
DeCrypto Pro: Deep Learning Based Cryptomining
Malware Detection Using Performance Counters

Ganapathy Mani
Purdue University

West Lafayette, IN USA

manig@purdue.edu

Vikram Pasumarti
Purdue University

West Lafayette, IN USA

vpasuma@purdue.edu

Bharat Bhargava
Purdue University

West Lafayette, IN USA

bbshail@purdue.edu

Faisal Tariq Vora
Purdue University

West Lafayette, IN USA

voraf@purdue.edu

James MacDonald
Northrop Grumman Corporation

McLean, VA USA

jim.macdonald@ngc.com

Justin King
Northrop Grumman Corporation

McLean, VA USA

Justin.King@ngc.com

Jason Kobes
Northrop Grumman Corporation

Nashville, TN USA

jason.kobes@ngc.com

Abstract—Autonomy in cybersystems depends on their abil-
ity to be self-aware by understanding the intent of services
and applications that are running on those systems. In case
of mission-critical cybersystems that are deployed in dynamic
and unpredictable environments, the newly integrated unknown
applications or services can either be benign and essential for
the mission or they can be cyberattacks. In some cases, these
cyberattacks are evasive Advanced Persistent Threats (APTs)
where the attackers remain undetected for reconnaissance in
order to ascertain system features for an attack e.g. Trojan
Laziok. In other cases, the attackers can use the system only for
computing e.g. cryptomining malware. APTs such as cryptomin-
ing malware neither disrupt normal system functionalities nor
trigger any warning signs because they simply perform bitwise
and cryptographic operations as any other benign compression or
encoding application. Thus, it is difficult for defense mechanisms
such as antivirus applications to detect these attacks. In this
paper, we propose an Operating Context profiling system based
on deep neural networks—Long Short-Term Memory (LSTM)
networks—using Windows Performance Counters data for de-
tecting these evasive cryptomining applications. In addition, we
propose Deep Cryptomining Profiler (DeCrypto Pro), a detection
system with a novel model selection framework containing a
utility function that can select a classification model for behavior
profiling from both the light-weight machine learning models
(Random Forest and k-Nearest Neighbors) and a deep learning
model (LSTM), depending on available computing resources.
Given data from performance counters, we show that individual
models perform with high accuracy and can be trained with
limited training data. We also show that the DeCrypto Profiler
framework reduces the use of computational resources and
accurately detects cryptomining applications by selecting an
appropriate model, given the constraints such as data sample
size and system configuration.

Index Terms—deep learning, LSTM, machine learning, mal-
ware, cryptojacking, cryptomining, ransomware, performance
counters, Advanced Persistent Threat, collaborative attacks

I. INTRODUCTION

Enhancing self-autonomy in cybersystems, especially, sys-

tems with limited computing capability is a non-trivial re-

search problem. These systems should be able to recognize

their own actions or applications that are benign and normal as

well as detect or predict the actions of applications or services

that are malicious. In particular, mission-critical autonomous

cybersystems, deployed in unpredictable and dynamic environ-

ments, face the problem of limited training data [1] [2]. These

systems need to train faster and make decisions quicker. The

need for continuous availability [3] of mission-critical systems

provides evasive APTs with numerous opportunities. APTs are

a class of cyberattacks where the attackers will stay in the

system for extended periods of time to observe and execute

their malicious activities. They can execute those actions step-

by-step by waiting for a long time between each step, making

it difficult for detection by antivirus or learning and prediction

models [4]. APTs can be categorized into two major types: (1)

attacks that try to slowly change or corrupt the fundamental

operations of the systems [5] and (2) attacks that only use the

infected systems for computing or reconnaissance missions

[6]. Both of these attacks aggressively avoid detection since

they employ techniques such as file type polymorphism (e.g.

file-less attacks) [7] [8], static code polymorphism (e.g. pack-

ing, binary obfuscation, or encryption) [9], dynamic behavior

polymorphism (understand the system defenses and change the

behavior accordingly to evade detection) [10], or simply mimic

benign applications [11]. Before explaining our contributions,

we provide background and challanges of cryptojacking below.

A. Background: Cryptojacking

Cryptojacking—where collaborative attackers run cryp-

tocurrency miners on victims’ systems without their autho-

rization and utilize their Central Processing Units’ (CPUs)

computational power to mine cryptocurrencies—is a combi-

nation of the two APT types: the attack uses only computing

power of the victim and they have a potential to increase CPU

usages as well as stop or slowdown other vital processes in

the system. Cryptojacking is becoming pervasive: Symantec

detected 8 million cryptojacking attacks in just three months

(from December 2017 to February 2018) [12]. The demand

for cryptojacking stems from the need for aggressive cryp-

tomining. Cryptomining is the process of generating wealth

by creating and verifying new blockchain-based cryptocurren-

109

2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)

978-1-7281-7277-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ACSOS49614.2020.00032

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:51:45 UTC from IEEE Xplore. Restrictions apply.

cies. Cryptocurrencies are digital assets designed for secure

and transparent transactions facilitated by Blockchain public

ledgers.

Fig. 1. A cryptocurrency (Bitcoin) blockchain’s block [13]

Each block in a cryptocurrency blockchain has three ele-

ments: (1) data (transactions and their relevant information

such as sender, receiver, and reward), (2) unique hash signature

(generated using SHA-256 hash function with data plus a

random number as input), and (3) unique hash signature

of previous block. Fig. 1 shows a sample block of Bitcoin

cryptocurrency. The fundamental mechanism of the blockchain

ledger is that it is public and open to everyone in the network.

When there is a new transaction, it is bundled into a block,

everyone in the network must verify the block’s information

before it is linked as another block to the major blockchain. In

order for the new block to be linked to the major blockchain,

the right hash value must be calculated i.e. the right random

number should be decided and added to the data element in

the block to generate the correct hash that fits the previous

block. This process is known as Proof-of-Work (PoW) [14].

Finding the right hash given a large set of random numbers is

arbitrary and a brute-force mechanism. Solving this blockchain

puzzle is a computationally intensive process that requires

extensive computing architecture and powerful machines such

as GPUs, Application-Specific Integrated Circuits (ASICs),

and advance FPGAs for increasing the probability of finding

the right PoW [15] [16]. As the cryptocurrency blockchain

grows longer, the difficulty of finding a new block goes

higher. In Fig. 1, the Difficulty property shows the number

of estimated hash computations required to find a new block,

which is approximately 16 trillion hash computations. It is also

economically prohibitive. Hence, there is a high demand for

more and more computing power.
Cryptomining pools can help in sharing the burden of

that computationally intensive process. Mining pools provide

democratized access to users where users can pool their

computing resources together in finding the hash for each

new block of a particular currency’s blockchain. Computing

systems in the pool, trying to solve a new block are essentially

digital workers and each one is rewarded by equally splitting

the currency for every mined block. Each cryptocurrency has

its own crypto-algorithm that sets the mathematics behind the

PoW e.g. CryptoNight supports the digital currency Monero

[17]. Equipped with static algorithms such as CryptoNight,

users can mine specific currencies by joining the cryptomining

pools.

Fig. 2. Cryptomining workflow

Fig. 2 shows the workflow of mining cryptocurrencies using

cryptomining pools. The cryptomining pools will have the

whole distributed blockchain ledger and act as intermediaries

with pool members. A mining pool service issues the hash

inputs that are needed to be computed for finding the best

PoW to all the systems that have signed up with the mining

pool service. If an appropriate block is found, it is added

to the major blockchain of the cryptocurrency. In return

for providing the computing resources, mining users get the

equally distributed reward and pooling service gets its service

fee. Pooling services are easy to access and this creates a

significant potential for deploying these miners in a large

number of systems. Attackers can deploy these mining services

through native applications or browser-based web applications

[18] where they can mine any particular cryptocurrency in the

background without authorization from the victim.

1) Challenges in Detecting Cryptojacking: Many detection

techniques use cryptomining’s high CPU usage and overheat-

ing of the system as triggers to alert the antivirus of potential

mining activity [19]. But cryptominers can evade detection

through the following techniques and their properties:

• Native mining pool applications such as XMRig [20] have

minute control over execution and operating environment

parameters where they can set the threshold for CPU

usage (in percent).

• Some of the cryptominers employ a drive-by mining

technique where they stay on the system for a very short

time and use the CPU, before moving on to the next

victim [21]. They will come back again and repeat the

110

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:51:45 UTC from IEEE Xplore. Restrictions apply.

process. This short time availability makes it difficult for

antivirus software to detect mining activities.

• Most cryptomining algorithms such as CryptoNight, only

perform cryptographic calculations, bitwise operations,

and encryption operations. They neither change nor dis-

rupt the system’s behavior in any significant manner. This

makes detection difficult since benign applications such

as compression or encoding applications perform similar

cryptographic, bitwise, and encryption operations. Due to

this issue, the system’s defense mechanisms can generate

significantly high false negatives, which makes the system

oblivious to the threat. Alternatively, they can generate

too many false positives, which reduces the usability of

the system.

• In both false negatives and false positive scenarios, the

system will have to allocate a significantly large portion

of computing resources for security operations, which

may slow the vital processes in mission-critical cyber-

systems.

B. Our Contributions

Given the challenges posed by cryptojacking (or evasive

malware, in general) and its detection evasion, we propose a

robust solution for cryptojacking detection and prediction by

operating context profiling—a type of behavior profiling where

applications are classified based on their holistic effect of their

operating context.

1) We propose DeCrypto profiler, an operating context

profiler that is equipped with both light-weight machine

learning models—k-Nearest Neighbors (k-NN) and Ran-

dom Forest (RF)—as well as a deep learning model

(LSTM). Light-weight machine learning models are

guided by feature selection and LSTM selects features

automatically.

2) We leverage the performance counters data [22] for

the training of machine learning and deep learning

models. Computing systems that use the Windows oper-

ating system have 68 unique performance counters and

245 counter values. Contrary to Hardware Performance

Counters (HPCs), the performance counters provide us

the status of components from the application-level to

the hardware-level i.e. holistic status of the system. This

provides a significantly large feature space that can help

the model to solidify its training. These counters also

provide imperturbable effects of the operational context

i.e. cryptomining malware are not equipped to change

the outcome of the effects displayed by the performance

counters.

3) In order to select the best prediction and detection

model bespoke to the computational resources, a model

selection framework with utility function is provided.

Given newly collected performance counter data, the

utility function considers the F1 scores provided by the

models during retraining and employs the one with the

best F1 for cryptojacking detection. This reduces the

computational resource usage.

4) DeCrypto Pro provides both trigger-based and non-

trigger-based cryptojacking detection by altering the

sampling techniques. If it is a trigger-based detection

(example trigger: high CPU usages threshold set by the

user) then the profiler employs fixed interval sampling

of performance counters whereas non-trigger-based de-

tection employs sampling at random intervals to check

the system status.

5) DeCrypto Pro can be periodically retrained for identi-

fying new novel cryptojacking attacks. Given the high

dimensional feature space, DeCrypto Pro needs consid-

erably less data for initial training as well as retraining.

6) Since performance counters data is composed of the

values from a number of system properties, they provide

holistic status of the system. Thus DeCrypto Pro can be

trained to identify a wide-range of evasive APT classes.

Through experiments, we show that learning models of De-

Crypto Pro provide high accuracy with significantly less false

positive and false negative rates, and they need considerably

less data for training and retraining. We also show that the

model selection framework reduces the computational resource

usage by estimating training times and comparing them be-

tween utility function and random model selection.

C. Paper Organization

The rest of the paper is organized as follows: Section II

provides the related work with respect to cryptojacking and

APTs as well as their detection mechanisms, Section III pro-

vides the threat model for cryptojacking attacks with specific

assumptions of the operational environment and its settings,

Section IV provides the details of performance counters and

their properties, Section V explains the DeCrypto Profiler

and the model selection framework, Section VI details the

experimental setup, data collection, data processing, feature se-

lection, results and findings of Decrypto profiler performance,

and finally, we conclude our work.

II. RELATED WORK

Cryptojacking is a fairly new class of cyberattack, however

it is growing in sophistication, especially in detection evasion.

There are a number of techniques proposed in literature using

Hardware Performance Counters (HPCs) and machine learning

for detecting evasive cyberattacks similar to cryptojacking.

Using HPCs for detecting kernel-level rootkits is proposed

in [23]. Rootkits are a specific class of malware that modify

some parts of the operating system kernel for hiding the

presence of malicious attackers in the system. The detection

framework uses three learning models (1) One-Class Sup-

port Vector Machine (OC-SVM)—an unsupervised learning

algorithm, (2) Decision Trees (DTs), and (3) Naive Bayes

classifier. Training data consists of HPC traces of synthetic

rootkits and benign applications collected through Intel VTune

[24] High impacting features are selected through WEKA

framework [25]. The solution heavily relies on proprietary

tools such as Intel VTune. The learning models may not work

on APTs as the data only captures the hardware-level traces. In

111

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:51:45 UTC from IEEE Xplore. Restrictions apply.

addition, long-term dependencies in traces are not considered

where rootkits can evade detection by not manifesting for long

periods of time. A similar approach is employed in [26] using

Linux HPCs and learning models: RF, k-NN, and DTs. HPCs

are collected through fixed interval sampling and features

are manually extracted from raw data. The solution does not

consider APTs since the long-term dependencies in data are

not taken into consideration. Without a model selection frame-

work, using three learning models can be computationally

expensive for retraining and prediction. A supervised learning-

based approach using HPC traces and SVM has been detailed

in [27]. The solution cannot handle high dimensional data and

requires manual verification of Recursive Feature Elimination

(RFE) technique employed for feature selection. RFE does

not consider weak features even though they may be useful

in contextual behavior profiling of malware. Signature-based

dynamic and static analysis as well as detection of evasive

malware are proposed in [5], [28], [29], and [30]. But APTs

are constantly evolving and adapting to defensive mechanisms.

Those solutions are not adaptable to new APTs such as evasive

cryptomining.

Recent discovery of covert cryptomining operations has

paved the way for several approaches for detection. Detection

by dynamic opcode analysis is proposed in [18]. The authors

capture HTML files that contain cryptomining JavaScript code.

They create benign training data synthetically by removing

start() function from the HTML files. The solution em-

ploys feature selection using WEKA framework and learning

using RF. This approach is not adaptive to dynamically chang-

ing mining algorithms and it cannot be applied for detecting

native unauthorized cryptomining applications. A model is

proposed that leverages magnetic side-channel signature and

k-NN classifier in [31]. But magnetic side-channel signatures

can be easily influenced by load modulations that can be

executed by evasive malware applications [32]. In addition,

using this one feature can omit contextual factors that can

provide a holistic signature of the malware. Similarly, another

signature-based approach is proposed in [33]. The authors use

fingerprinting through a score computed from user processor

time, memory usage (in %), number of running threads,

number of active socket connections, and usage of CPU

(in %). But cryptomining applications can set the memory

and CPU usage and mimic the benign application such as

compression or encoding applications. Deep learning-based

detection mechanism for cryptojacking is detailed in [34].

The static and dynamic analysis involves capturing system

calls of Portable Executable (PE) samples of cryptomining

applications. The collected sequential system call data are

then sent into the deep learning models—LSTM, Action-based

LSTM, and Convolutional Neural Networks (CNNs). The pro-

posed solution does not deal with browser-based cryptomining

operations. Evasive malware can hide their behavior by system

call and code obfuscation.

We propose a deep learning-based approach using holistic

system telemetry that is representative of signatures from

the application-level to the hardware-level. We also propose

a model selection framework that selects a detection model

based on the computational resources available, which makes

the system more efficient in terms of security operations.

Our solutions is applied to both native and browser-based

cryptomining detection. DeCrypto Pro can also be extended

to detect new class of evasive malware.

III. THREAT MODEL

Cryptomining malware attacks are carried out by collabo-

rating mining pools that mine the same currencies as any other

similar type of cryptocurrencies using the same mining (PoW)

algorithm e.g. Monero and Zcash [16]. These cryptominers

are deployed as native or browser-based applications. In na-

Fig. 3. Threat model for collaborative cryptomining malware (Cryptojacking)

tive applications, the mining process gets carried on without

authorization even after stopping the mining process. Figure

3 shows the attack workflow. These mining applications can

be transferred to other systems in network with the victim’s

credentials. In addition, cryptomining malware comes in the

form of web applications e.g. Coinhive miner [35]. Browser-

based malware are most evasive as they employ drive-by

mining [36] when the victim visits the malicious website. The

attack can be short-lived where mining is accelerated for a

short period of time, which increases the CPU usage. Since this

high CPU usage can be used as a trigger to alert the antivirus

defenses of the system, both browser-based and native-based

mining applications can set the threshold for CPU usage.

1

"cpu": {2

"enabled": true,3

"huge-pages": true,4

"hw-aes": null,5

"priority": null,6

"memory-pool": false,7

"yield": true,8

"max-threads-hint": 100,9

"asm": true,10

"argon2-impl": null,11

"astrobwt-max-size": 550,12

"cn/0": false,13

"cn-lite/0": false14

}

This config.json file from XMRig miner con-

tains the threshold level setup for maximum CPU usage

(max-thread-hint) [37]. The high CPU usage trigger

can be evaded by setting the minimum CPU usage and

slowly mine the currencies like APTs. We assume that the

attacker is fully aware of the system defenses and employ

more evasive techniques. We also assume that the attackers

can collaborate in order to maximize the attack effectiveness.

For example, attackers can take turns on drive-by mining

with different application instances to hide or neutralize the

behavior. When the mining is taking place, the miners execute

112

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:51:45 UTC from IEEE Xplore. Restrictions apply.

the PoW algorithm such as CryptoNight over and over again.

This involves a large number of bitwise, cryptographic, and

encryption operations. Hence the threat model consists of the

attackers’ evasive tactics as well as the algorithmic footprints.

Using performance counters, we fingerprint the holistic effect

of these algorithms, which must be executed in system for

mining, on the system.

IV. PERFORMANCE COUNTERS

Performance counters are small programs that count, mon-

itor, and measure events in the system. They provide infor-

mation on how a particular operating system or a service, an

application or a driver is performing. Thus the information

provided by the counters involve status of the system from

the application-level to the hardware-level. If there are multi-

ple services or applications running simultaneously, then the

counters provide operating context information i.e. how did

the counter information change after new applications start to

run or old applications get terminated. These counters can help

the system to identify bottlenecks and optimize the application

as well as system performance. Windows provides a unique

set of performance counters that contain 68 properties. Some

of the counters for example:

1 logicaldisk(harddiskvolume3)\diskreadtime
2 logicaldisk(harddiskvolume3)\diskreads/second
3 processor(3)\c3transitions/second
4 processor(1)\processortime
5 processor(0)\dpcsqueued/second
6 physicaldisk(0c)\avg.diskqueuelength
7 physicaldisk(_total)\avg.diskbytes/read
8 memory\systemcodetotalbytes
9 memory\poolpagedresidentbytes

These 68 counters can produce several hundred values depends

on the number of processor cores in the CPU. In this research,

each sample in the data set contains 245 values. The data

contains information from four major system entities (each

has several performance counters): Logical disks, Processors,

Physical Disks, and Memory. The performance counters are

similar to a template [38] for each operating context data item,

where values for template item are filled for every sample.

A. Advantages

• Influencing these individual counters is costly for an

attacker, especially for a drive-by mining malware attack.

• It is also difficult for APTs to manage and influence these

counters over long periods of time.

• Performance counters provide operating context data,

which means they are independent of any particular

processes or application services.

• Due to the high dimensionality of data, the learning

models are provided with feature-rich data for accurate

prediction and detection of APTs.

V. DEEP CRYPTOMINING PROFILER (DECRYPTO PRO)

DeCrypto Pro provides a streamlined research approach for

detecting as well as predicting evasive cryptomining actions.

Compared to the existing techniques, which use fingerprinting

based on specific artifacts such as network traffic, specific

background processes and registry keys, function hooks, or

IP address, DeCrypto Pro uses resilient performance counters

data for effective prediction with efficient model selection,

which reduces the computational resource usage. This will

help mission-critical systems to focus on important tasks rather

than spending resources on security operations.

Fig. 4. Framework of Deep Cryptomining Profiler

DeCrypto Pro uses both environmental detection triggers

such as high CPU usages (Note: The threshold for CPU usage

can be set by the user) or period detection (random or fixed

intervals depends on the user’s preference) of cryptomining

malware. As shown in Figure 4, the sampling of performance

counter data also follows the similar method of fixed sampling

(every n instructions or seconds) or variable random sampling.

For this study, we use variable random sampling. Once the

sampling of data is completed, it is normalized through Min-

Max feature scaling and important features will be selected

(Feature selection is discussed at length in Section VI). A

model selection utility function considers the computational

resources and previous 10-fold cross validation training accu-

racy and F1 Scores to determine the best model for profiling.

Based on the results, users or the antivirus defenses can be

alerted. The profiler can also be periodically retrained with

newly discovered cryptomining malware or other APTs.

A. Model Selection

In order to make an efficient detection of cryptomining

malware, we employ a model selection utility function that

can select an optimal model given computational resources

such as processor frequency and memory as well as accuracy

and F1 scores of the model training.

Mi = Spc + Spf + Sm +
1

k

k∑
v=1

(
Pv

2

)
(1)

Here, Mi is the value for model selection where i = k-

NN, LSTM, and RF, Spc is number of processor cores, Spf

is processor frequency with just the decimal value (e.g. 2.9

GHz = 2.9), similar to processor frequency, Sm represents the

memory capacity of the system (e.g. 16 GB = 16), k is number

of cross validations, and P is the prediction value obtained by

the sum of accuracy and F1 score.

∀i Mp < Mc (2)

Here, Mp is previous model selection value and Mc is current

model selection value. Each one of the models are compared

113

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:51:45 UTC from IEEE Xplore. Restrictions apply.

against the other two. If the condition in equation 2 is satisfied

then the current model is selected i.e. best out of three models.

Otherwise, the previous model is still selected for profiling.

B. Random Forest and k-Nearest Neighbor Models

Random Forest can detect a compromised system with high

accuracy using less computational resources. Training and

testing a Random Forest have time complexities of O(n2ct)
and O(ct) respectfully for n training examples, c features,

and t trees. In other words, computational resources used for

Random Forest are dependent on the number of examples in

the Performance Counter data set, the number of performance

counters we are using, and the number of trees in the forest.

In our case, we are using a Random Forest of 100 trees with

a maximum depth of 10 levels and with this model training

and testing takes only a few seconds.

Even more computationally simple model is k-NN, whose

training time is negligible and whose testing time complexity

is O(nc) for n training examples and c features. In other

words, computational resources used for k-NN are dependent

on the number of examples in the performance counter data

set and the number of performance counters themselves. In

our case, we are using k-NN with a K of 20 and with this

model training and testing again takes seconds. Thus it is

computationally advantageous to use k-NN or Random Forest.

C. Long Short-Term Memory Model (LSTM)

Deep learning techniques such as LSTM are used when

selecting features manually or based on a static heuristic

becomes cumbersome. LSTM networks select the important

features automatically based on value maximization of a fea-

ture over time. In this paper, cryptomining malware depends on

the operating context performance counter data. Deep learning

models are ideal for considering the large feature space of

performance counters since features are automatically selected

by the LSTM model to make an accurate classification.

Fig. 5. An example cell of LSTM

As shown in Figure 5, LSTM contains a cell, input/out-

put (I/O) gates, and forget gate constitute LSTM. The cell

remembers important values and I/O gate and forget gate

regulate information flow from one cell to another. LSTM cell

operations can be described step-by-step [39].

1) Identify which input to keep and which one to discard.

St = σ(weightS · (Nt−1, Jt) +BiasS) (3)

2) Identify the new information to be stored.

Xt = σ(weightX · (Nt−1, Jt) +BiasX) (4)

Ut = tanh(weightU · (Nt−1, Jt) +BiasU) (5)

3) Update the state of the cell with the new information.

Vt = St ∗ Vt−1 +Xt ∗ Ut (6)

4) Output of the LSTM cell.

Pt = σ(weightP · (Nt−1, Jt) +BiasP) (7)

Nt = Pt + tanh(Vt) (8)

LSTM is a variant of Recurrent Neural Network (RNN), which

is widely used for sequence-to-sequence classification. RNN

has a Vanishing Gradient (VG) problem that causes bad model

training. VG can be addressed based on Gated Recurrent Unit

(GRU) or LSTM. LSTM has been shown to have higher

accuracy [40].

VI. EXPERIMENTAL RESULTS

Experiments were set up on 3 Windows machines with

various configurations on processing frequency (2.40, 2.90,

2.30 GHz), memory size (16, 8, 8 GB), and number of

processor cores (2, 4, 5). Each machine provided a unique

signature of operating context since all of them had different

applications and services installed, including various versions

of drivers. Since we aim to capture the system status signature

of PoW algorithm such as CryptoNight’s signature, we mainly

focus on bitwise, cryptographic, and processor-specific encryp-

tion operations. Thus we consider compression software (7-

Zip, SecureZip, PeaZip, WinRAR, WinZip, and Freemake) as

our benign examples and cryptomining applications (XMRig,

XMR-Stak, Coinhive, Computta, and GUIminer) as malicious

example. Here, Coinhive is a browser-based miner and XMRig

covers the most widely used PoW algorithms—RandomX,

CryptoNight, AstroBWT and Argon2.

Our experiments are designed to answer the following

Research Questions (RQs):

1) Can DeCrypto Pro deal with multiple cryptomining

applications at the same time?

Any defense mechanism must be able to classify

(through operating context) whether there is malicious

activity going on in the system and what is the specific

type of application that is causing the operating context

to behave in such a way. To answer this RQ, we will

conduct both binary as well as multi-class classification

using all the models.

2) Can human-expert-in-the-loop make DeCrypto Pro ef-

fective?

LSTM can select features automatically. But for k-NN

and RF, the features have to be manually selected by

human experts or by predefined heuristics. In order to

answer this question, we will test the performance of

k-NN and RF without feature selection i.e. giving all

features as input as well as with manual feature selection

(Discussed in Section VI-D).

114

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:51:45 UTC from IEEE Xplore. Restrictions apply.

3) What is the amount of training data needed for an

accurate classification by DeCrypto Pro?

By answering this question, we test if the research ap-

proach and learning models can be deployed in mission-

critical systems. For mission-critical autonomous sys-

tems, there is a demand for training and retraining to

be quick when the new data arrives. To answer this

question, we change the training and testing split of the

data for all the models and measure the performance.

4) Can selecting the best model based on retraining perfor-

mance and computational resources reduce the system

overhead?

By answering this question, we can test if employing

several learning models can be useful without adding

additional computational resource overhead. For answer-

ing this research question, we measure the time for

each training and retraining with model selection based

on utility function and random model selection, and

compare the performance.

A. Performance Metrics for Malware Detection Systems

We use the fundamental metrics used for evaluating malware

detection systems: F1-measure (F1), Precision (P), True Posi-
tive Rate (TPR) or Recall (R), False Positive Rate (FPR), and

False Negative Rate (FNR) [41]. Given True Positives (TP),

False Positives (FP), False Negatives (FN), and True Negatives

(TP), F1 is calculated with 2∗Precision∗Recall
Precision+Recall . Similarly, FPR

is computed by FP
FP+TN and FNR is nothing but FN

TP+FN .

Recall and Precision are computed by 1−FNR and TP
TP+FP ,

respectively.

For any malware detection system, it is ideal if it does not

miss the detection of any malware (i.e. Precision ≈ 1 and

Recall ≈ 1). The detection system should also not trigger too

many false alarms (i.e. Precision ≈ 1 and FPR ≈ 0).

B. Data Collection

We used Windows PowerShell to obtain the performance

counter data [42]. There are three settings for collecting

operating context performance counter samples for training:

(1) compression software is for benign examples, (2) crypto-

mining software running for malicious examples, and (3) both

compression and cryptomining software running for malicious

examples. Several samples were collected in random sampling

intervals. First, we collected the list of all the counters

available in the system using the command line command

TypePerf.exe -q > counters.txt. We then use this

counters list to capture all the counters per sampling operation.

At random intervals, we obtain all the 245 performance

counter values for each sample.

Performance counter data was collected while these com-

pression and mining applications were running. We collected

data by running different applications and then running the

code to collect the performance counters for these applications.

As Table I shows, we collected ≈1200 samples for each

application and the whole data set represents almost an equal

split of benign and malicious examples.

TABLE I
PERFORMANCE COUNTER DATA PER APPLICATION

Application Number of Samples
7-Zip & PeaZip & Win (Zip/RAR) 1398 & 1200 & 2400

SecureZip & Freemake 1398 & 1320
Coinhive & Computta 1200 & 1398

GUIMiner & XMR (ig, Stak) 1398 & 2598
Compression + Mining Applications 1200

1) Bias Mitigation: Performance counters data was col-

lected under various settings with several applications running

on the side including computationally heavy graphics render-

ing games. Cryptomining applications were ran with default

settings as well as trigger-avoiding settings such as less CPU

usages. In addition, we employed the following bias mitigation

techniques:

1) Avoiding Contamination: System settings are restored

and cache is cleared between every data capture.

2) Environmental noise and Input bias: Both factors are

not controlled as they provide contextual data capture of

malware operating context.

3) Network: Data is collected with internet connection as

well as without or semi-internet connection.

4) User bias: We do not control this bias as the data

collection is automated, sampled in random intervals.

5) Successful implementation: We ensured that cryp-

tominers are properly communicating with both online

and local pool of miners.

C. Data Processing

Once the data is collected, we performed Min-Max feature

scaling to normalize the data. We label each data row of

performance counters data as 0 or 1 (benign or malicious) for

binary classification as well as numbered classes (1-12) for

multi-class classification. All of the null values are removed

from the data set. In order to enhance the models’ learning

and avoid bias towards any particular class(es), number of data

rows for each class is equally balanced through oversampling

of under-sampled classes [43] i.e. if a class has fewer data

rows than the other classes, more (duplicated) rows will be

randomly selected from the under-sampled classes. This will

also provide ≈ 50%-50% balance for benign and malicious

labels. From the balanced data set, we randomly select 70%

of the samples for training and 30% of the remaining samples

for testing.

D. Feature Selection

For light-weight machine learning models—RF and k-NN

—we perform feature selection on normalized data.

Figure 6 shows the average values of randomly selected ≈
3000 samples of all 245 features. Some of the counters’ rate

of change is minimal, providing us with a clear and unique

operating context signature.

32 features were manually selected by setting the threshold

normalized value of a particular counter to be greater than

0.01 (Figure 7).

115

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:51:45 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Counters

N
o

rm
al

iz
ed

V
al

u
es

Malicious

Benign

Fig. 6. Average values of a sample set of performance counters data

0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

Counter Features

N
o

rm
al

iz
ed

V
al

u
es

Malicious

Benign

Fig. 7. Average values of selected 32 performance counter features

Note: It can be observed that the counter values for both

benign and malicious applications are almost similar with

minute variations. It is clearly indicative that the algorithmic

operations that are performed by both application types are

bitwise, encryption, and cryptographic operations. Thus, we

tested RF and k-NN with both feature selection and without

feature selection to measure the impact of human-expert-in-

the-loop.

E. Implementation

We implemented k-NN and RF using the Scikit-learn ver-

sion 0.21.2 Python library [44]. For model selection frame-

work, we simulated random selection of models as well

as selection based on utility function’s output. Each model

selection is performed with retraining of the models in ran-

dom intervals with newly obtained data. Model selection is

simulated with different settings of processor cores, processor

frequency, and memory capacity. New performance counter

data for retraining is obtained by varying system’s operating

context by running several applications simultaneously. LSTM

is implemented through Tensorflow and TensorFlow Core

v2.1.0 Python library is used [45]. Each model is executed

with 10-fold cross validation.
1) Hyperparameter Optimization for LSTM Model: Given

the performance counters data, we use grid search [46] to

find the right hyperparameters to fit the LSTM model. We

select the following values for LSTM Hyperparameters: Batch

Size: 48, Epochs: 64, Kernel Initializer: uniform, Dropout

rate: 0.4, Learning rate: 0.003, Number of hidden nodes: 200,

Number of dense layers: 4, Activation Function: sigmoid,

and Optimization Function: Adam.

F. Findings and Implications
1) Experiments for Answering RQ1: In order to test that

DeCrypto Pro can detect and classify benign and malicious

operating context through performance counters as well as

classify individual malware, we perform both binary and

multi-class classification.

TABLE II
PERFORMANCE METRICS FOR BINARY CLASSIFICATION

Model P (%) R (%) F1 (%) FNR (%) FPR (%)
k-NN 95.71 92.27 93.64 7.73 3.82
RF 96.86 97.43 96.84 2.57 3.5

LSTM 99.45 99 99.9 0.01 0.15

TABLE III
PERFORMANCE METRICS FOR MULTI-CLASS CLASSIFICATION

Model P (%) R (%) F1 (%) FNR (%) FPR (%)
k-NN 93 90.97 89.99 9.03 1.08
RF 97.62 97.82 97.62 2.18 0.263

LSTM 96 95 95.5 2.2 1.8

Insight 1: From Tables II and III, we observe that all

three models provide consistently high performance for both

binary classification and multi-class classification with less

FNR and FPR. The F1 score is consistantly high for random-

ized data obtained with multiple applications running on the

side. We theorize that cryptomining malware trigger specific

performance counters. Thus DeCrypto Pro can detect multiple

cryptominers.
2) Experiment for Answering RQ2: We manually selected

features as specified in Section VI-D and identified 32 im-

portant performance counters. We implemented k-NN and RF

models with 32-features.
Insight 2: From Tables IV and V, we observe that all

the light-weight machine learning models of DeCrypto Pro

provide consistently high performance for both binary clas-

sification and multi-class classification with human-exert-in-

the-loop feature selection. Siimilar to insight 1, DeCrypto Pro

feature selection provides the flexibility to reduce the number

of features, if needed by experts.
3) Experiments for Answering RQ3: : In order to answer

RQ3, we changed the testing and training data sizes for all

the three models to test the percent of training data required

to perform accurate classification.

116

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:51:45 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
PERFORMANCE METRICS FOR MULTI-CLASS CLASSIFICATION

Model P (%) R (%) F1 (%) FNR (%) FPR (%)
k-NN 89.85 87.91 86.64 12.09 1.43
RF 96.32 96.58 96.42 3.42 0.41

TABLE V
PERFORMANCE METRICS FOR BINARY CLASSIFICATION

Model P (%) R (%) F1 (%) FNR (%) FPR (%)
k-NN 93.3 88.36 90.06 11.64 5.4
RF 97.4 86.57 89.85 13.43 2.07

Fig. 8. Training-testing split for binary classificationg g g p y

Fig. 9. Training-testing split for multi-class classification

Insight 3: From Figure 8 and 9, we observe that the light-

weight machine learning models of DeCrypto Pro provide

consistently high F1 scores with just around 30-40% of

training data. Similar behavior is observed with LSTM model

as well. We can infer that DeCrypto Pro can be successful in

mission-critical autonomous systems since it can retrain itself

with limited amount of data.

4) Experiment for Answering RQ4: : We wanted to test

both random model selection and model selection based on

utility function to test the hypothesis that retraining and infer-

ence takes considerably less time. We only consider training

that provided high F1 score. Insight 4: From Figure 10,

0 20 40 60

250

300

350

400

450

Number of Training and Inferences

E
la

p
se

d
T

im
e

(S
ec

)

Random

Utility Function

Fig. 10. Performance of Model Utility Function

initial results suggest that random model selection produces

increasing training and inference times whereas utility function

based selection provides relatively stable training times. These

initial results indicate that given the large feature space, the

light-weight models can perform equally well with LSTM.

But manual feature selection might miss minute changes in

performance counters.

VII. CONCLUSION

We presented DeCrypto Pro, a deep learning based cryp-

tomining malware detection model that uses performance

counter data, which aims to relieve human experts from

difficult manual feature selection and reduce false negatives

and false positives that are usually incurred by evasive APT

detection systems. We showed that DeCrypto Pro can classify

both benign and malicious operating contexts through binary

and multi-class classification. Due to large feature space of

performance counters, we observed that DeCrypto Pro models

only require limited amount of training data for accurate clas-

sification of cryptomining malware. Classification results also

showed that DeCrypto Pro incurs only minimal amount of false

positives and false negatives. In addition, we presented the

results on the efficiency of model selection utility function that

can select the best model given the computational resources,

making DeCrypto Pro to be best equipped for mission-critical

systems. DeCrypto Pro can also be extended to include specific

types of APTs for profiling their algorithms. As a future study,

in addition to training DeCrypto Pro with more APT classes,

we plan to expand on model selection framework to investigate

more system setting use cases and integrate explainable AI

framework with LSTM model to provide explainability with

feature selection, training, and inference.

ACKNOWLEDGMENT

This research is funded by Northrop Grumman Corporation

Research Consortium.

REFERENCES

[1] D. Danks and A. J. London, “Algorithmic bias in autonomous systems.”
in IJCAI, 2017, pp. 4691–4697.

117

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:51:45 UTC from IEEE Xplore. Restrictions apply.

[2] G. Mani, B. Bhargava, and B. Shivakumar, “Incremental learning
through graceful degradations in autonomous systems,” in 2018 IEEE
International Conference on Cognitive Computing (ICCC). IEEE, 2018,
pp. 25–32.

[3] J. Bosch and H. H. Olsson, “Data-driven continuous evolution of smart
systems,” in 2016 IEEE/ACM 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
2016, pp. 28–34.

[4] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal, “On orthogonality
and learning recurrent networks with long term dependencies,” in
Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 3570–3578.

[5] D. Kirat, G. Vigna, and C. Kruegel, “Barecloud: bare-metal analysis-
based evasive malware detection,” in 23rd {USENIX} Security Sympo-
sium ({USENIX} Security 14), 2014, pp. 287–301.

[6] R. Chatterjee, P. Doerfler, H. Orgad, S. Havron, J. Palmer, D. Freed,
K. Levy, N. Dell, D. McCoy, and T. Ristenpart, “The spyware used in
intimate partner violence,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 441–458.

[7] J. B. Fraley and M. Figueroa, “Polymorphic malware detection using
topological feature extraction with data mining,” in SoutheastCon 2016.
IEEE, 2016, pp. 1–7.

[8] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and
J. Yang, “Understanding fileless attacks on linux-based iot devices
with honeycloud,” in Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services, 2019, pp.
482–493.

[9] D. Couroussé, T. Barry, B. Robisson, P. Jaillon, O. Potin, and J.-L.
Lanet, “Runtime code polymorphism as a protection against side channel
attacks,” in IFIP International Conference on Information Security
Theory and Practice. Springer, 2016, pp. 136–152.

[10] A. Cabrera and R. A. Calix, “On the anatomy of the dynamic behavior
of polymorphic viruses,” in 2016 International Conference on Collabo-
ration Technologies and Systems (CTS). IEEE, 2016, pp. 424–429.

[11] M. Rigaki and S. Garcia, “Bringing a gan to a knife-fight: Adapting
malware communication to avoid detection,” in 2018 IEEE Security and
Privacy Workshops (SPW). IEEE, 2018, pp. 70–75.

[12] C. Symantec, “Internet security threat report 2019,” 2019. [Online].
Available: https://docs.broadcom.com/doc/istr-24-2019-en

[13] www.blockchain.com, “Blockchain explorer - search the
blockchain of BTC, ETH, BCH,” 2020. [Online]. Available:
https://www.blockchain.com/explorer

[14] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

[15] J. Rüth, T. Zimmermann, K. Wolsing, and O. Hohlfeld, “Digging into
browser-based crypto mining,” in Proceedings of the Internet Measure-
ment Conference 2018, 2018, pp. 70–76.

[16] Z. Feng and Q. Luo, “Evaluating memory-hard proof-of-work algorithms
on three processors,” Proceedings of the VLDB Endowment, vol. 13,
no. 6, pp. 898–911, 2020.

[17] M. Documentation, “Cryptonight: Monero documentation,” Tech.
Rep., 2020. [Online]. Available: https://monerodocs.org/proof-of-
work/cryptonight/

[18] D. Carlin, P. O’kane, S. Sezer, and J. Burgess, “Detecting cryptomining
using dynamic analysis,” in 2018 16th Annual Conference on Privacy,
Security and Trust (PST). IEEE, 2018, pp. 1–6.

[19] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel,
H. Bos, and G. Vigna, “Minesweeper: An in-depth look into drive-by
cryptocurrency mining and its defense,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018,
pp. 1714–1730.

[20] S. G. Iyer and A. D. Pawar, “Gpu and cpu accelerated mining of
cryptocurrencies and their financial analysis,” in 2018 2nd International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-
SMAC) I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC),
2018 2nd International Conference on. IEEE, 2018, pp. 599–604.

[21] A. Zimba, Z. Wang, M. Mulenga, and N. H. Odongo, “Crypto mining
attacks in information systems: An emerging threat to cyber security,”
Journal of Computer Information Systems, pp. 1–12, 2018.

[22] Microsoft, “Performance counters documentation,” Tech.
Rep., 2020. [Online]. Available: https://docs.microsoft.com/en-
us/windows/win32/perfctrs/performance-counters-portal

[23] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, “On the
detection of kernel-level rootkits using hardware performance counters,”

in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, 2017, pp. 483–493.

[24] J. Reinders, “Vtune performance analyzer essentials,” Intel Press, 2005.
[25] Z. Markov and I. Russell, “An introduction to the weka data mining

system,” ACM SIGCSE Bulletin, vol. 38, no. 3, pp. 367–368, 2006.
[26] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-

madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” ACM SIGARCH Computer Architecture
News, vol. 41, no. 3, pp. 559–570, 2013.

[27] V. Jyothi, X. Wang, S. K. Addepalli, and R. Karri, “Brain: Behavior
based adaptive intrusion detection in networks: Using hardware per-
formance counters to detect ddos attacks,” in 2016 29th International
Conference on VLSI Design and 2016 15th International Conference on
Embedded Systems (VLSID). IEEE, 2016, pp. 587–588.

[28] C. Kruegel, “Full system emulation: Achieving successful automated
dynamic analysis of evasive malware,” in Proc. BlackHat USA Security
Conference, 2014, pp. 1–7.

[29] D. Kirat and G. Vigna, “Malgene: Automatic extraction of malware
analysis evasion signature,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp. 769–
780.

[30] K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and L. Yu, “Rhmd:
evasion-resilient hardware malware detectors,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
2017, pp. 315–327.

[31] A. Gangwal and M. Conti, “Cryptomining cannot change its spots:
Detecting covert cryptomining using magnetic side-channel,” IEEE
Transactions on Information Forensics and Security, 2019.

[32] J. Heyszl, D. Merli, B. Heinz, F. De Santis, and G. Sigl, “Strengths
and limitations of high-resolution electromagnetic field measurements
for side-channel analysis,” in International Conference on Smart Card
Research and Advanced Applications. Springer, 2012, pp. 248–262.

[33] D. Draghicescu, A. Caranica, A. Vulpe, and O. Fratu, “Crypto-mining
application fingerprinting method,” in 2018 International Conference on
Communications (COMM). IEEE, 2018, pp. 543–546.

[34] H. Darabian, S. Homayounoot, A. Dehghantanha, S. Hashemi, H. Karim-
ipour, R. M. Parizi, and K.-K. R. Choo, “Detecting cryptomining
malware: a deep learning approach for static and dynamic analysis,”
Journal of Grid Computing, pp. 1–11, 2020.

[35] R. Tahir, S. Durrani, F. Ahmed, H. Saeed, F. Zaffar, and S. Ilyas, “The
browsers strike back: countering cryptojacking and parasitic miners on
the web,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 703–711.

[36] J. Segura, “A look into the global ‘drive-by cryptocurrency min-
ing’phenomenon,” Malwarebytes Technical Report, 2017.

[37] XMRig, “Xmrig maximum cpu usage
documentation,” 2020. [Online]. Available:
https://github.com/xmrig/xmrig/blob/master/doc/CPU MAX USAGE.md

[38] G. Mani, N. Bari, D. Liao, and S. Berkovich, “Organization of knowl-
edge extraction from big data systems,” in 2014 Fifth International
Conference on Computing for Geospatial Research and Application.
IEEE, 2014, pp. 63–69.

[39] C. Olah, “Understanding lstm networks,” 2015. [Online]. Available:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[41] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on
systems security metrics,” ACM Computing Surveys (CSUR), vol. 49,
no. 4, pp. 1–35, 2016.

[42] Microsoft, “Microsoft powershell diagnostics,” 2020.
[Online]. Available: https://docs.microsoft.com/en-
us/powershell/module/microsoft.powershell.diagnostics/get-counter

[43] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[45] TensorFlow, “Tensorflow api documentation,” 2020. [Online]. Available:
https://www.tensorflow.org/api docs

[46] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural

networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2016.

118

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:51:45 UTC from IEEE Xplore. Restrictions apply.

