
A Distributed Model-Free Ride-Sharing Algorithm with Pricing
using Deep Reinforcement Learning

Marina Haliem
mwadea@purdue.edu
Purdue University

Ganapathy Mani
manig@purdue.edu
Purdue University

Vaneet Aggarwal
vaneet@purdue.edu
Purdue University

Bharat Bhargava
bbshail@purdue.edu
Purdue University

ABSTRACT
Modern-day ride-sharing platforms leave out drivers and customers
in the decision-making process of the rides in terms of vehicle-
customer matching as well as pricing. We propose a model-free
Distributed Pricing-based Ride-sharing with pooling (DPRS) frame-
work with reinforcement utility functions for both customers and
drivers. The framework allows (1) drivers to choose their convenient
ride based on the expected reward for this ride as well as the desti-
nation locations for future rides influenced by the supply-demand
computed by the Deep Q-network, (2) customers to accept or reject
rides based on their preferred pricing window, timing preferences,
type of the vehicle, and convenient number of people to car pool
with, (3) customer to be added to the ride queue if she/he rejects the
price initiated by the driver, and (4) Influencing vehicle-passenger
matching and dispatching based on prices through reinforcement
learning (RL). Through our simulation of multi-agent ride-sharing
with pooling platform, we show that performance of the platform
significantly improved in terms of accept rate, profits of both the
customers and drivers, and reduction of travel distance as well as
idle time in between rides for drivers with similar profits, when
compared to the state of the art ride-sharing settings that don’t
consider pricing strategies or potential hotspot locations.

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Computing methodologies→Multi-agent planning.

KEYWORDS
Deep Reinforcement Learning, Neural Networks, Car Pooling, Mo-
bility on Demand, Multi-agent, Intelligent Transporartion

ACM Reference Format:
Marina Haliem, Ganapathy Mani, Vaneet Aggarwal, and Bharat Bhargava.
2020. A Distributed Model-Free Ride-Sharing Algorithm with Pricing using
Deep Reinforcement Learning. In Computer Science in Cars Symposium

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSCS ’20, December 2, 2020, Feldkirchen, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7621-1/20/06. . . $15.00
https://doi.org/10.1145/3385958.3430484

(CSCS ’20), December 2, 2020, Feldkirchen, Germany. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3385958.3430484

1 INTRODUCTION
Advanced user-centric ride-hailing services such as Uber and Lyft
are thriving in urban environments by transforming urban mobil-
ity through convenience in travel to anywhere, by anyone, and at
anytime. These ride-hailing services can have positive impact on
traffic congestion, personal mobility, environmental pollution, and
energy consumption, thereby living conditions in urban environ-
ments [Schrank et al. 2019], [Hennessy and Wiesenthal 2019]. Even
though the pooling services provide customized personal service to
customers, both the drivers and the customers are largely left out
in deciding what is best for them in terms of their conveniences
and preferences. It is challenging to introduce customer and driver
conveniences into the framework. For example, a customer may
have limitation on the money she/he could spend for a particular
ride as well as time constraints on reaching the destination. On
the other hand, driver may not be willing to accept the customer’s
convenient fare as it may negatively affect his/her profits since
the final destination may be in low demand area. Thus, a robust
framework is needed to identify trade-offs between the drivers’ and
the customers’ needs, and make a compromised decision that is
favorable to both.

It is a non-trivial optimization problem to include a pricing strat-
egy in ride-sharing (with pooling) where customers and drivers
can weigh in on the decision (customers can take or leave a ride
based on their convenience, and drivers can propose more prof-
itable price) since both may have significantly different preferences.
These unpredictable, and sometimes erratic, preferences will end
up costing drivers more because the ride cancelling rate may go up.
This increases the idle time—empty or semi-filed vehicles search-
ing for a ride—of vehicles. Increase in ride cancellation will end
up overloading the system with customers waiting for too long to
get an ideal ride. It will also increase the travel distances for each
vehicle with reduced number of customers carpooling per vehicle.
Thus adding pricing strategy has the potential to burden the system
and increase losses for customers and drivers in terms of time and
money. This prospect raises interesting research questions: (1) is it
possible to have a distributed pricing framework where drivers and
customers can make decisions individually and attain a compro-
mise that provides profits to both parties?, (2) given convenience
constraints of customers and drivers, is it possible to reduce the
rejection rate of rides through customer utility function and reduce

https://doi.org/10.1145/3385958.3430484
https://doi.org/10.1145/3385958.3430484
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3385958.3430484&domain=pdf&date_stamp=2020-12-04

CSCS ’20, December 2, 2020, Feldkirchen, Germany M. Haliem, G. Mani, V. Aggarwal, and B. Bhargava

the customer wait time?, and (3) given driver’s profit margin and
customer’s price threshold (i.e, maximum he/she is willing to pay
for the ride), is it possible to satisfy both customer as well as the
driver and increase the average earnings of the fleet?

This paper utilizes the dispatch of idle vehicles using a Deep Q-
learning (DQN) framework as in [Alabbasi et al. 2019], and we add
the profit term in the reward function so that the output expected
discounted rewards (Q-values) associatedwith each action, becomes
a good reflection of the expected earnings gained from perfroming
this action. Depending on the DQN, we decide on the pricing by
vehicles as well as the acceptance or rejection of rides by customers.
The goal of our approach is to utilize optimal dispatching provided
by the pre-defined model, influence the customer and vehicle utility
functions to achieve convenience, maximize the profits for both and
reduce the customers’ waiting time, travel time, and idle driving.
We identify the following as our major contributions:

• We integrate our novel distributed pricing approach in the ride-
sharing (with pooling) framework where, based on their conve-
nience, customers and drivers get to weigh-in on the decision-
making of a particular ride. Also, the ride-sharing decisions im-
pact pricing, and vice versa. This approach is built on top of a
distributed model-free approach for matching and dispatching
vehicles in large-scale systems, DeepPool [Alabbasi et al. 2019].
• In this framework, drivers are allowed to propose a price based on
the location of the ride (source and destination) that account for
the reward of DQN based on the destination location. Similarly,
customers can either accept or reject rides based on their pricing
threshold, timing preference, type of vehicle, and number of
people to share a ride with.
• Our framework increases the profit margins of both customers
and drivers using the reinforcement learning utility functions
that are influenced by Q-values learnt using DQN for making
the vehicles’ dispatch decisions. The optimization problem is
formulated such that our novelty framework tries to minimize
the rejection rate, customers’ waiting time, vehicles’ idle time,
total number of vehicles to reduce traffic congestion and fuel
consumption.
• Through experiments using real-word dataset of New York City’s
taxi trip records [NYC.gov 2019] (15 million trips), we simulate
the ride-sharing system with distributed pricing strategy. We
show that our novel DPRS framework increases profits for cus-
tomers and drivers when compared to various settings (ride-
sharing, no ride-sharing, dummy agent without dispatching,
DQN agent with dispatching) for similar rejection rate and travel
distance. This is challenging as the overall pricing decisions and
the acceptance rate greatly impact the ride-sharing decisions and
vice versa, as the two are not independent.

The code for this project is available at 1. The rest of the paper is
organized as follows: Section 2 provides literature review related to
our paper. Section 3 explains the architecture and the main compo-
nents of our DPRS framework, as well as the strategy for distributed
pricing. In Section 4, we give a descritopn of how the DQN dispatch-
ing algorithm works. Section 5 provides the experimental results.
Finally, Section 6 concludes this paper.

1https://github.itap.purdue.edu/Clan-labs/RS_Pricing

2 RELATEDWORK
Ride-sharing is a widely studied problem in the Artificial Intelli-
gence community. But majority of those approaches are model-
based approaches [Kleiner et al. 2011], [Zhang and Pavone 2016],
[Ma et al. 2014], where pickup locations, destinations, and travel
time are all predetermined before coming up with a dispatching
policy. They anticipate that the computed dispatching policy would
improve the performance of the system. These models cannot be
deployed in highly dynamic environments and they do not easily
adapt when the size of the states increase. In some ride-sharing
solutions, for example [Bei and Zhang 2018] incentives play a cen-
tral role in computing dispatching policies. Ride-sharing has been
studied as pick up and delivery problem (PDP) where the number of
miles travelled by vehicles is reduced, by carpooling customers [Lu
2015]. Requests for rides are generated by square block with uni-
form distribution. Graph theoretical models have also been used in
implementing ride-sharing. In [Ta et al. 2017], drivers and customer
ride requests are assumed as nodes in a bigraph where vehicles
and requests are managed by computing the max(weighted match-
ing). Equipped with real-world data, the authors in [Jauhri et al.
2017] have designed customer requests and variation in destination
location, and travel time using a graph. In [de Lira et al. 2015],
the matching algorithm uses user utility function that is leveraged
for customer-vehicle matching. In [Zhang et al. 2016], the disad-
vantages and advantages of taxi ride-pooling mode are studied by
simulation. Experimental results show that the ride-pooling can
decrease customer’s cost significantly at the same time increasing
the profit for the vehicle driver. In addition, passenger capacity is
improved considerably. Similarly, several studies show that learning
from historical taxi fleet data helps organizing the whole fleet while
reducing the customer wait-time as well as drivers’ wait-time [Zhao
et al. 2016]. In [Oda and Joe-Wong 2018], DQNmethodology is used
for adaptive dynamic fleet management and proves that distributed
framework is more scalable than the centralized framework. How-
ever, this approach does not consider ride-splitting and is only
used for dispatching vehicles per request at a time. The authors, in
[Alabbasi et al. 2019], provided the first model-free approach for
ride-sharing with pooling based on RL. However, DeepPool nei-
ther incorporates a pricing strategy, nor accommodates customers’
and drivers’ convenience. It primarily focuses on dispatching and
customer-vehicle matching using a greedy matching policy. To
the best of our knowledge, this is the first work that introduces a
model-free approach for a distributed pricing-based ride-sharing
where customers and drivers can weigh in their ride preferences,
influencing the decision making of ride-sharing platforms.

In this paper, we approach the pricing-based ride-sharing (with
pooling) problem through a model-free technique for ride-sharing
with ride-pooling. In contrast to model-based approaches in litera-
ture [Zhang and Pavone 2016] [Ma et al. 2014] [Kleiner et al. 2011]
[Bei and Zhang 2018], our proposed approach can adapt to dynamic
distributions of customer and driver preferences. The authors, in
[Alabbasi et al. 2019], provided the first model-free approach for
ride-sharing with pooling based on RL. However, DeepPool neither
incorporates a pricing strategy, nor accommodates customers’ and
drivers’ conveniences. It primarily focuses on dispatching idle vehi-
cles and customer-vehicle matching using a greedy matching policy.

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020, Feldkirchen, Germany

Vehicles Customers

Agent

DQN

Engine

CONTROL UNIT

Price Estimation Model

Demand

Prediction

Model

OSRM

Model

ETA

Model

Routes Trip

Time

Future

Demand

Vehicle State

Dispatch Actions

Requests

Environment State

Matchings

Initial

Price
Negotiated

Price

Final

Pricing Pricing

Accept

/ Reject

Decision

Price

Environment

Vehicle

State

Figure 1: DPRS Architecture

To the best of our knowledge, this is the first work that introduces
a model-free approach for a distributed pricing-based ride-sharing
where customers and drivers can weigh in their ride preferences,
influencing the decision making of ride-sharing platforms.

3 DISTRIBUTED PRICING-BASED
RIDE-SHARING (DPRS)

We propose a novel Distributed Pricing for Ride-sharing (DPRS)
framework using Deep Q-Network (DQN), where customers and
drivers (will be referred to as Agents henceforth) are involved in
the decision-making process. They learn the best pricing actions
based on their utility functions that dynamically change based
on each agent’s set of preferences and environmental variables.
Moreover, vehicles learn the best future dispatch action to take
at time step t , taking into consideration the locations of all other
nearby vehicles, but without anticipating their future decisions.
Note that, vehicles get dispatched to areas of anticipated high-
demand either when just enter the market, or when they spend
a long time being idle (searching for a ride). Vehicles’ dispatch
decisions are made in parallel. To guarantee distribution, updates
are performed sequentially so that vehicles can take other vehicles’
actions into account when making their own decisions. However,
each vehicle does not influence the future. Therefore, our algorithm
learns the optimal policy for each agent independently as opposed
to centralized-based approaches such as the setting in [Oda and Joe-
Wong 2018]. actions of other vehicles, thus limiting the coordination
among them.

Figure 1 shows the basic components of DPRS and the interac-
tions between them. We assume that the control unit is responsible
for: (1) making the initial matching decisions, based on the prox-
imity of vehicles to ride requests, (2) maintaining the states such
as current locations, current capacity, destinations, etc., for all ve-
hicles. These states are updated in every time step based on the
dispatching and matching decisions. (3) Control unit also has some
internal components that help manage the ride-sharing environ-
ment such as: the estimated time of arrival (ETA) model used to
calculate and contentiously update the estimated arrival time. The
OSRM model used to generate the vehicle’s optimal trajectory to
reach a destination, and demand prediction models used to calculate
the future anticipated demand in all zones. First, the ride requests
are input to the system along with the heat map for supply and

demand. Then, the control unit performs greedy vehicle-passenger
matching where a request is assigned to the nearest vehicle, cal-
culates the corresponding initial pricing and notifies the driver.
Vehicles adopt a dispatching policy using DQN, where they get
dispatched to zones with anticipated high demand when they ex-
perience large idle duration or when they newly enter the market.
Using the expected discounted reward learnt from DQN and the
ride’s destination, vehicles weigh their utility based on the potential
hotspot locations, and propose a new pricing for the customer. A
Customer has the right to accept or reject based on his/her own
independent utility function. A Vehicle communicates with the con-
trol unit, as needed, to request new information of other vehicles
(prior to making a dispatch or price decision) or update its own
status (after any decision).

For the DQN dispatch, we use the framework as in [Alabbasi
et al. 2019], and add the profit in the reward function. The details
are provided Section 4 and further explained in Appendix A. In thi
section, we focus on the pricing algorithm, and involving both the
drivers and the customers in the decision-making process.

3.1 Initial Pricing
In our algorithm, we consider various vehicle types: hatch-back,
sedan, luxury, and van. Each ofwhich has different capacity, mileage,
and base price for driver per trip denoted by Bj . Bj serves as the
local minimum earning that the driver gains per trip. Also, based on
the vehicle type, the pricing per mile distance varies as well as the
pricing per waiting minute. Initially, the system suggests a price for
each vehicle-customer matching, taking into consideration several
factors:
• The total trip distance, i.e., the distance till pickup plus the dis-
tance from pickup to drop off. Note that, this distance is composed
of k routes/edges that constitute the vehicle’s optimal path to the
destination, denoted: Di =

∑k
i=1 ri .

• Number of customerswho share travelling a trip distance (whether
all or part of it, which can be determined from the vehicle’s path).
For simplicity, we denote it by vehicle j’s capacity V j

C at time t .
• The cost for fuel consumption associated with this trip, denoted
by Di ∗ (PG/Mj), where PG represents the average gas price, and
M

j
V denotes the mileage for vehicle j assigned to trip i .

• The waiting time experienced by the customer (or customers)
associated with trip i till pickup, denoted Ti .

The overall price initialization equation is represented as:

Bj +

[
ω1 ∗

Di

V
j
C

]
+

[
ω2 ∗

(
Di

V
j
C

∗ (PG/M
j
V)

)]
−

[
ω3 ∗Ti

]
(1)

where ω1,ω2, and ω3 are the weights associated with each of the
factors affecting the price calculation. ω1 is the price per mile dis-
tance according to the vehicle type.ω2 is set to 1 as it doesn’t change
across vehicles, what changes is the mileage in this factor. Finally,
ω3 is the price per waiting minute that is influenced by the vehicle
type, it is negative here as we want to minimize the waiting time
for the customer. Note that, our framework runs in two modes. A
customer can select either to carpool or not. If the customer decides
not to carpool, the vehicle will not pickup any extra customers until
this customer drops off, and thus V j

C will always be 1. However,

CSCS ’20, December 2, 2020, Feldkirchen, Germany M. Haliem, G. Mani, V. Aggarwal, and B. Bhargava

for ride-sharing customers: the path for trip i , Di is composed of
k routes: Di =

∑k
i=1 ri . So, for each customer, Di will be the sum

of distances of the shared routes among other customers, with V j
C

set to the number of customers to ride-share with. Then, the price
for the remaining non-shared distance, if any, will be calculated
with Di equals to the sum of distances of all un-shared routes and
V
j
C = 1. The sum of both will constitute the total initial pricing.
This initial pricing gets updated for on-board passengers when-
ever a vehicle picks up an additional customer (as the V j

C will now
increase), where all the overlapping (shared) distances are taken
into consideration (when constructing Di) and thus price may get
reduced. Our proposed algorithm will first use the initial price and
notify the driver, who will then modify the pricing based on the
Q-values of the driver’s dispatch-to location.

3.2 Vehicles’ Proposed Pricing
Each driver follows a dispatch policy once he/she enters the market.
This dispatch policy provides him/her with the best next dispatch
action to make, which is predicted after weighing the expected
discounted rewards (Q-values) associated with each possible move
on the map using DQN (described in Appendix A.3 and A.4). As a
result of running such a policy every dispatch cycle (which is set to
5 minutes), the driver gains insight about how the supply-demand
is distributed over the city, and thus can make informed decisions
on which destinations can yield him a higher profit. The driver’s
decision-making process is formulated as follows:
• Based on the knowledge of the expected discounted reward —Q-
values —associated with the action of going to each location on
the map (i.e. using DQN to learn the Q-values associated with
each action), the driver can order the destinations descendingly
and assign each of them a rank α , representing where it falls in
that ordered list. The driver dynamically maintains this ranking
and continuously updates it whenever the dispatch policy runs.
For flexibility, the driver also has a tolerance rate, λ (which is a
percentage), that he/she uses to decide on the size of the desired
zones list.
• Upon receiving the initial price, and the request pickup location,
the driver retrieves the ranking α associated with various des-
tinations. After that, he adds the highest ranking λ locations to
a set of desired zones, denoted L. Then, if the request’s location
is among that desired set L, the driver uses the initial pricing
suggested for this trip, denoted Pinit (Ri).
• Otherwise, it would indicate that he/she might end up in the
middle of nowhere (region with low demand), and thus receives
no more requests or at least drives idle a long distance. Instead
of just rejecting the request, he/she can suggest a price to the
customer that is slightly higher by a factor influenced by both
the rank of the destination as well as his/her own base price per
trip Bj .
Let P(Ri) represents the final price suggested by driver j for the

customer associated with request/trip i , the driver’s price decision
is as follows:

P(Ri) =

{
Pinit (Ri) if loc(Ri) ∈ L
Pinit (Ri) + [Pinit (Ri) ∗

αloc (Ri)
2 ∗ Bj] otherwise

(2)

3.3 Customers’ Decision Function
After the driver makes a decision regarding the price associated
with the trip, it becomes the customer’s turn to make his own
decision according to his/her set of preferences. In our algorithm,
we consider various preferences for each customer:
• Whether the customer is in a hurry or not or howmuch delay can
he/she tolerate. This is taken into consideration in the customer’s
utility and denoted by delay / waiting time of trip i: Ti .
• Whether the customer prefers car-pooling or would rather take
the ride alone even if it means a higher price. This is captured
in the utility equation based on the current capacity of vehicle j
assigned to trip i , denoted by V j

C .
• Whether he/she prefer a certain type of vehicle for their trip,
and whether he/she is willing to par more in exchange for a
more luxurious vehicle. The type of vehicle j assigned to trip i is
denoted by V j

T .
Based on all these factors, the customer’s utility for request/trip i
is formulated as:

Ui =

[
ω4 ∗

1
V
j
C

]
+

[
ω5 ∗

1
Ti

]
+

[
ω6 ∗V j

T

]
(3)

where ω4,ω5, and ω6 are the weights associated with each of
the factors affecting the customer’s overall utility. To add more
flexibility, we introduce a customer’s compromise threshold δi to
represent how much the customer i is willing to compromise in
the decision-making process. Finally, the decision of customer i to
accept or reject, denoted byCid , after receiving the final price P(Ri)
for the trip i is as follows:

Cid =

{
1 ifUi > P(Ri) − δi

0 otherwise
(4)

Upon customer’s acceptance, no further action is required, and
the process continues normally. However, upon rejection a new
matching process is initiated to match this request to another vehi-
cle that better meets their preferences.

3.4 DPRS Algorithm
In this section, we explain our proposed pricing-based ride-sharing
(DPRS) algorithm in detail. Recall the ride-sharing framework archi-
tecture shown in Figure 1. The full algorithm is shown in Algorithm
1, and can be summarized as follows:
(1) First, for each newly entered vehicle to the system, the agent

(i.e., vehicle) determines its action at , and gains insight about
the supply-demand situation over the city using its Q-Network
agent [see lines 6 - 14]. Every vehicle Vj selects the action
that maximizes its own reward, i.e., taking the arдmax of the
DQN-network output. The output of the DQN are the Q-values
associated with every possible move that the vehicle can make
at time step t , the input is the environment state vector st .

(2) Second, using our algorithm, the vehicles get matched to one
or more requests, and initial pricing is calculated depending on
whether it is on ride-sharing mode or not. Then, the proposed
pricing strategy is used by vehicles takes place, which would
be accepted by customers if it is bounded by their utility [see
lines 16 - 39]. In our algorithm, we adopt a greedy matching

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020, Feldkirchen, Germany

policy, where requests initially get matched to the nearest avail-
able vehicle. As rejections from customers are received, our
algorithm tries to accommodate their preferences, instead of
losing customers once they reject the initial assigned vehicle.
We avoid further rejections that would result in further delay for
the customer by running the matching policy again but feeding
it with the learnt customer preferences. So, the customer does
not get directly matched to the second nearest vehicle, as that
vehicle might still not accommodate the customer’s needs, and
thus gets rejected as well. After acceptance from both parties,
vehicle traverses to the pickup locations of passengers using
the shortest optimal path in the road network graph, and even-
tually to drop them off at their destinations. In the ride-sharing
mode, upon picking up additional customers, the price for other
on-board passengers gets reduced, taking into consideration all
overlapping distances [see lines 26 - 29].

(3) Finally, dispatching happens again for vehicles whose idle time
TI exceeds the maximum dispatch cycle (set to 10 minutes), as
our model tries to maximize utilization, it dispatches those idle
vehicles to zones of anticipated high demand [see lines 42 - 45].
Finally, each vehicle updates its status at the DQN based on the
chosen actions (lines 39, 41, and 46).

4 DISTRIBUTED DQN DISPATCHING
APPROACH

We utillize this framework in order to re-balance vehicles over the
city to better serve the demand. At the beginning of every time step
t , vehicles that newly enter the system at time t , are dispatched to
areas of anticipated high demand follwoing this approach. More-
over, at the end of every time step, we check for vehicles whose
idle duration exceeds 10 minutes, and we apply this technique to
dispatch them to high-demand areas to better utilize our respurces.
The overall flow of this framework is explained in Algorithm 2.

4.1 DQN Design and Model Parameters:
We build a ride-sharing simulator to train and evaluate our frame-
work. We simulate New York City as our area of operation and the
area is divided into multiple non-overlapping zones (or regions),
each of which is 1 square mile. This allows us to discretize the area
of operation and thus makes the action space—where to dispatch
the vehicles—tractable. We usem ∈ {1, 2, 3, ...,M} to denote the
city’s zones. We optimize our algorithm over T time steps, each of
duration ∆t . Here, we present the model parameters and notations:
(1) Demand: We denote the number of requests for zonem at time

t as dt,m . dt, t̃,m is the number of vehicles that are currently
unavailable at time t but will become available at time t̃ as they
will drop-off customer(s) at regionm. dt, t̃,m can be estimated
using the estimated time of arrival (ETA) model in [Alabbasi
et al. 2019]. We denote the predicted future demand from time
t0 to time t + T at each zone as Dt :T = {d̄t ,, d̄t+T }. Such
information can be reached by maintaining the state vectors
described next in 2.

(2) State Vector: The state variables are utilized to reflect the envi-
ronment status. We use Xt = {xt,1,xt,2, ... ,xt,N } to denote
the N vehicles’ status at time t . xt,n is a vector that represents
vehicle n’s state variables at time step t such as: its current

Algorithm 1 DPRS Algorithm
1: Inputs: Evironemnt State Vector st , Ride Requests, map-based loca-

tions.
2: Outputs: Matching, Dispatching and Pricing decisions based on

learnt Q-values
3: Construct an initial state vector st = (Xt , Vt :t+T , Dt :t+T).
4: for t ∈ Total Time . . . do
5: Fetch all ride requests at time slot t
6: Fetch all vehicles that entered the market in time slot t, Vnew
7: for each Vj in Vnew . . . do
8: Run the DQN dispatch policy in Algorithm 2.
9: Get the best dispatch action a jt for each new vehicle Vj from

the Q-network.
10: Find the shortest path to the dispatch location of vehicle Vj .
11: Generate the trajectory of vehicle Vj .
12: Get the list of q-values associated with map locations from the

Q-network.
13: Store a ranking α associated with each of the map locations.
14: Create set L of top λ "desired" locations that gives highest util-

ity.
15: end for
16: Fetch all vehicles whose Vs , OFF_DUTY && VC , CV

max
17: for each ride request Ri ∈ time slot t . . . do
18: Run the matching policy to assign vehicleVj to request/trip Ri

.
19: Calculate the travel time till pickupTi using the ETA-model in

[Alabbasi et al. 2019].
20: Calculate initial price Pinit (Ri) for this request/trip.
21: Send Pinit (Ri) to Vehicle Vj .
22: Get P (Ri) from vehicleVj after it evaluates given loc(Ri) using

[2].
23: Send P (Ri),V j

C , andV
j
T to the customer associatedwith request

Ri .
24: Get customer’s decisionC i

d after it evaluate its utility using [3].

25: if C i
d == True then

26: if V j
C , 0 then

27: Update price for other on-board passengers.
28: end if
29: Update vehicleVj capacity as more requests can be assigned

to it.
30: Estimate the travel time using ETA model in [Alabbasi et al.

2019].
31: Find the shortest path to the pickup location.
32: Generate the trajectory of vehicle Vj .
33: if C i does not prefer ride-sharing then
34: Disable ride-sharing for Vehicle j .
35: end if
36: else
37: Go to step 22. {if rejected > 3 times, reject the request.}
38: end if
39: Update the state vector st .
40: end for
41: Send the state vector st to the Q-network.
42: Fetch all vehicles whose Vs == IDLE &&TI > 10 minutes, Vidle .

43: for each available vehicle Vn ∈ at . . . do
44: Run the DQN dispatch policy in Algorithm 2.
45: Repeat steps 9 - 14.
46: end for
47: Update the state vector st .
48: end for

location Vloc , its current capacity VC , its type VT , its maxi-
mum capacityCVmax , the time at which a passenger was picked

CSCS ’20, December 2, 2020, Feldkirchen, Germany M. Haliem, G. Mani, V. Aggarwal, and B. Bhargava

up, and the destination of each passenger. A vehicle is con-
sidered available if at least one of its seats is vacant that is, if
and only if VC < CVmax . A vehicle becomes unavailable when
all its seats are occupied or if it will not consider taking an
extra passenger. Let γj,t be a binary decision variable which
is 1 if vehicle Vj decides to serve customers, otherwise it is
0. Only available vehicles can be dispatched in our algorithm.
Let the number of available vehicles at regionm at time slot t
be vt,m =

∑N
n=1 γn,t,m {∀ vehicle n ∈ zonem}. Using the vehi-

cle’s state information, we can predict the time slot at which
that vehicle will become available (if it is currently unavailable).
Thus, for a set of dispatch actions at time t , we can predict
the number of vehicles in each zone for T time slots ahead,
from time t0 to time t +T , denoted by Vt :t+T which serves as
our predicted supply in each zone for T time slots ahead. An
improvement upon our dispatching policies can be achieved
by anticipating the demand in every zone through historical
weekly/daily distribution of trips across zones [Wyld 2005].
Combining all this data, we have defined a three tuple that cap-
tures the environment updates at time t as st = (Xt ,Vt :t+T ,Dt :t+T).
When a set of new ride requests arrive at the system, we can
retrieve from the environment all the state elements, combined
in one vector st . Also, when a passenger’s request becomes ac-
cepted, we append the customer’s expected pickup time, source,
and destination to st as well. These variables change in real time
according to the environment variations and demand/supply
dynamics. However, our framework keeps track of all these
rapid changes and seeks to make the demand, dt , ∀t and supply
vt , ∀t close enough (i.e., mismatch between them is zero).

(3) Action: ant denotes the action taken by vehicle n at time step t .
This action has two parts: a)First, if the vehicle still has vacant
seats, it decides whether to accept new passengers or to only
serve the on-board customers, and b) if it makes the decision
of accepting new customers or if it were initially totally empty,
it needs to decide on which zone to head to at time step t .
Naturally, a fully occupied vehicle cannot serve any additional
customers. Finally, if a vehicle decides to only serve its existing
on-board passengers, it uses the shortest optimal route to reach
the destinations of its customers.

(4) Reward: having explained all of the above factors, at every time
step t , the DQN agent obtains a representation for the environ-
ment, st , and a reward rt that will be explained in 4.2. Based
on this information, the agent takes an action that directs the
vehicle (that is either idle or recently entered the market) to
different dispatch zone where the expected discounted future
reward is maximized, i.e.,

∞∑
k=t

ηk−t rk (at , st) (5)

where η < 1 is a time discounting factor. In our algorithm, we
define the reward rk as a weighted sum of different performance
components that reflect the objectives of our DQN agent, which
is thoroughly explained in 4.2 The reward will be learnt from
the environment for individual vehicles and then leveraged by
the DPRS optimizer to optimize its decisions.

Algorithm 2 Dispatching using DQN
1: Input: Xt , Vt :t+T , Dt :t+T .
2: Output: Dispatch Decisions
3: Construct a state vector st,n = (Xt , Vt :t+T , Dt :t+T).
4: Get the best dispatch action at,n = arдmax [Q (st,n, a, θ)] for all

vehicles Vn using the Q-network.
5: Get the destination zone Zt, j for each vehicle j ∈ Vn based on action

at, j ∈ at,n
6: Update dispatch decisions by adding (j, Zt, j)
7: Return (n, Zt,n)

Our framework keeps track of the rapid changes of all these
variables and seeks to make the demand, dt , ∀t and supply vt ,
∀t close enough (mismatch between them is zero). Note that, by
ride-sharing we mean ride-sharing with pooling in our model.

4.2 DQN Dispatch Agent
At every time step t , the DQN agent obtains a representation for
the environment, st,n , and calculates a reward rt associated with
each dispatch-to location in the action space at,n . Based on this
information, the agent takes an action that directs the vehicle to
different dispatch zone where the expected discounted future re-
ward is maximized as in equation (5). In our algorithm, we define
the reward rk as a weighted sum of different performance com-
ponents that reflect the objectives of our DQN agent. The reward
will be learnt from the environment for individual vehicles and
then leveraged by the agnet/optimizer to optimize its decisions.
The decision variables are i) Dispatching of an available vehicle in
zonem, Vj ∈ vt,m to another zone at time slot t , ii) if a vehicle Vj
is not full, decide γj,t its availability for serving new customers at
time slot t . If the vehicle is full, then γj,t = 0. If it is empty, it will
serve new passengers whose requests generate within the vehicle
Vj ’s current region at time t .

We define the overall objectives of the dispatcher, where our
dispatch policy aims to (1) minimize the supply-demand mismatch:
(difft), (2) minimize the dispatch time: TD

t (i.e., the expected travel
time of vehicleVj to go zonem at time step t), (3) minimize the extra
travel time a vehicle takes for car-pooling compared to serving one
customer: ∆t , (4) maximize the fleet profits Pt , and (5) minimize
the number of utilized vehicles: et . Each of these objectives is rep-
resented with a corresponding term, and the DQN overall reward
function is represented as a weighted sum of these terms as follows:

(1) Minimize the supply-demand mismatch, recall that vt,m , and
d̄t,m denotes the number of available vehicles, and the antici-
pated demand respectively at time step t in zonem. We want to
minimize their difference over allM zones, therefore, we get:

difft =
M∑

m=1
(d̄t,m −vt,m) (6)

The reward will be learnt from the environment for individual
vehicles, therefore, we map this term for individual vehicles.
When vehicle serves more requests, the difference between
supply and demand is minimized, and helps satisfy the demand
of the zone it is located in. Therefore, we can get the total

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020, Feldkirchen, Germany

number of customers served by vehicle n at time step t :

Ct,n =
M∑

m=1
vnt,m (where vt,m = 1 when vt,m < d̄t,m)

where
M∑

m=1
vnt,m = 1 (γn,t,m ∈ {0, 1} where n ∈ vt,m) (7)

(2) Minimize the dispatch time, which refers to the expected travel
time of vehicle Vj to go zonem at time step t , denoted by hjt,m .
We calculate this time from the location of vehicle Vj at time t
which is already included in the state variableXt, j . Idle vehicles
get dispatched to different zones (where anticipated demand
is high) than their current zones (even if they do not have any
new requests yet), in order to pick up new customers in the
future. Since we want to minimize over all available vehicles N
over all zonesM within time t , we get the total dispatch time,
TD
t as follows:

TD
t =

N∑
n=1

M∑
m=1

hnt,m {∀ n ∈ vt,m } (8)

For individual vehicles, considering the neighboring vehicles’
locations while making their decision, we get for vehicle n at
time step t :

TD
t,n =

M∑
m=1

hnt,m {where n ∈ vt,m } (9)

(3) Minimize the difference in times that the vehicle would have
taken if it only serves one customer and the time it would take
for car-pooling. For vehicles that participate in ride-sharing,
an extra travel time may be incurred due to (1) either taking
a detour to pickup an extra customer or (2) after picking up a
new customer, the new optimal route based on all destinations
might incur extra travel time to accommodate the new cus-
tomers. This will also imply that customers already on-board
will encounter extra delay. Therefore, that difference in time
needs to be minimized, otherwise both customers and drivers
would be disincentivized to car-pool. Let t ′ be the total time
elapsed after the passenger l has requested the ride, tn,l be the
travel time that vehiclenwould have been taken if it only served
rider l , and t̃n,l be the updated time the vehicle n will now take
to drop off passenger l because of the detour and/or picking
up a new customer at time t . Note that t̃n,l is updated every
time a new customer is added. Therefore, for vehicle n, rider l
at time step t , we want to minimize: ξt,n,l = t ′ + t̃n,l − tn,l . But
for vehicle n, we want to minimize over all of its passengers,
thus:

∑∪n
l=1 ξt,n,l , where ∪n is the total number of chosen users

for pooling at vehicle n till time t . Note that ∪n is not known
apriori, but will be adapted dynamically in the DQN policy. It
will also vary as the passengers are picked or dropped by vehicle
n. We want to optimize over all N vehicles, therefore, the total
extra travel time can be represented as:

∆t =
N∑
n=1

∪n∑
l=1

ξt,n,l . (10)

For individual vehicles, extra travel time for vehicle n at time
step t becomes:

T E
t,n =

∪n∑
l=1

ξt,n,l . (11)

(4) Maximize the fleet profits. This is calculated as the average
earnings Et minus the average cost of all vehicles. Cost is cal-
culated by dividing the total travel distance of vehicle Vj by its
mileage, and multiplied by the average gas price PG . Therefore,
the average profits for the whole fleet can be represented as:

Pt =
N∑
n=1

Et,n −

[
Dt,n

Mn
V
∗ PG

]
(12)

But, since we are estimating the reward for individual vehicles,
we get for vehicle n at time step t , the average profits becomes:

Pt,n = Et,n −

[
Dt,n

Mn
V
∗ PG

]
(13)

(5) Minimize the number of utilized vehicles/resources. We capture
this by minimizing the number of vehicles that become active
from being inactive at time step t . Although we are minimizing
the number of active vehicles in time step t , if the total distance
or the total trip time of the passengers increase, it would be
beneficial to use an unoccupied vehicle instead of having ex-
isting passengers encounter a large undesired delay. Let et,n
represent whether vehicle n is non-empty at time step t . The
total number of vehicles that recently became active at time t
is given by:

et =
N∑
n=1

[
max(et,n − et−1,n , 0)

]
(14)

Having defined all our objective terms, we represent the DQN
reward function as a weighted sum of these terms as follows:

rt = −
[
β1difft + β2T

D
t + β3∆t

]
+ β4Pt − β5et (15)

Note, from equation 5, that we maximize the discounted reward
over a time frame. The negative sign here indicates that we want
to minimize the terms within the bracket.

Note that weights β1, β2, β3, β4 and β5 depend on the weight fac-
tors of each of the objectives. Further, we maximize the discounted
reward over a time frame, and the negative sign here indicates that
we want to minimize the terms within the function. Finally, note
that the reward for vehicle n is 0 if it decides to only serve the
passengers on-board (if, any). Therefore, we focus on the scenario
where vehicle n decides to serve a new user and it is willing to
take a detour at time t . In this case, the reward rt,n for vehicle
n at time slot t is represented equation 16, where the objectives
above are mapped to: (1) Ct,n : number of customers served by ve-
hicle n at time t , (2), (3) dispatch time and extra travel time are the
same, denoted by: TD

t,n , and T
E
t,n . (4) average profit for vehicle n at

time t , Pt,n . In this case, the reward rt,n for vehicle n at time t is
represented by:

rt,n = r (st,n ,at,n) = β1Ct,n + β2T
D
t,n + β3T

E
t,n + β4Pt,n

+ β5[max(et,n − et−1,n , 0)] (16)

CSCS ’20, December 2, 2020, Feldkirchen, Germany M. Haliem, G. Mani, V. Aggarwal, and B. Bhargava

In equation 16, the last term captures the status of vehiclenwhere
et,n is set to 1 if vehicle n was empty and then becomes occupied
at time t (even if by one passenger), however, if it was already
occupied and just takes a new customer, et,n is 0. The intuition
here is that if an already occupied vehicle serves a new user, the
congestion and fuel costs will be less when compared to when an
empty vehicle serves that user. Note that if we make β3 very large,
it will disincentivize passengers and drivers from making detours
to serve other passengers, Thus, the setting becomes similar to the
one in [Oda and Joe-Wong 2018], where there is no carpooling.

Note that the additional profits term Pt integaredwith the reward
function makes the output expected discounted rewards (Q-values)
associated with each possible move on the map, a good reflection
of the expected earnings gained when heading to these locations.
This gives drivers an insight about how the supply-demand is dis-
tributed over the city, and assists them in making knowledgeable
and informed decisions when it comes to ranking their desired go-
to locations that can yield them higher profits (potentail hotspots),
and thus making the corresponding pricing decisions (Section 3.2).

4.3 DQN Architecture
The output of the DQN represents the Q-value for each possible
movement/dispatch. In our simulator, the service area is divided
into 43x44, cells each of size 800mx800m. The vehicle can move
(vertically or horizontally) at most 7 cells, and hence the action
space is limited to these cells. A vehicle can move to any of the 14
vertical (7 up and 7 down) and 14 horizontal (7 left and 7 right).
This results in a 15x15 map for each vehicle as a vehicle can move
to any of the 14 cells or it can remain in its own cell. The input to
the neural network consists of the state representation, demand
and supply, while the output is the Q-values for each possible
action/move (15 moves). The input consists of a stack of four feature
planes of demand and supply heat map images each of size 51x51. In
particular, first plane includes the predicted number of ride requests
next 30 minutes in each region, while the three other planes provide
the expected number of available vehicles in each region in 0; 15
and 30 minutes. Before passing demand and supply images into
the network, different sizes of average pooling with stride (1, 1) to
the heat maps are applied, resulting in 23 x 23 x 4 feature maps.
The first hidden layer convolves 16 filters of size 5x5 followed by
a rectifier non-linearity activation. The second and third hidden
layers convolve 32 and 64 filters of size 3x3 applied a rectifier non-
linearity. Then, the output of the third layer is passed to another
convolutional layer of size 15 x 15 x 128. The output layer is of size
15 x 15 x 1 and convolves one filter of size 1x1. Since reinforcement
learning is unstable for nonlinear approximations such as the neural
network, due to correlations between the action-value, we use
experience replay to overcome this issue. Since every vehicle runs
its own DQN policy, the environment during training changes over
time from the perspective of individual vehicles.

4.4 Learning Expected Discounted Reward
Function —Q-values —

In our algorithm, we use reinforcement learning to learn the reward
function stated in (16) using DQN. Through learning the probabilis-
tic dependence between the action and the reward function, we
learn the Q-values associated with the probabilities P(rt | at , st)

over time by feeding the current states of the system. Instead of
assuming any specific structure, our model-free approach learns the
Q-values dynamically using convolutional neural networks whose
architecture is described in 1. Deep queue networks are utilized to
dynamically generate optimized values. This technique of learn-
ing is characterized by its high adaptability to dynamic features in
the system, which is why it is widely adopted in modern decision-
making tasks. The optimal action-value function for vehicle n is
defined as the maximum expected achievable reward. Thus, for any
policy πt we have:

Q∗(s,a) =maxπ E

[
∞∑
k=t

ηk−t rk,n | (st,n = s,at,n = a,πt)]

(17)
where 0 < η < 1 is the discount factor for the future. If η is small
(large, resp.), the dispatcher is more likely to maximize the immedi-
ate (future, resp.) reward. At any time slot t , the dispatcher monitors
the current state st and then feeds it to the neural network (NN) to
generate an action. In our algorithm, we utilize a neural network
to approximate the Q function in order to find the expectation.

For each vehicle n, an action is taken such that the output of the
neural network is maximized. The learning starts with no knowl-
edge and actions are chosen using a greedy scheme by following
the Epsilon-Greedy method. Under this policy, the agent chooses
the action that results in the highest Q-value with probability 1− ϵ ,
otherwise, it selects a random action. The ϵ reduces linearly from 1
to 0.1 over Tn steps. For the nth vehicle, after choosing the action
and according to the reward rt,n , the Q-value is updated with a
learning factor σ as follows:

Q
′

(st,n ,at,n) ← (1 − σ) Q(st,n ,at,n)
+ σ [rt,n + η maxa Q(st+1,n ,a)] (18)

Similar to ϵ , the learning rate σ is also reduced linearly from 0.1 to
0.001 over 10000 steps. We note that an artificial neural network
is needed to maintain a large system space. When updating these
values, a loss function Li (θi) is used to compute the difference
between the predicted Q-values and the target Q-values, i.e.,

Li (θi) = E
[(
(rt + η maxaQ(s,a; θ̄i)) −Q(s,a;θi))2] (19)

where θi , θ̄i , are the weights of the neural networks. This above
expression represents the mean-squared error in the Bellman equa-
tion where the optimal values are approximated with a target value
of rt + η maxaQ(s,a; θ̄i), using the weight θ̄i from some previous
iterations.

The Q-values are then used to decide on the best dispatching
action to take for each individual vehicle. Since the state space is
large, we don’t use the full representation of st , instead a map-
based input is used to alleviate this massive computing. Note that,
the Q-values depend on the pricing since the decisions made by
customers and drivers impact the reward function.

5 SIMULATION AND EVALUATION RESULTS
5.1 Simulator Setup
Our simulator is created based on real public dataset of taxi trips in
Manhattan, New York city [NYC.gov 2019]. We start by populating
vehicles over the city, randomly assigning each vehicle a type and
an initial location. According to the type assigned to each vehicle,

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020, Feldkirchen, Germany

we set the accompanied features accordingly such as: maximum
capacity, mileage, and price rates (per mile of travel distance ω1,
and per waiting minute ω3). We initialize the number of vehicles,
to 8000, allowing a portion of vehicles to enter the market in every
time step t . We consider the data of June 2016 for training, and one
week from July 2016 for evaluations. We trained our DQN neural
networks using the data from June 2016 for 10000 epochs and used
the most recent 5000 experiences as a replay memory. For each
trip, we obtain the pick-up time, location, passenger count, and
drop-off locations. We use this trip information to construct travel
demand prediction model. Further, we use Python and Tensorflow to
implement our DPRS framework. To initialize the environment, we
run the simulation for 20 minutes without dispatching the vehicles.
Further, we run the simulator for 8 days, and thus T = 8*24*60
steps, where ∆t = 1 minute. Further, we set β1 = 10, β2 = 1, β3 = 5,
β4 = 12, β5 = 8, λ = 10%, ω4 = 15,ω5 = 1, and ω6 = 4.

5.2 Evaluation Metrics and Baselines:
We breakdown the reward as well as the drivers’ and customers’ util-
ities and investigate the performance for different baselines. Recall
that we want to minimize the components of our reward function:
supply-demand mismatch, average travel distance per vehicle, and
number of used vehicles captured by utilization rate. We note that
the supply-demand mismatch is reflected in our simulation through
a reject rate metric. Recall that a request is rejected if there is no ve-
hicle around in a range of 5km2 that is available to serve the request
(denoted as: Non-matched), or if it was rejected by a customer or
driver (denoted as: User Rejected). We analyze the impact of both
types of rejections. Also, the metric of idle time represents the time
at which a vehicle is not occupied while still incurring gasoline
cost and not gaining revenue. Further, the drivers’ average profits,
and the customers’ waiting time are also evaluated. We compare
our proposed DPRS Framework (with dispatching, ride-sharing
and pricing strategy) against four baslines where the dispatching,
ride-sharing, or pricing (denoted as D, RS and PS respectively) are
omitted and marked (!) accordingly as follows:

• No Dispatch, No Ride-sharing, No Pricing Strategy, (!D, !RS, !PS):
In this setting, vehicles don’t get dispatched to areas with an-
ticipated high demand, no matter how long they stay idle. Ride-
sharing is not allowed, every vehicle serves only one request
at a time. Also, initial pricing is accepted by both drivers and
customers, by default.
• No Dispatch with Ride-sharing but No Pricing Strategy (!D, RS,
!PS): similar to (!D, !RS, !PS) except that ride-sharing is allowed,
where vehicles can serve more than one request altogether.
• Dispatch with No Ride-sharing and No Pricing Strategy (D, !RS,
!PS): Here, vehicles are dispatched when idle but, ride-sharing is
not allowed similar to the setting in [Oda and Joe-Wong 2018].
• Dispatch with Ridesharing but No Pricing Strategy (D, RS, !PS):
similar to (D, !RS, !PS), but here ride-sharing is allowed, similar
to DeepPool in [Alabbasi et al. 2019].

5.3 Experimental Results
Involving drivers and customers in the decision-making process
was expected to increase both the rejection rate, and number of
vehicles utilized to serve the demand. However, even after adding
the distributed pricing based on the Q-Network that gives more

control to the customers and drivers, the ride-sharing framework
has significantly low rejection rate. Figure 2 shows that DPRS per-
forms almost equally well as DeepPool, where dispatching and
ride-sharing are considered. This implies both the drivers and cus-
tomers are achieving a compromise that is profitable and convenient
to them. We can observe that in rush hours, non-matched requests
peaks while user rejected requests remains minimal.

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020,

5 SIMULATION AND EVALUATION RESULTS
5.1 Simulator Setup
Our simulator is created based on real public dataset of taxi trips in
Manhattan, New York city [NYC.gov 2019]. We start by populating
vehicles over the city, randomly assigning each vehicle a type and
an initial location. According to the type assigned to each vehicle,
we set the accompanied features accordingly such as: maximum
capacity, mileage, and price rates (per mile of travel distance 𝜔1,
and per waiting minute 𝜔3). We initialize the number of vehicles,
to 8000, allowing a portion of vehicles to enter the market in every
time step 𝑡 . We consider the data of June 2016 for training, and one
week from July 2016 for evaluations. We trained our DQN neural
networks using the data from June 2016 for 10000 epochs and used
the most recent 5000 experiences as a replay memory. For each
trip, we obtain the pick-up time, location, passenger count, and
drop-off locations. We use this trip information to construct travel
demand prediction model. Further, we use Python and Tensorflow to
implement our DPRS framework. To initialize the environment, we
run the simulation for 20 minutes without dispatching the vehicles.
Further, we run the simulator for 8 days, and thus T = 8*24*60
steps, where Δ𝑡 = 1 minute. Further, we set 𝛽1 = 10, 𝛽2 = 1, 𝛽3 = 5,
𝛽4 = 12, 𝛽5 = 8, 𝜆 = 10%, 𝜔4 = 15, 𝜔5 = 1, and 𝜔6 = 4.

5.2 Evaluation Metrics and Baselines:
We breakdown the reward as well as the drivers’ and customers’
utilities and investigate the performance for different baselines.
Recall that we want to minimize the components of our reward
function: supply-demand mismatch, average travel distance per
vehicle, and number of used vehicles captured by utilization rate.We
note that the supply-demandmismatch is reflected in our simulation
through a reject rate metric. Recall that a request is rejected if there
is no vehicle around in a range of 5𝑘𝑚2 that is available to serve
the request (denoted as: Non-matched), or if it was rejected by a
customer or driver (denoted as: User Rejected). We analyze the
impact of both types of rejections. Also, the metric of idle time
represents the time at which a vehicle is not occupied while still
incurring gasoline cost and not gaining revenue. Further, the drivers’
average profits, and the customers’ waiting time are also evaluated.
We compare our proposed DPRS Framework (with dispatching,
ride-sharing and pricing strategy) against four baslines as follows:

• No Dispatch, No Ride-sharing, No Pricing Strategy, (!D, !RS, !PS):
In this setting, vehicles don’t get dispatched to areas with an-
ticipated high demand, no matter how long they stay idle. Ride-
sharing is not allowed, every vehicle serves only one request
at a time. Also, initial pricing is accepted by both drivers and
customers, by default.
• No Dispatch with Ride-sharing but No Pricing Strategy (!D, RS,
!PS): similar to (!D, !RS, !PS) except that ride-sharing is allowed,
where vehicles can serve more than one request altogether.
• Dispatch with No Ride-sharing and No Pricing Strategy (D, !RS,
!PS): Here, vehicles are dispatched when idle but, ride-sharing is
not allowed similar to the setting in [Oda and Joe-Wong 2018].
• Dispatch with Ridesharing but No Pricing Strategy (D, RS, !PS):
similar to (D, !RS, !PS), but here ride-sharing is allowed, similar
to DeepPool in [Alabbasi et al. 2019].

5.3 Experimental Results
Involving drivers and customers in the decision-making process
was expected to increase both the rejection rate, and number of
vehicles utilized to serve the demand. However, even after adding
the distributed pricing based on the Q-Network that gives more
control to the customers and drivers, the ride-sharing framework
has significantly low rejection rate. Figure 2 shows that DPRS per-
forms almost equally well as DeepPool, where dispatching and
ride-sharing are considered. This implies both the drivers and cus-
tomers are achieving a compromise that is profitable and convenient
to them. We can observe that in rush hours, non-matched requests
peaks while user rejected requests remains minimal.

0 5 10 15 20 25
0

10

20

30

40

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

Rejection Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 2: Rejection Rate

0 200 400 600 800
0

100

200

300

Time (in 1 min. intervals)

Av
er
ag
e
Pr
ofi

ts
pe
rV

eh
ic
le
(in

do
lla
rs
)

Average Profits per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 3: Average Profits

0 5 10 15 20 25
0

20

40

60

80

100

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

User Rejected Requests Vs. Non-matched Requests in DPRS

User Rejected Requests
Non-matched Requests

Figure 4: Reject Types

0 200 400 600 800

0

0.5

1

1.5

·105

Time (in 1 min. intervals)

Av
g.
Tr
av
el
D
is
ta
nc
e
pe
rV

eh
ic
le
(in

m
et
er
s)

Average Travel Distance per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 5: Avg. Distance

0 5 10 15 20 25

0

0.5

1

1.5

2

Time (in 1 hour intervals)

Av
g.
W
ai
tin

g
Ti
m
e
pe
rR

eq
ue
st
(in

m
in
.)

Average Waiting Time per Request for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 6: Avg. Wait Time

0 200 400 600 800

0

0.5

1

1.5

2

·104

Time (in 1 min. intervals)

Av
g.
Id
le
Ti
m
e
pe
rV

eh
ic
le
(in

m
in
.)

Average Idle Time per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 7: Avg. Idle Time

0 5 10 15 20 25
0

20

40

60

80

Time (in 1 hour intervals)

Ve
hi
cl
es
’U

til
iz
at
io
n
Ra

te
(%
)

Resources Utilization Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 8: Utilization Rate

0 200 400 600 800

0

2,000

4,000

6,000

Time (in 1 min. intervals)

N
um

be
ro

fU
til
iz
ed

Ve
hi
cl
es

Number of Utilized Vehicles for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 9: Number of Utilized
Vehicles

Also, DPRS enhances the utilization of vehicles (i.e. makes use of
every available seat, while minimizing the total number of vehicles

Figure 2: Rejection Rate

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020,

5 SIMULATION AND EVALUATION RESULTS
5.1 Simulator Setup
Our simulator is created based on real public dataset of taxi trips in
Manhattan, New York city [NYC.gov 2019]. We start by populating
vehicles over the city, randomly assigning each vehicle a type and
an initial location. According to the type assigned to each vehicle,
we set the accompanied features accordingly such as: maximum
capacity, mileage, and price rates (per mile of travel distance 𝜔1,
and per waiting minute 𝜔3). We initialize the number of vehicles,
to 8000, allowing a portion of vehicles to enter the market in every
time step 𝑡 . We consider the data of June 2016 for training, and one
week from July 2016 for evaluations. We trained our DQN neural
networks using the data from June 2016 for 10000 epochs and used
the most recent 5000 experiences as a replay memory. For each
trip, we obtain the pick-up time, location, passenger count, and
drop-off locations. We use this trip information to construct travel
demand prediction model. Further, we use Python and Tensorflow to
implement our DPRS framework. To initialize the environment, we
run the simulation for 20 minutes without dispatching the vehicles.
Further, we run the simulator for 8 days, and thus T = 8*24*60
steps, where Δ𝑡 = 1 minute. Further, we set 𝛽1 = 10, 𝛽2 = 1, 𝛽3 = 5,
𝛽4 = 12, 𝛽5 = 8, 𝜆 = 10%, 𝜔4 = 15, 𝜔5 = 1, and 𝜔6 = 4.

5.2 Evaluation Metrics and Baselines:
We breakdown the reward as well as the drivers’ and customers’
utilities and investigate the performance for different baselines.
Recall that we want to minimize the components of our reward
function: supply-demand mismatch, average travel distance per
vehicle, and number of used vehicles captured by utilization rate.We
note that the supply-demandmismatch is reflected in our simulation
through a reject rate metric. Recall that a request is rejected if there
is no vehicle around in a range of 5𝑘𝑚2 that is available to serve
the request (denoted as: Non-matched), or if it was rejected by a
customer or driver (denoted as: User Rejected). We analyze the
impact of both types of rejections. Also, the metric of idle time
represents the time at which a vehicle is not occupied while still
incurring gasoline cost and not gaining revenue. Further, the drivers’
average profits, and the customers’ waiting time are also evaluated.
We compare our proposed DPRS Framework (with dispatching,
ride-sharing and pricing strategy) against four baslines as follows:

• No Dispatch, No Ride-sharing, No Pricing Strategy, (!D, !RS, !PS):
In this setting, vehicles don’t get dispatched to areas with an-
ticipated high demand, no matter how long they stay idle. Ride-
sharing is not allowed, every vehicle serves only one request
at a time. Also, initial pricing is accepted by both drivers and
customers, by default.
• No Dispatch with Ride-sharing but No Pricing Strategy (!D, RS,
!PS): similar to (!D, !RS, !PS) except that ride-sharing is allowed,
where vehicles can serve more than one request altogether.
• Dispatch with No Ride-sharing and No Pricing Strategy (D, !RS,
!PS): Here, vehicles are dispatched when idle but, ride-sharing is
not allowed similar to the setting in [Oda and Joe-Wong 2018].
• Dispatch with Ridesharing but No Pricing Strategy (D, RS, !PS):
similar to (D, !RS, !PS), but here ride-sharing is allowed, similar
to DeepPool in [Alabbasi et al. 2019].

5.3 Experimental Results
Involving drivers and customers in the decision-making process
was expected to increase both the rejection rate, and number of
vehicles utilized to serve the demand. However, even after adding
the distributed pricing based on the Q-Network that gives more
control to the customers and drivers, the ride-sharing framework
has significantly low rejection rate. Figure 2 shows that DPRS per-
forms almost equally well as DeepPool, where dispatching and
ride-sharing are considered. This implies both the drivers and cus-
tomers are achieving a compromise that is profitable and convenient
to them. We can observe that in rush hours, non-matched requests
peaks while user rejected requests remains minimal.

0 5 10 15 20 25
0

10

20

30

40

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

Rejection Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 2: Rejection Rate

0 200 400 600 800
0

100

200

300

Time (in 1 min. intervals)

Av
er
ag
e
Pr
ofi

ts
pe
rV

eh
ic
le
(in

do
lla
rs
)

Average Profits per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 3: Average Profits

0 5 10 15 20 25
0

20

40

60

80

100

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

User Rejected Requests Vs. Non-matched Requests in DPRS

User Rejected Requests
Non-matched Requests

Figure 4: Reject Types

0 200 400 600 800

0

0.5

1

1.5

·105

Time (in 1 min. intervals)

Av
g.
Tr
av
el
D
is
ta
nc
e
pe
rV

eh
ic
le
(in

m
et
er
s)

Average Travel Distance per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 5: Avg. Distance

0 5 10 15 20 25

0

0.5

1

1.5

2

Time (in 1 hour intervals)

Av
g.
W
ai
tin

g
Ti
m
e
pe
rR

eq
ue
st
(in

m
in
.)

Average Waiting Time per Request for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 6: Avg. Wait Time

0 200 400 600 800

0

0.5

1

1.5

2

·104

Time (in 1 min. intervals)

Av
g.
Id
le
Ti
m
e
pe
rV

eh
ic
le
(in

m
in
.)

Average Idle Time per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 7: Avg. Idle Time

0 5 10 15 20 25
0

20

40

60

80

Time (in 1 hour intervals)

Ve
hi
cl
es
’U

til
iz
at
io
n
Ra

te
(%
)

Resources Utilization Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 8: Utilization Rate

0 200 400 600 800

0

2,000

4,000

6,000

Time (in 1 min. intervals)

N
um

be
ro

fU
til
iz
ed

Ve
hi
cl
es

Number of Utilized Vehicles for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 9: Number of Utilized
Vehicles

Also, DPRS enhances the utilization of vehicles (i.e. makes use of
every available seat, while minimizing the total number of vehicles

Figure 3: Average Profits

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020,

5 SIMULATION AND EVALUATION RESULTS
5.1 Simulator Setup
Our simulator is created based on real public dataset of taxi trips in
Manhattan, New York city [NYC.gov 2019]. We start by populating
vehicles over the city, randomly assigning each vehicle a type and
an initial location. According to the type assigned to each vehicle,
we set the accompanied features accordingly such as: maximum
capacity, mileage, and price rates (per mile of travel distance 𝜔1,
and per waiting minute 𝜔3). We initialize the number of vehicles,
to 8000, allowing a portion of vehicles to enter the market in every
time step 𝑡 . We consider the data of June 2016 for training, and one
week from July 2016 for evaluations. We trained our DQN neural
networks using the data from June 2016 for 10000 epochs and used
the most recent 5000 experiences as a replay memory. For each
trip, we obtain the pick-up time, location, passenger count, and
drop-off locations. We use this trip information to construct travel
demand prediction model. Further, we use Python and Tensorflow to
implement our DPRS framework. To initialize the environment, we
run the simulation for 20 minutes without dispatching the vehicles.
Further, we run the simulator for 8 days, and thus T = 8*24*60
steps, where Δ𝑡 = 1 minute. Further, we set 𝛽1 = 10, 𝛽2 = 1, 𝛽3 = 5,
𝛽4 = 12, 𝛽5 = 8, 𝜆 = 10%, 𝜔4 = 15, 𝜔5 = 1, and 𝜔6 = 4.

5.2 Evaluation Metrics and Baselines:
We breakdown the reward as well as the drivers’ and customers’
utilities and investigate the performance for different baselines.
Recall that we want to minimize the components of our reward
function: supply-demand mismatch, average travel distance per
vehicle, and number of used vehicles captured by utilization rate.We
note that the supply-demandmismatch is reflected in our simulation
through a reject rate metric. Recall that a request is rejected if there
is no vehicle around in a range of 5𝑘𝑚2 that is available to serve
the request (denoted as: Non-matched), or if it was rejected by a
customer or driver (denoted as: User Rejected). We analyze the
impact of both types of rejections. Also, the metric of idle time
represents the time at which a vehicle is not occupied while still
incurring gasoline cost and not gaining revenue. Further, the drivers’
average profits, and the customers’ waiting time are also evaluated.
We compare our proposed DPRS Framework (with dispatching,
ride-sharing and pricing strategy) against four baslines as follows:

• No Dispatch, No Ride-sharing, No Pricing Strategy, (!D, !RS, !PS):
In this setting, vehicles don’t get dispatched to areas with an-
ticipated high demand, no matter how long they stay idle. Ride-
sharing is not allowed, every vehicle serves only one request
at a time. Also, initial pricing is accepted by both drivers and
customers, by default.
• No Dispatch with Ride-sharing but No Pricing Strategy (!D, RS,
!PS): similar to (!D, !RS, !PS) except that ride-sharing is allowed,
where vehicles can serve more than one request altogether.
• Dispatch with No Ride-sharing and No Pricing Strategy (D, !RS,
!PS): Here, vehicles are dispatched when idle but, ride-sharing is
not allowed similar to the setting in [Oda and Joe-Wong 2018].
• Dispatch with Ridesharing but No Pricing Strategy (D, RS, !PS):
similar to (D, !RS, !PS), but here ride-sharing is allowed, similar
to DeepPool in [Alabbasi et al. 2019].

5.3 Experimental Results
Involving drivers and customers in the decision-making process
was expected to increase both the rejection rate, and number of
vehicles utilized to serve the demand. However, even after adding
the distributed pricing based on the Q-Network that gives more
control to the customers and drivers, the ride-sharing framework
has significantly low rejection rate. Figure 2 shows that DPRS per-
forms almost equally well as DeepPool, where dispatching and
ride-sharing are considered. This implies both the drivers and cus-
tomers are achieving a compromise that is profitable and convenient
to them. We can observe that in rush hours, non-matched requests
peaks while user rejected requests remains minimal.

0 5 10 15 20 25
0

10

20

30

40

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

Rejection Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 2: Rejection Rate

0 200 400 600 800
0

100

200

300

Time (in 1 min. intervals)

Av
er
ag
e
Pr
ofi

ts
pe
rV

eh
ic
le
(in

do
lla
rs
)

Average Profits per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 3: Average Profits

0 5 10 15 20 25
0

20

40

60

80

100

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

User Rejected Requests Vs. Non-matched Requests in DPRS

User Rejected Requests
Non-matched Requests

Figure 4: Reject Types

0 200 400 600 800

0

0.5

1

1.5

·105

Time (in 1 min. intervals)

Av
g.
Tr
av
el
D
is
ta
nc
e
pe
rV

eh
ic
le
(in

m
et
er
s)

Average Travel Distance per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 5: Avg. Distance

0 5 10 15 20 25

0

0.5

1

1.5

2

Time (in 1 hour intervals)

Av
g.
W
ai
tin

g
Ti
m
e
pe
rR

eq
ue
st
(in

m
in
.)

Average Waiting Time per Request for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 6: Avg. Wait Time

0 200 400 600 800

0

0.5

1

1.5

2

·104

Time (in 1 min. intervals)

Av
g.
Id
le
Ti
m
e
pe
rV

eh
ic
le
(in

m
in
.)

Average Idle Time per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 7: Avg. Idle Time

0 5 10 15 20 25
0

20

40

60

80

Time (in 1 hour intervals)

Ve
hi
cl
es
’U

til
iz
at
io
n
Ra

te
(%
)

Resources Utilization Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 8: Utilization Rate

0 200 400 600 800

0

2,000

4,000

6,000

Time (in 1 min. intervals)

N
um

be
ro

fU
til
iz
ed

Ve
hi
cl
es

Number of Utilized Vehicles for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 9: Number of Utilized
Vehicles

Also, DPRS enhances the utilization of vehicles (i.e. makes use of
every available seat, while minimizing the total number of vehicles

Figure 4: Reject Types

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020,

5 SIMULATION AND EVALUATION RESULTS
5.1 Simulator Setup
Our simulator is created based on real public dataset of taxi trips in
Manhattan, New York city [NYC.gov 2019]. We start by populating
vehicles over the city, randomly assigning each vehicle a type and
an initial location. According to the type assigned to each vehicle,
we set the accompanied features accordingly such as: maximum
capacity, mileage, and price rates (per mile of travel distance 𝜔1,
and per waiting minute 𝜔3). We initialize the number of vehicles,
to 8000, allowing a portion of vehicles to enter the market in every
time step 𝑡 . We consider the data of June 2016 for training, and one
week from July 2016 for evaluations. We trained our DQN neural
networks using the data from June 2016 for 10000 epochs and used
the most recent 5000 experiences as a replay memory. For each
trip, we obtain the pick-up time, location, passenger count, and
drop-off locations. We use this trip information to construct travel
demand prediction model. Further, we use Python and Tensorflow to
implement our DPRS framework. To initialize the environment, we
run the simulation for 20 minutes without dispatching the vehicles.
Further, we run the simulator for 8 days, and thus T = 8*24*60
steps, where Δ𝑡 = 1 minute. Further, we set 𝛽1 = 10, 𝛽2 = 1, 𝛽3 = 5,
𝛽4 = 12, 𝛽5 = 8, 𝜆 = 10%, 𝜔4 = 15, 𝜔5 = 1, and 𝜔6 = 4.

5.2 Evaluation Metrics and Baselines:
We breakdown the reward as well as the drivers’ and customers’
utilities and investigate the performance for different baselines.
Recall that we want to minimize the components of our reward
function: supply-demand mismatch, average travel distance per
vehicle, and number of used vehicles captured by utilization rate.We
note that the supply-demandmismatch is reflected in our simulation
through a reject rate metric. Recall that a request is rejected if there
is no vehicle around in a range of 5𝑘𝑚2 that is available to serve
the request (denoted as: Non-matched), or if it was rejected by a
customer or driver (denoted as: User Rejected). We analyze the
impact of both types of rejections. Also, the metric of idle time
represents the time at which a vehicle is not occupied while still
incurring gasoline cost and not gaining revenue. Further, the drivers’
average profits, and the customers’ waiting time are also evaluated.
We compare our proposed DPRS Framework (with dispatching,
ride-sharing and pricing strategy) against four baslines as follows:

• No Dispatch, No Ride-sharing, No Pricing Strategy, (!D, !RS, !PS):
In this setting, vehicles don’t get dispatched to areas with an-
ticipated high demand, no matter how long they stay idle. Ride-
sharing is not allowed, every vehicle serves only one request
at a time. Also, initial pricing is accepted by both drivers and
customers, by default.
• No Dispatch with Ride-sharing but No Pricing Strategy (!D, RS,
!PS): similar to (!D, !RS, !PS) except that ride-sharing is allowed,
where vehicles can serve more than one request altogether.
• Dispatch with No Ride-sharing and No Pricing Strategy (D, !RS,
!PS): Here, vehicles are dispatched when idle but, ride-sharing is
not allowed similar to the setting in [Oda and Joe-Wong 2018].
• Dispatch with Ridesharing but No Pricing Strategy (D, RS, !PS):
similar to (D, !RS, !PS), but here ride-sharing is allowed, similar
to DeepPool in [Alabbasi et al. 2019].

5.3 Experimental Results
Involving drivers and customers in the decision-making process
was expected to increase both the rejection rate, and number of
vehicles utilized to serve the demand. However, even after adding
the distributed pricing based on the Q-Network that gives more
control to the customers and drivers, the ride-sharing framework
has significantly low rejection rate. Figure 2 shows that DPRS per-
forms almost equally well as DeepPool, where dispatching and
ride-sharing are considered. This implies both the drivers and cus-
tomers are achieving a compromise that is profitable and convenient
to them. We can observe that in rush hours, non-matched requests
peaks while user rejected requests remains minimal.

0 5 10 15 20 25
0

10

20

30

40

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

Rejection Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 2: Rejection Rate

0 200 400 600 800
0

100

200

300

Time (in 1 min. intervals)

Av
er
ag
e
Pr
ofi

ts
pe
rV

eh
ic
le
(in

do
lla
rs
)

Average Profits per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 3: Average Profits

0 5 10 15 20 25
0

20

40

60

80

100

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

User Rejected Requests Vs. Non-matched Requests in DPRS

User Rejected Requests
Non-matched Requests

Figure 4: Reject Types

0 200 400 600 800

0

0.5

1

1.5

·105

Time (in 1 min. intervals)

Av
g.
Tr
av
el
D
is
ta
nc
e
pe
rV

eh
ic
le
(in

m
et
er
s)

Average Travel Distance per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 5: Avg. Distance

0 5 10 15 20 25

0

0.5

1

1.5

2

Time (in 1 hour intervals)

Av
g.
W
ai
tin

g
Ti
m
e
pe
rR

eq
ue
st
(in

m
in
.)

Average Waiting Time per Request for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 6: Avg. Wait Time

0 200 400 600 800

0

0.5

1

1.5

2

·104

Time (in 1 min. intervals)

Av
g.
Id
le
Ti
m
e
pe
rV

eh
ic
le
(in

m
in
.)

Average Idle Time per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 7: Avg. Idle Time

0 5 10 15 20 25
0

20

40

60

80

Time (in 1 hour intervals)

Ve
hi
cl
es
’U

til
iz
at
io
n
Ra

te
(%
)

Resources Utilization Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 8: Utilization Rate

0 200 400 600 800

0

2,000

4,000

6,000

Time (in 1 min. intervals)

N
um

be
ro

fU
til
iz
ed

Ve
hi
cl
es

Number of Utilized Vehicles for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 9: Number of Utilized
Vehicles

Also, DPRS enhances the utilization of vehicles (i.e. makes use of
every available seat, while minimizing the total number of vehicles

Figure 5: Avg. Distance

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020,

5 SIMULATION AND EVALUATION RESULTS
5.1 Simulator Setup
Our simulator is created based on real public dataset of taxi trips in
Manhattan, New York city [NYC.gov 2019]. We start by populating
vehicles over the city, randomly assigning each vehicle a type and
an initial location. According to the type assigned to each vehicle,
we set the accompanied features accordingly such as: maximum
capacity, mileage, and price rates (per mile of travel distance 𝜔1,
and per waiting minute 𝜔3). We initialize the number of vehicles,
to 8000, allowing a portion of vehicles to enter the market in every
time step 𝑡 . We consider the data of June 2016 for training, and one
week from July 2016 for evaluations. We trained our DQN neural
networks using the data from June 2016 for 10000 epochs and used
the most recent 5000 experiences as a replay memory. For each
trip, we obtain the pick-up time, location, passenger count, and
drop-off locations. We use this trip information to construct travel
demand prediction model. Further, we use Python and Tensorflow to
implement our DPRS framework. To initialize the environment, we
run the simulation for 20 minutes without dispatching the vehicles.
Further, we run the simulator for 8 days, and thus T = 8*24*60
steps, where Δ𝑡 = 1 minute. Further, we set 𝛽1 = 10, 𝛽2 = 1, 𝛽3 = 5,
𝛽4 = 12, 𝛽5 = 8, 𝜆 = 10%, 𝜔4 = 15, 𝜔5 = 1, and 𝜔6 = 4.

5.2 Evaluation Metrics and Baselines:
We breakdown the reward as well as the drivers’ and customers’
utilities and investigate the performance for different baselines.
Recall that we want to minimize the components of our reward
function: supply-demand mismatch, average travel distance per
vehicle, and number of used vehicles captured by utilization rate.We
note that the supply-demandmismatch is reflected in our simulation
through a reject rate metric. Recall that a request is rejected if there
is no vehicle around in a range of 5𝑘𝑚2 that is available to serve
the request (denoted as: Non-matched), or if it was rejected by a
customer or driver (denoted as: User Rejected). We analyze the
impact of both types of rejections. Also, the metric of idle time
represents the time at which a vehicle is not occupied while still
incurring gasoline cost and not gaining revenue. Further, the drivers’
average profits, and the customers’ waiting time are also evaluated.
We compare our proposed DPRS Framework (with dispatching,
ride-sharing and pricing strategy) against four baslines as follows:

• No Dispatch, No Ride-sharing, No Pricing Strategy, (!D, !RS, !PS):
In this setting, vehicles don’t get dispatched to areas with an-
ticipated high demand, no matter how long they stay idle. Ride-
sharing is not allowed, every vehicle serves only one request
at a time. Also, initial pricing is accepted by both drivers and
customers, by default.
• No Dispatch with Ride-sharing but No Pricing Strategy (!D, RS,
!PS): similar to (!D, !RS, !PS) except that ride-sharing is allowed,
where vehicles can serve more than one request altogether.
• Dispatch with No Ride-sharing and No Pricing Strategy (D, !RS,
!PS): Here, vehicles are dispatched when idle but, ride-sharing is
not allowed similar to the setting in [Oda and Joe-Wong 2018].
• Dispatch with Ridesharing but No Pricing Strategy (D, RS, !PS):
similar to (D, !RS, !PS), but here ride-sharing is allowed, similar
to DeepPool in [Alabbasi et al. 2019].

5.3 Experimental Results
Involving drivers and customers in the decision-making process
was expected to increase both the rejection rate, and number of
vehicles utilized to serve the demand. However, even after adding
the distributed pricing based on the Q-Network that gives more
control to the customers and drivers, the ride-sharing framework
has significantly low rejection rate. Figure 2 shows that DPRS per-
forms almost equally well as DeepPool, where dispatching and
ride-sharing are considered. This implies both the drivers and cus-
tomers are achieving a compromise that is profitable and convenient
to them. We can observe that in rush hours, non-matched requests
peaks while user rejected requests remains minimal.

0 5 10 15 20 25
0

10

20

30

40

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

Rejection Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 2: Rejection Rate

0 200 400 600 800
0

100

200

300

Time (in 1 min. intervals)

Av
er
ag
e
Pr
ofi

ts
pe
rV

eh
ic
le
(in

do
lla
rs
)

Average Profits per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 3: Average Profits

0 5 10 15 20 25
0

20

40

60

80

100

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

User Rejected Requests Vs. Non-matched Requests in DPRS

User Rejected Requests
Non-matched Requests

Figure 4: Reject Types

0 200 400 600 800

0

0.5

1

1.5

·105

Time (in 1 min. intervals)

Av
g.
Tr
av
el
D
is
ta
nc
e
pe
rV

eh
ic
le
(in

m
et
er
s)

Average Travel Distance per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 5: Avg. Distance

0 5 10 15 20 25

0

0.5

1

1.5

2

Time (in 1 hour intervals)

Av
g.
W
ai
tin

g
Ti
m
e
pe
rR

eq
ue
st
(in

m
in
.)

Average Waiting Time per Request for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 6: Avg. Wait Time

0 200 400 600 800

0

0.5

1

1.5

2

·104

Time (in 1 min. intervals)

Av
g.
Id
le
Ti
m
e
pe
rV

eh
ic
le
(in

m
in
.)

Average Idle Time per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 7: Avg. Idle Time

0 5 10 15 20 25
0

20

40

60

80

Time (in 1 hour intervals)

Ve
hi
cl
es
’U

til
iz
at
io
n
Ra

te
(%
)

Resources Utilization Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 8: Utilization Rate

0 200 400 600 800

0

2,000

4,000

6,000

Time (in 1 min. intervals)

N
um

be
ro

fU
til
iz
ed

Ve
hi
cl
es

Number of Utilized Vehicles for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 9: Number of Utilized
Vehicles

Also, DPRS enhances the utilization of vehicles (i.e. makes use of
every available seat, while minimizing the total number of vehicles

Figure 6: Avg. Wait Time

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020,

5 SIMULATION AND EVALUATION RESULTS
5.1 Simulator Setup
Our simulator is created based on real public dataset of taxi trips in
Manhattan, New York city [NYC.gov 2019]. We start by populating
vehicles over the city, randomly assigning each vehicle a type and
an initial location. According to the type assigned to each vehicle,
we set the accompanied features accordingly such as: maximum
capacity, mileage, and price rates (per mile of travel distance 𝜔1,
and per waiting minute 𝜔3). We initialize the number of vehicles,
to 8000, allowing a portion of vehicles to enter the market in every
time step 𝑡 . We consider the data of June 2016 for training, and one
week from July 2016 for evaluations. We trained our DQN neural
networks using the data from June 2016 for 10000 epochs and used
the most recent 5000 experiences as a replay memory. For each
trip, we obtain the pick-up time, location, passenger count, and
drop-off locations. We use this trip information to construct travel
demand prediction model. Further, we use Python and Tensorflow to
implement our DPRS framework. To initialize the environment, we
run the simulation for 20 minutes without dispatching the vehicles.
Further, we run the simulator for 8 days, and thus T = 8*24*60
steps, where Δ𝑡 = 1 minute. Further, we set 𝛽1 = 10, 𝛽2 = 1, 𝛽3 = 5,
𝛽4 = 12, 𝛽5 = 8, 𝜆 = 10%, 𝜔4 = 15, 𝜔5 = 1, and 𝜔6 = 4.

5.2 Evaluation Metrics and Baselines:
We breakdown the reward as well as the drivers’ and customers’
utilities and investigate the performance for different baselines.
Recall that we want to minimize the components of our reward
function: supply-demand mismatch, average travel distance per
vehicle, and number of used vehicles captured by utilization rate.We
note that the supply-demandmismatch is reflected in our simulation
through a reject rate metric. Recall that a request is rejected if there
is no vehicle around in a range of 5𝑘𝑚2 that is available to serve
the request (denoted as: Non-matched), or if it was rejected by a
customer or driver (denoted as: User Rejected). We analyze the
impact of both types of rejections. Also, the metric of idle time
represents the time at which a vehicle is not occupied while still
incurring gasoline cost and not gaining revenue. Further, the drivers’
average profits, and the customers’ waiting time are also evaluated.
We compare our proposed DPRS Framework (with dispatching,
ride-sharing and pricing strategy) against four baslines as follows:

• No Dispatch, No Ride-sharing, No Pricing Strategy, (!D, !RS, !PS):
In this setting, vehicles don’t get dispatched to areas with an-
ticipated high demand, no matter how long they stay idle. Ride-
sharing is not allowed, every vehicle serves only one request
at a time. Also, initial pricing is accepted by both drivers and
customers, by default.
• No Dispatch with Ride-sharing but No Pricing Strategy (!D, RS,
!PS): similar to (!D, !RS, !PS) except that ride-sharing is allowed,
where vehicles can serve more than one request altogether.
• Dispatch with No Ride-sharing and No Pricing Strategy (D, !RS,
!PS): Here, vehicles are dispatched when idle but, ride-sharing is
not allowed similar to the setting in [Oda and Joe-Wong 2018].
• Dispatch with Ridesharing but No Pricing Strategy (D, RS, !PS):
similar to (D, !RS, !PS), but here ride-sharing is allowed, similar
to DeepPool in [Alabbasi et al. 2019].

5.3 Experimental Results
Involving drivers and customers in the decision-making process
was expected to increase both the rejection rate, and number of
vehicles utilized to serve the demand. However, even after adding
the distributed pricing based on the Q-Network that gives more
control to the customers and drivers, the ride-sharing framework
has significantly low rejection rate. Figure 2 shows that DPRS per-
forms almost equally well as DeepPool, where dispatching and
ride-sharing are considered. This implies both the drivers and cus-
tomers are achieving a compromise that is profitable and convenient
to them. We can observe that in rush hours, non-matched requests
peaks while user rejected requests remains minimal.

0 5 10 15 20 25
0

10

20

30

40

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

Rejection Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 2: Rejection Rate

0 200 400 600 800
0

100

200

300

Time (in 1 min. intervals)

Av
er
ag
e
Pr
ofi

ts
pe
rV

eh
ic
le
(in

do
lla
rs
)

Average Profits per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 3: Average Profits

0 5 10 15 20 25
0

20

40

60

80

100

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

User Rejected Requests Vs. Non-matched Requests in DPRS

User Rejected Requests
Non-matched Requests

Figure 4: Reject Types

0 200 400 600 800

0

0.5

1

1.5

·105

Time (in 1 min. intervals)

Av
g.
Tr
av
el
D
is
ta
nc
e
pe
rV

eh
ic
le
(in

m
et
er
s)

Average Travel Distance per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 5: Avg. Distance

0 5 10 15 20 25

0

0.5

1

1.5

2

Time (in 1 hour intervals)

Av
g.
W
ai
tin

g
Ti
m
e
pe
rR

eq
ue
st
(in

m
in
.)

Average Waiting Time per Request for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 6: Avg. Wait Time

0 200 400 600 800

0

0.5

1

1.5

2

·104

Time (in 1 min. intervals)

Av
g.
Id
le
Ti
m
e
pe
rV

eh
ic
le
(in

m
in
.)

Average Idle Time per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 7: Avg. Idle Time

0 5 10 15 20 25
0

20

40

60

80

Time (in 1 hour intervals)

Ve
hi
cl
es
’U

til
iz
at
io
n
Ra

te
(%
)

Resources Utilization Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 8: Utilization Rate

0 200 400 600 800

0

2,000

4,000

6,000

Time (in 1 min. intervals)

N
um

be
ro

fU
til
iz
ed

Ve
hi
cl
es

Number of Utilized Vehicles for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 9: Number of Utilized
Vehicles

Also, DPRS enhances the utilization of vehicles (i.e. makes use of
every available seat, while minimizing the total number of vehicles

Figure 7: Avg. Idle Time

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020,

5 SIMULATION AND EVALUATION RESULTS
5.1 Simulator Setup
Our simulator is created based on real public dataset of taxi trips in
Manhattan, New York city [NYC.gov 2019]. We start by populating
vehicles over the city, randomly assigning each vehicle a type and
an initial location. According to the type assigned to each vehicle,
we set the accompanied features accordingly such as: maximum
capacity, mileage, and price rates (per mile of travel distance 𝜔1,
and per waiting minute 𝜔3). We initialize the number of vehicles,
to 8000, allowing a portion of vehicles to enter the market in every
time step 𝑡 . We consider the data of June 2016 for training, and one
week from July 2016 for evaluations. We trained our DQN neural
networks using the data from June 2016 for 10000 epochs and used
the most recent 5000 experiences as a replay memory. For each
trip, we obtain the pick-up time, location, passenger count, and
drop-off locations. We use this trip information to construct travel
demand prediction model. Further, we use Python and Tensorflow to
implement our DPRS framework. To initialize the environment, we
run the simulation for 20 minutes without dispatching the vehicles.
Further, we run the simulator for 8 days, and thus T = 8*24*60
steps, where Δ𝑡 = 1 minute. Further, we set 𝛽1 = 10, 𝛽2 = 1, 𝛽3 = 5,
𝛽4 = 12, 𝛽5 = 8, 𝜆 = 10%, 𝜔4 = 15, 𝜔5 = 1, and 𝜔6 = 4.

5.2 Evaluation Metrics and Baselines:
We breakdown the reward as well as the drivers’ and customers’
utilities and investigate the performance for different baselines.
Recall that we want to minimize the components of our reward
function: supply-demand mismatch, average travel distance per
vehicle, and number of used vehicles captured by utilization rate.We
note that the supply-demandmismatch is reflected in our simulation
through a reject rate metric. Recall that a request is rejected if there
is no vehicle around in a range of 5𝑘𝑚2 that is available to serve
the request (denoted as: Non-matched), or if it was rejected by a
customer or driver (denoted as: User Rejected). We analyze the
impact of both types of rejections. Also, the metric of idle time
represents the time at which a vehicle is not occupied while still
incurring gasoline cost and not gaining revenue. Further, the drivers’
average profits, and the customers’ waiting time are also evaluated.
We compare our proposed DPRS Framework (with dispatching,
ride-sharing and pricing strategy) against four baslines as follows:

• No Dispatch, No Ride-sharing, No Pricing Strategy, (!D, !RS, !PS):
In this setting, vehicles don’t get dispatched to areas with an-
ticipated high demand, no matter how long they stay idle. Ride-
sharing is not allowed, every vehicle serves only one request
at a time. Also, initial pricing is accepted by both drivers and
customers, by default.
• No Dispatch with Ride-sharing but No Pricing Strategy (!D, RS,
!PS): similar to (!D, !RS, !PS) except that ride-sharing is allowed,
where vehicles can serve more than one request altogether.
• Dispatch with No Ride-sharing and No Pricing Strategy (D, !RS,
!PS): Here, vehicles are dispatched when idle but, ride-sharing is
not allowed similar to the setting in [Oda and Joe-Wong 2018].
• Dispatch with Ridesharing but No Pricing Strategy (D, RS, !PS):
similar to (D, !RS, !PS), but here ride-sharing is allowed, similar
to DeepPool in [Alabbasi et al. 2019].

5.3 Experimental Results
Involving drivers and customers in the decision-making process
was expected to increase both the rejection rate, and number of
vehicles utilized to serve the demand. However, even after adding
the distributed pricing based on the Q-Network that gives more
control to the customers and drivers, the ride-sharing framework
has significantly low rejection rate. Figure 2 shows that DPRS per-
forms almost equally well as DeepPool, where dispatching and
ride-sharing are considered. This implies both the drivers and cus-
tomers are achieving a compromise that is profitable and convenient
to them. We can observe that in rush hours, non-matched requests
peaks while user rejected requests remains minimal.

0 5 10 15 20 25
0

10

20

30

40

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

Rejection Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 2: Rejection Rate

0 200 400 600 800
0

100

200

300

Time (in 1 min. intervals)

Av
er
ag
e
Pr
ofi

ts
pe
rV

eh
ic
le
(in

do
lla
rs
)

Average Profits per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 3: Average Profits

0 5 10 15 20 25
0

20

40

60

80

100

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

User Rejected Requests Vs. Non-matched Requests in DPRS

User Rejected Requests
Non-matched Requests

Figure 4: Reject Types

0 200 400 600 800

0

0.5

1

1.5

·105

Time (in 1 min. intervals)

Av
g.
Tr
av
el
D
is
ta
nc
e
pe
rV

eh
ic
le
(in

m
et
er
s)

Average Travel Distance per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 5: Avg. Distance

0 5 10 15 20 25

0

0.5

1

1.5

2

Time (in 1 hour intervals)

Av
g.
W
ai
tin

g
Ti
m
e
pe
rR

eq
ue
st
(in

m
in
.)

Average Waiting Time per Request for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 6: Avg. Wait Time

0 200 400 600 800

0

0.5

1

1.5

2

·104

Time (in 1 min. intervals)

Av
g.
Id
le
Ti
m
e
pe
rV

eh
ic
le
(in

m
in
.)

Average Idle Time per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 7: Avg. Idle Time

0 5 10 15 20 25
0

20

40

60

80

Time (in 1 hour intervals)

Ve
hi
cl
es
’U

til
iz
at
io
n
Ra

te
(%
)

Resources Utilization Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 8: Utilization Rate

0 200 400 600 800

0

2,000

4,000

6,000

Time (in 1 min. intervals)

N
um

be
ro

fU
til
iz
ed

Ve
hi
cl
es

Number of Utilized Vehicles for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 9: Number of Utilized
Vehicles

Also, DPRS enhances the utilization of vehicles (i.e. makes use of
every available seat, while minimizing the total number of vehicles

Figure 8: Utilization Rate

A Distributed Model-Free Ride-Sharing Algorithm with Pricing using Deep Reinforcement Learning CSCS ’20, December 2, 2020,

5 SIMULATION AND EVALUATION RESULTS
5.1 Simulator Setup
Our simulator is created based on real public dataset of taxi trips in
Manhattan, New York city [NYC.gov 2019]. We start by populating
vehicles over the city, randomly assigning each vehicle a type and
an initial location. According to the type assigned to each vehicle,
we set the accompanied features accordingly such as: maximum
capacity, mileage, and price rates (per mile of travel distance 𝜔1,
and per waiting minute 𝜔3). We initialize the number of vehicles,
to 8000, allowing a portion of vehicles to enter the market in every
time step 𝑡 . We consider the data of June 2016 for training, and one
week from July 2016 for evaluations. We trained our DQN neural
networks using the data from June 2016 for 10000 epochs and used
the most recent 5000 experiences as a replay memory. For each
trip, we obtain the pick-up time, location, passenger count, and
drop-off locations. We use this trip information to construct travel
demand prediction model. Further, we use Python and Tensorflow to
implement our DPRS framework. To initialize the environment, we
run the simulation for 20 minutes without dispatching the vehicles.
Further, we run the simulator for 8 days, and thus T = 8*24*60
steps, where Δ𝑡 = 1 minute. Further, we set 𝛽1 = 10, 𝛽2 = 1, 𝛽3 = 5,
𝛽4 = 12, 𝛽5 = 8, 𝜆 = 10%, 𝜔4 = 15, 𝜔5 = 1, and 𝜔6 = 4.

5.2 Evaluation Metrics and Baselines:
We breakdown the reward as well as the drivers’ and customers’
utilities and investigate the performance for different baselines.
Recall that we want to minimize the components of our reward
function: supply-demand mismatch, average travel distance per
vehicle, and number of used vehicles captured by utilization rate.We
note that the supply-demandmismatch is reflected in our simulation
through a reject rate metric. Recall that a request is rejected if there
is no vehicle around in a range of 5𝑘𝑚2 that is available to serve
the request (denoted as: Non-matched), or if it was rejected by a
customer or driver (denoted as: User Rejected). We analyze the
impact of both types of rejections. Also, the metric of idle time
represents the time at which a vehicle is not occupied while still
incurring gasoline cost and not gaining revenue. Further, the drivers’
average profits, and the customers’ waiting time are also evaluated.
We compare our proposed DPRS Framework (with dispatching,
ride-sharing and pricing strategy) against four baslines as follows:

• No Dispatch, No Ride-sharing, No Pricing Strategy, (!D, !RS, !PS):
In this setting, vehicles don’t get dispatched to areas with an-
ticipated high demand, no matter how long they stay idle. Ride-
sharing is not allowed, every vehicle serves only one request
at a time. Also, initial pricing is accepted by both drivers and
customers, by default.
• No Dispatch with Ride-sharing but No Pricing Strategy (!D, RS,
!PS): similar to (!D, !RS, !PS) except that ride-sharing is allowed,
where vehicles can serve more than one request altogether.
• Dispatch with No Ride-sharing and No Pricing Strategy (D, !RS,
!PS): Here, vehicles are dispatched when idle but, ride-sharing is
not allowed similar to the setting in [Oda and Joe-Wong 2018].
• Dispatch with Ridesharing but No Pricing Strategy (D, RS, !PS):
similar to (D, !RS, !PS), but here ride-sharing is allowed, similar
to DeepPool in [Alabbasi et al. 2019].

5.3 Experimental Results
Involving drivers and customers in the decision-making process
was expected to increase both the rejection rate, and number of
vehicles utilized to serve the demand. However, even after adding
the distributed pricing based on the Q-Network that gives more
control to the customers and drivers, the ride-sharing framework
has significantly low rejection rate. Figure 2 shows that DPRS per-
forms almost equally well as DeepPool, where dispatching and
ride-sharing are considered. This implies both the drivers and cus-
tomers are achieving a compromise that is profitable and convenient
to them. We can observe that in rush hours, non-matched requests
peaks while user rejected requests remains minimal.

0 5 10 15 20 25
0

10

20

30

40

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

Rejection Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 2: Rejection Rate

0 200 400 600 800
0

100

200

300

Time (in 1 min. intervals)

Av
er
ag
e
Pr
ofi

ts
pe
rV

eh
ic
le
(in

do
lla
rs
)

Average Profits per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 3: Average Profits

0 5 10 15 20 25
0

20

40

60

80

100

Time (in 1 hour intervals)

Re
je
ct
io
n
Ra

te
(%
)

User Rejected Requests Vs. Non-matched Requests in DPRS

User Rejected Requests
Non-matched Requests

Figure 4: Reject Types

0 200 400 600 800

0

0.5

1

1.5

·105

Time (in 1 min. intervals)

Av
g.
Tr
av
el
D
is
ta
nc
e
pe
rV

eh
ic
le
(in

m
et
er
s)

Average Travel Distance per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 5: Avg. Distance

0 5 10 15 20 25

0

0.5

1

1.5

2

Time (in 1 hour intervals)

Av
g.
W
ai
tin

g
Ti
m
e
pe
rR

eq
ue
st
(in

m
in
.)

Average Waiting Time per Request for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 6: Avg. Wait Time

0 200 400 600 800

0

0.5

1

1.5

2

·104

Time (in 1 min. intervals)

Av
g.
Id
le
Ti
m
e
pe
rV

eh
ic
le
(in

m
in
.)

Average Idle Time per Vehicle for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 7: Avg. Idle Time

0 5 10 15 20 25
0

20

40

60

80

Time (in 1 hour intervals)

Ve
hi
cl
es
’U

til
iz
at
io
n
Ra

te
(%
)

Resources Utilization Rate for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 8: Utilization Rate

0 200 400 600 800

0

2,000

4,000

6,000

Time (in 1 min. intervals)

N
um

be
ro

fU
til
iz
ed

Ve
hi
cl
es

Number of Utilized Vehicles for Different Policies

DPRS
D, !RS, !PS
D, RS, !PS
!D, !RS, !PS
!D, RS, !PS

Figure 9: Number of Utilized
Vehicles

Also, DPRS enhances the utilization of vehicles (i.e. makes use of
every available seat, while minimizing the total number of vehicles

Figure 9: Number of Utilized Ve-
hicles

Also, DPRS enhances the utilization of vehicles (i.e. makes use of
every available seat, while minimizing the total number of vehicles
in use). Figure 3 shows the average profits for the drivers has signif-
icantly increased over time compared to all the other four protocols.
Thus, quantifying the individual drivers’ preferred zones based on
the learnt reward using DQN, could guarantee them a significant

CSCS ’20, December 2, 2020, Feldkirchen, Germany M. Haliem, G. Mani, V. Aggarwal, and B. Bhargava

improvement in earnings that, in turn, helped themmake up for any
extra encountered cost and boost their profits. To further analyze
the rejection rate, Figure 4 shows that in DPRS the rejection rate
made by the customers (i.e. when a customer weighs in and rejects
a ride) is fairly close to the naturally encountered rejection rate that
occurs due to the unavailability of vehicles within the request’s
vicinity.

We have shown in Figure 3 that DPRS yields a significant im-
provement in drivers’ earnings due to quantifying their individual
preferred zones based on the learnt reward using DQN. However,
Figure 5 shows that the average travel distance of DPRS is a little
higher than the DeepPool ride-sharing framework. Since DPRS pro-
vides significantly higher profits for drivers, if it comes at the cost
of a slight increase in travel distance; that becomes an advantage
of DPRS. Note that, the two policies with the lowest travel distance
in Figure 5, are non-dispatching which explains why vehicles have
lower travel distance on average. However, we can observe that
these non-dispatching protocols as well as the non-ride-sharing
protocols are not efficient as they result in lower profit margins
(Figure 3), and higher customers’ waiting time (Figure 6).

Moreover, Figure 7 shows that non-dispatching protocols yield
higher idle time for vehicles as they might spend large amount of
time being idle and they never get dispatched to higher demand
areas. On contrast, non-ride-sharing protocols yield lower idle time,
but they are still inefficient as vehicles spend more time on duty
while serving lower number of customers than the ride-sharing
protocols. Compared to DeepPool framework, the waiting time
per request is lower for DPRS approach. As shown in Figure 6, it
reduces over time to less than a minute. On average, vehicles’ idle
time between requests is within a minimal range for DPRS. Figure
7 shows that the average idle time for DPRS is considerably less
than that of DeepPool framework as well, which also proves better
overall utilization of vehicles.

Figure 8 shows that DPRS edges higher than 3 other policies,
while the only higher policy is not adopting ride-sharing, and there-
fore it requires higher number of vehicles to serve the same de-
mand. Figure 9 supports our hypothesis, showing that DPRS utilizes
around the same number of vehicles as DeepPool, while at the same
time, involving both customers and drivers in the decision-making
process. Clearly, non-dispatching and non-ride-sharing algorithms
are shown to have poor utilization of resources, as they use higher
number of vehicles to serve the same amount of demand. Since
involving customers and drivers in the decision-making process
was supposed to boost both rejection rate and number of vehicles
utilized to serve the demand, while DPRS performs equally well as
DeepPool in both metrices; this makes DPRS superior to DeepPool.

6 CONCLUSION
Integrating the preferences of customers and drivers in terms of pric-
ing and convenience in ride-sharing is a non-trivial problem. In this
paper, we presented a novel distributed pricing-based ride-sharing
(DPRS) framework that (1) utilizes deep reinforcement learning
methodologies, (2) integrates dispatching vehicles when idle to
areas with anticipated high demand, and (3) vehicle-passenger
matching. The framework uses customer and driver utility func-
tions, impacted by deep Q-learning strategy. Since our approach

is distributed, utility functions of both customers and drivers com-
pute the best pricing actions independently and influence the ride-
sharing decisions based on their convenience. Through experiments,
we show that our framework reduces the customers’ fare and wait-
ing time, the vehicle’s idle time, and at the same time increases
drivers’ average profits while maintaining low rejection rate. Since
DPRS is a model-free approach, it is applicable for large-scale ride-
sharing systems. Extension of this work to include capabilities of a
joint delivery system for passengers and goods as in [Manchella
et al. 2020], or using multi-hop routing of passengers as in [Singh
et al. 2019] for efficient fleet utilization is left as a future work.

ACKNOWLEDGMENTS
This research is supported, in part, by DARPA 2 and AFRL 3 under
contract number W911NF2020003 4.

REFERENCES
A. Alabbasi, A. Ghosh, and V. Aggarwal. 2019. DeepPool: Distributed model-free

algorithm for ride-sharing using deep reinforcement learning. In EEE Transactions
on Intelligent Transportation Systems, Vol. 20.12.

X. Bei and S. Zhang. 2018. Algorithms for trip-vehicle assignment in ride-sharing. In
Thirty-Second AAAI Conference on Artificial Intelligence.

ViníciusMonteiro de Lira, Valeria Cesario Times, Chiara Renso, and Salvatore Rinzivillo.
2015. ComeWithMe: An activity-oriented carpooling approach. In 2015 IEEE 18th
International Conference on Intelligent Transportation Systems. 2574–2579.

D. A. Hennessy and D. L. Wiesenthal. 2019. Traffic congestion, driver stress, and driver
aggression. In Aggressive Behavior: Official Journal of the International Society for
Research on Aggression, Vol. 25.6. 409–423.

Abhinav Jauhri, Brian Foo, Jerome Berclaz, Chih Chi Hu, Radek Grzeszczuk, Vasu
Parameswaran, and John Paul Shen. 2017. Space-time graph modeling of ride
requests based on real-world data. InWorkshops at the Thirty-First AAAI Conference
on Artificial Intelligence.

A. Kleiner, B. Nebel, and V. A. Ziparo. 2011. A mechanism for dynamic ride sharing
based on parallel auctions. In ITwenty-Second International Joint Conference on
Artificial Intelligence.

Wei Lu. 2015. Optimization and mechanism design for ridesharing services. Ph.D.
Dissertation.

Shuo Ma, Yu Zheng, and Ouri Wolfson. 2014. Real-time city-scale taxi ridesharing.
IEEE Transactions on Knowledge and Data Engineering 27, 7 (2014), 1782–1795.

Kaushik Manchella, Abhishek K Umrawal, and Vaneet Aggarwal. 2020. FlexPool: A Dis-
tributed Model-Free Deep Reinforcement Learning Algorithm for Joint Passengers
& Goods Transportation. arXiv preprint arXiv:2007.13699 (2020).

NYC.gov. 2019. NYC Taxi and Limousine Commission-Trip Record Data. https:
//www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

T. Oda and C. Joe-Wong. 2018. MOVI: A Model-Free Approach to Dynamic Fleet
Management. In arXiv preprint arXiv:1804.04758.

D. Schrank, B. Eisele, and T. Lomax. 2019. 2019 urban mobility report. Texas A&M
Transportation Institute (2019). https://mobility.tamu.edu/umr/

Ashutosh Singh, Abubakr Alabbasi, and Vaneet Aggarwal. 2019. A distributed model-
free algorithm for multi-hop ride-sharing using deep reinforcement learning. arXiv
preprint arXiv:1910.14002 (2019).

Na Ta, Guoliang Li, Tianyu Zhao, Jianhua Feng, Hanchao Ma, and Zhiguo Gong. 2017.
An efficient ride-sharing framework for maximizing shared route. IEEE Transactions
on Knowledge and Data Engineering 30, 2 (2017), 219–233.

D. Wyld. 2005. Where is my suitcase? RFID and airline customer service. Marketing
Intelligence & Planning Journal 23 (2005), 382–394.

Desheng Zhang, Tian He, Shan Lin, Sirajum Munir, and John A Stankovic. 2016. Taxi-
passenger-demand modeling based on big data from a roving sensor network. IEEE
Transactions on Big Data 3, 3 (2016), 362–374.

R. Zhang and M. Pavone. 2016. Control of robotic mobility-on-demand systems: a
queueing-theoretical perspective. In The International Journal of Robotics Research,
Vol. 35(1-3). 186–203.

Kai Zhao, Denis Khryashchev, Juliana Freire, Claudio Silva, and Huy Vo. 2016. Predict-
ing taxi demand at high spatial resolution: Approaching the limit of predictability.
In 2016 ieee international conference on Big data (big data). IEEE, 833–842.

2the Defense Advanced Research Projects Agency
3 the Air Force Research Laboratory
4The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA, AFRL, or the U.S. Government.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://mobility.tamu.edu/umr/

	Abstract
	1 Introduction
	2 Related Work
	3 Distributed Pricing-based Ride-sharing (DPRS)
	3.1 Initial Pricing
	3.2 Vehicles' Proposed Pricing
	3.3 Customers' Decision Function
	3.4 DPRS Algorithm

	4 Distributed DQN Dispatching Approach
	4.1 DQN Design and Model Parameters:
	4.2 DQN Dispatch Agent
	4.3 DQN Architecture
	4.4 Learning Expected Discounted Reward Function —Q-values —

	5 Simulation and Evaluation Results
	5.1 Simulator Setup
	5.2 Evaluation Metrics and Baselines:
	5.3 Experimental Results

	6 Conclusion
	Acknowledgments
	References

