
models.

ACKNOWLEDGMENT

This research work is supported by NGC Research Con-
sortium.

REFERENCES

[1] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva,
“Sun database: Exploring a large collection of scene cate-
gories,” International Journal of Computer Vision, vol. 119,
no. 1, pp. 3–22, 2016.

[2] G. W. Imbens and M. Kolesar, “Robust standard errors in
small samples: Some practical advice,” Review of Economics
and Statistics, vol. 98, no. 4, pp. 701–712, 2016.

[3] G. Griffin and P. Perona, “Learning and using taxonomies
for fast visual categorization,” in Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE,
2008, pp. 1–8.

[4] S. Bengio, J. Weston, and D. Grangier, “Label embedding
trees for large multi-class tasks,” in Advances in Neural
Information Processing Systems, 2010, pp. 163–171.

[5] A. Beygelzimer, J. Langford, and P. Ravikumar, “Multiclass
classification with filter trees,” Preprint, June, vol. 2, 2007.

[6] A. Beygelzimer, J. Langford, Y. Lifshits, G. Sorkin, and
A. Strehl, “Conditional probability tree estimation analysis
and algorithms,” in Proceedings of the Twenty-Fifth Confer-
ence on Uncertainty in Artificial Intelligence. AUAI Press,
2009, pp. 51–58.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “Imagenet: A large-scale hierarchical image database,”
in Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on. IEEE, 2009, pp. 248–255.

[8] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao,
and T. Huang, “Large-scale image classification: fast feature
extraction and svm training,” in Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011,
pp. 1689–1696.

[9] K. Yu and T. Zhang, “Improved local coordinate coding
using local tangents,” in Proceedings of the 27th international
conference on machine learning (ICML-10), 2010, pp. 1215–
1222.

[10] A. Torralba, R. Fergus, and W. T. Freeman, “80 million
tiny images: A large data set for nonparametric object and
scene recognition,” IEEE transactions on pattern analysis and
machine intelligence, vol. 30, no. 11, pp. 1958–1970, 2008.

[11] J. Deng, A. C. Berg, K. Li, and L. Fei-Fei, “What does
classifying more than 10,000 image categories tell us?” in
European conference on computer vision. Springer, 2010,
pp. 71–84.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[13] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining:
Practical machine learning tools and techniques. Morgan
Kaufmann, 2016.

[14] G. Mani, N. Bari, D. Liao, and S. Berkovich, “Organization of
knowledge extraction from big data systems,” in Computing
for Geospatial Research and Application (COM. Geo), 2014
Fifth International Conference on. IEEE, 2014, pp. 63–69.

[15] S. Y. Berkovich and E. El-Qawasmeh, “Reversing the error-
correction scheme for a fault-tolerant indexing,” The Com-
puter Journal, vol. 43, no. 1, pp. 54–64, 2000.

[16] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient cluster-
ing algorithm for large databases,” in ACM Sigmod Record,
vol. 27, no. 2. ACM, 1998, pp. 73–84.

[17] ——, “Rock: A robust clustering algorithm for categorical
attributes,” Information systems, vol. 25, no. 5, pp. 345–366,
2000.

[18] M. Peters and M. J. Zaki, “Click: Clustering categorical
data using k-partite maximal cliques,” Computer Science
Department, Rensselaer Polytechnic Institute, Troy, NY, vol.
12180, 2004.

[19] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy
c-means clustering algorithm,” Computers & Geosciences,
vol. 10, no. 2-3, pp. 191–203, 1984.

[20] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient
data clustering method for very large databases,” in ACM
Sigmod Record, vol. 25, no. 2. ACM, 1996, pp. 103–114.

