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Abstract

In this paper, we study the verification of data integrity during peer-to-peer video streaming sessions. Chal-

lenges include the timing constraint of streaming, as well as the untrustworthiness of peers. We show the inad-

equacy of existing authentication protocols and propose a more efficient protocol which utilizes message digest

and probabilistic verification. We then propose One Time Digest Protocol (OTDP) and Tree-based Forward Di-

gest Protocol (TFDP) to further reduce the communication overhead. Finally, a comprehensive comparison is

presented comparing the performance of existing protocols and our protocols, with respect to overhead, security

assurance level, and packet loss tolerance.

1 Introduction

Consider the following media distribution system: a central server (say, Hollywood) first starts the streaming distri-

bution of some media data. When there are sufficient clients (or ‘peers’) in the system that have received the media

data, they will begin distributing the media to other peers. However, the distribution is supervised by Hollywood: it

authenticates requesting peers and gives them credentials to obtain media streaming from other peers. Meanwhile,

the supplying peers will perform media streaming only if proper credentials are presented. Due to limited bandwidth

of peers, a peer-to-peer (P2P) streaming session may involve more than one supplying peer.

In such a system, data integrity verification poses challenges. First, the peers cannot be assumed trust-worthy.

Thus, the requesting peer needs a point of reference to verify the data it receives from other peers. Second, the

objective of checking data integrity is not only to verify that the data are not corrupted, but also to validate that the

data are really what one has requested. For example, if a peer requests the movie Matrix, data integrity verification

should ensure that it is getting uncorrupted data of Matrix, not those of Star Wars. Third, due to the timing constraint

of streaming, the integrity check has to be performed efficiently without causing significant delay.

Unfortunately, existing protocols for data integrity verification are either expensive or inapplicable for P2P

streaming. A comprehensive analysis and comparison will be presented in Section 4. In this paper, we adopt
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the method of message digest, and propose three protocols that involve different trade-off strategies between de-

gree of assurance, computation and communication overhead. We show that probabilistic verification provides high

assurance of data integrity and incurs low computation overhead. We propose One Time Digest Protocol (OTDP)

and Tree-based Forward Digest Protocol (TFDP) which further reduce the communication overhead. Our protocols

work well with unreliable transport protocols. This is achieved by using multiple hashes or Forward Error Correction

(FEC) codes (applied only to digests, not data). By both analysis and simulation (using the 1.3 GB Matrix movie),

we show that our protocols outperform existing protocols.

The rest of the paper is organized as follows: Section 2 discusses related work. Section 3 presents our protocols

and discusses protocol parameter configuration in order to obtain desired level of security. Analysis and simulations

are presented in Section 4. Finally, Section 5 concludes this paper.

2 Related Work

One common way to verify data integrity is to let the server sign every packet or the hash of every packet with its

private key using RSA [9] digital signature. A peer then caches the packets as well as the signatures. The signatures

will be provided to other peers that request the data, and verified via server’s public key. RSA signature verification

incurs high computation overhead at the peers. Although one-time and fast signature schemes such as [6, 8] can

reduce computation and/or communication overhead, these signatures are only secure for a short period of time.

Rohatgi [10] proposed k-time signature scheme which is more efficient than one-time signature scheme. Still, the

scheme requires 300 bytes for each signature.

Wong and Lam [11] studied data authenticity and integrity for lossy multicast flows. They proposed Merkele’s

signature tree to sign multicast stream. In this scheme, the root is signed to amortize one signature over multiple

messages. Each packet contains the digests of all nodes necessary to compute the digest of the root and the signature

of the root. As a result, the space requirement is high: 200 bytes in each packet using 1024-bit RSA for a tree of

16 packets. Our TFDP also uses Merkele’s tree. However, we significantly reduce the overhead by first sending the

digests of one subtree before sending any data.

Perrig et al. [7] proposed TESLA and EMSS for efficient and secure multicast. TESLA embeds the signature of

packet pi and the key to verify packet pi−1 in packet pi. The key of packet pi is sent in packet pi+1. The adversary

will see the key but it is too late to forge the signature. TESLA requires strict ordering of packets, which makes it

inappropriate for P2P streaming where packets are transmitted from multiple supplying peers. If supplying peers

generate keys and sign the digests like TESLA, it might not be acceptable to other receiving peers. The efficient

multi-chained stream signature (EMSS) tolerates packet loss by sending multiple hashes with each packet.
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Park et al. [5] proposed SAIDA which leverages erasure codes to amortize a single signature operation over

multiple packets. In SAIDA, a block of a packets carries the encoded digests and signature of the block. The

signature and digests are recoverable, if the receiver gets any b packets. The main advantage of FEC is that it is

robust against bursty packet losses. In our protocols, FEC codes are used to encode digests, not data. We show that

our protocols incur much lower overhead than SAIDA yet it achieves satisfactory loss resilience.

Horne et al. [4] proposed an escrow service infrastructure to verify data in P2P file sharing environment. An

escrow server is responsible for file verification and for payment to peers that offer file sharing. However, it is not

appropriate for video streaming due to the unacceptable latency and overhead of verifying every single segment

via the escrow server. Castro et al. [2] address different security issues in P2P network routing. They show that

self-certifying data can help secure P2P routing. However, they do not consider P2P transmission of time-sensitive

data. To the best of our knowledge, there has been no prior study specifically targeting data integrity verification for

P2P video streaming.

3 Proposed Solution

We use message digest instead of digital signature, because the latter has high computation overhead and generates

long signatures. All our protocols require that a requesting peer collects certain references from the central server

for data integrity verification. And they all are based on the following model.

Peer P0 requests a media file and receives the stream from a set of peers P = {P1, P2, . . . , Pm}, where m

is the total number of peers that participate in the streaming session. We assume a media file is divided into a

set of M segments1 as S = {s1, s2, . . . , sM}. Each segment consists of l packets. We express segment si =

{pi1, pi2, . . . , pil}, where pij is the j-th packet of segment i. The hash of a segment is calculated with a secret key

such as H(si, K) = h(K, si, K), where h denotes a hash function.

3.1 Block-oriented Probabilistic Verification (BOPV) Protocol

The BOPV protocol, shown in Figure 1, runs as follows:

Step 1: Peer P0 authenticates itself to the central server Hollywood.

Step 2: The server provides P0 a secret key Ki ∈ K for each segment i and message digest of the segment as

Di = h(Ki, Hi1, Hi2, . . . , Hil, Ki), (1)

where Hij is the hash of packet j of segment i. The server groups the segments and provides P0 only n digests
1we use block and segment interchangeably
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Figure 1: Steps of the protocol to receive data and verify digests by peer P0.

out of the N segments in each group. These digests are used as a reference to verify the data downloaded from other

peers. The authentication is done securely.

Step 3: P0 gives each supplying peer one or more keys depending on how many segments the peers will provide.

Step 4: Each supplying peer uses the keys to generate digests and sends them to P0 with the segments.

Step 5: For verification, P0 computes the hash function (Equation (1)) itself and matches the results against the

digests it receives from the server. If there is a match, all packets in the segment are verified.

P0 can generate those keys by itself instead of getting it from the server. However, it requires P0 to compute two

hashes to verify each segment.

An example: If the server divides the movie Matrix of size 1.3 GB into segments of size 1 KB (to tolerate loss),

this generates 20 MB digest assuming each hash is 160 bits long. P0 may not want to download this amount of data

before starting the streaming. However, if each segment contains 16 packets, Equation (1) reduces the volume of

digests by 16 times. To further reduce the overhead, the server forms segment groups, with each group containing

N segments. For each group, the server randomly selects n segments out of the N segments to generate digests and

gives them to P0. Each supplying peer does not know which segments will be tested by P0 and they send digests

of all segments. P0 verifies only the segments it gets digests from the server. Verifying 8 out of 16 segments will

reduce the communication cost by 200%. Thus, the 20 MB communication overhead is reduced to 0.625 MB. If we

further increase the segment size to 128, we can lower the integrity verification traffic to 80 KB.

The probabilistic verification provides adjustable level of security and reduces computation overhead. In gen-

eral, if a peer wants to tamper with r segments out of (N − n) segments, the probability of successful cheating

is Pr(cheat) =
(N−r

n
)

(N

n
)

= (N−r)!×(N−n)!
(N−n−r)!×N ! . Figure 2 shows how the probability to cheat varies with number of

segments verified at peer P0 and percentage of corrupted segments a malicious peer may try to send. Let N=16 and
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Figure 2: Probability of cheating without getting caught in different number of segments. (a) Increasing number of segment to test (b)

Increasing percentage of corrupted segments.

n=8. If a peer tampers with one segment, the chance of being detected is only 50%. However, if a peer tampers with

4 segments, then more than 96% chance P0 will detect that. In other words, P0 will get 12 good segments (out of

every 16 segments) with probability 0.96. This probability will reach 0.99 if n=9. Therefore, the level of security

can be adjusted by tuning the values of n and N .

One limitation of the above protocol is: if any packet is lost, the requesting peer will not be able to verify the

entire segment containing the lost packet. An adversary peer can intentionally drop one packet from each segment

and the whole streaming process is vulnerable. To deal with packet losses due to an unreliable transport protocol,

we apply the following two techniques.

Multiple Hashes (MH): EMSS [7] achieves robustness against packet losses by sending multiple hashes of

other packets with the current packet. We explore the similar idea to achieve robustness of our scheme. In this

approach, the peers send each packet pij = [Mij , Hi,j+1%l, . . . , Hi,j+t%l], where t defines the loss threshold, and

Mij is the data of j-th packet for segment i. Like Golle et al. [3], we can insert hashes in strategic locations in a

segment so that the chain of packets are more resilient to bursty packet losses.

To verify the packets of a segment si, peer P0 checks which packets of the segment it received and which of

them are lost. When a packet is lost, its hash will be found in other packets unless total packet loss of a segment

exceeds the threshold t. P0 computes hashes of packets received and uses the hash provided by the sending peer for

lost packets. These values are plugged in Equation (1) and if this digest matches the digest provided by the server,

the peer accepts the data otherwise it rejects them.

Forward Error Correction (FEC): Park et al. [5] introduced erasure code to encode hashes and signatures in-
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stead of data block. We apply similar idea to encode the digests using Reed-Solomon code. Efficient implementation

of Reed-Solomon code has been reported in [1]. For each segment, the peers encode the digests into a packets out of

which b packets are sufficient to decode the digests. This scheme is robust against bursty packet losses because any

b packets can recover the digests of all a packets. With these digests, P0 verifies the integrity of the received packets

of a segment using Equation (1).

We apply FEC to all our protocols. In Section 4, we compare the performance of our protocols (with FEC) and

SAIDA.

3.2 One Time Digest Protocol (OTDP)

To eliminate the downloading of digests in Step 1 of Figure 1, we propose the One Time Digest Protocol (OTDP).

In this protocol, the server generates the digests with keyed hash as shown in Equation (1) for a set of keys K. The

server distributes all digests to different peers off-line. The keys are not given to the peers. A peer can not alter any

digest because it does not know the keys. The OTDP modifies the basic protocol in Figure 1 as follows:

Step 1: When P0 requests a media file, it searches the P2P network to determine the supplying peers. P0

authenticates itself with the server.

Step 2: The server provides P0 a set of keys based on the search results.

Step 3: P0 tells peers to send data and digests.

Step 4: Each peer Pi sends both data and digests to P0.

Step 5: P0 verifies each segment with appropriate keys. P0 maintains some backup peers if some peers fail to

provide data for any reason.

In OTDP, P0 downloads only a set of keys which is fairly small n volume comparing with the digests of all

segments. The integrity verification is secure due to the property of secure hash function. Error correction codes

are used to protect digests. The probabilistic verification can be used to reduce computation overhead of P0. The

limitation of OTDP is that one digest can be used only once. When a set of keys is revealed to a peer, these keys can

not be used later; otherwise a peer can forge digest. However, the cache of movie data that a peer has is reusable.

When a peer wants to be a provider, it collects a fresh set of digests from the server off-line. The server is required

to have an efficient key management scheme to assign keys to different parts of a movie. When some segments are

used in streaming, the server will have to invalidate those keys and digests.

3.3 Tree-based Forward Digest Protocol (TFDP)

To avoid the download as in Step 1 of the BOPV protocol and to reuse the same hashes, we propose Tree-based

Forward Digest protocol. This protocol uses Merkele’s tree and is similar to Tree-chaining proposed by Wong and
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Lam [11] for multicast flows. However, our protocol does not sign the root of every subtree belongs to each segment.

We only compute digests to form the Merkele’s tree. Another difference is that our protocol creates one tree for a

media file, instead of a separate tree for each segment. In Section 4, we show that this tree significantly reduces

communication overhead.

H3

1615141312119 108765432

H5

P1 P3P2

H15

H14H13

H12H11H10H9

H4H2H1 H8H7H6

1

Figure 3: Tree structure of 16 segments where P1 has first four, P2 has next 8, P3 has the rest. Before streaming, P1 sends the following

digests: H1, H2, H3, H4, H10, and H14.

Initially, the server generates the Merkele’s signature tree for a media file. The leaves of the tree can be a segment

(a set of packets) or a single packet. All non-leaf nodes of the tree represent digests of leaves of their corresponding

subtrees. The server imposes and enforces a minimum number of segments Nmin a peer needs to cache. And the

number of segments cached by a peer is always a multiple of Nmin. We provide a simplified example with 16

segments and Nmin = 4. P1 has first four, P2 has next 8, P3 has the rest as shown in Figure 3. When P0 wants

to down segments from P1, P1 first provides all digests of the segments it has H1, H2, H3, H4 and other digests to

compute the digest of the root. In this case, those are H10, and H14. P0 computes H15 with these information and

then verifies with the digest supplied by the server. If there is a match, the belief in H15 is transported to all hashes

provided by P1. The data sent by P1 can be verified segment by segment using these digests. The TFDP runs as

follows:

Step 1: P0 authenticates itself to the server.

Step 2: The server provides the peer credentials and the digest of the root of the Merkele’s tree.

Step 3: P0 tells a peer Pi to forward the digests that are used to verify the supplied data.

Step 4: Each peer Pi provides the digests of all leaves of the subtree it has and digests of all other nodes to

compute the root. These are obtained from the server.

Step 5: If the computed digest at P0 matches the digest obtained from the server, P0 will allow Pi to send the

data. P0 can trust the digests of each segment sent by Pi because the computed digest matches the digest of the root.
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Step 6: Pi sends data and P0 can verify every segment individually.

To reduce the delay in Step 4, we can tune the value of Nmin. For example, if Nmin is 64 segments and each

segment contains 16 packets, then Step 4 downloads 64 × 16 + log( M
Nmin

) digests, which is equal to 1035 digests

with a volume of 20 KB for our example. Downloading this digest takes very little time for P0. All digests are

downloaded using TCP to ensure none of them is lost. The communication overhead is proportional to the height of

the tree.

The main advantage of TFDP is that downloading digests is distributed over all peers and the server only provides

the digest of the root. This scheme does not use separate key for each segment or peer. Instead, a unique identifier is

used for each movie to compute the digests.

Allow Download Download # of Hash # of Hash Sign Verify sign Decode at Security

packet server →P0 P→P0 at server at P0 at server at peers at P0

loss (Bytes) (Bytes)

Tree chaining YES 0 20Ml log l + 128Ml M(2l − 1) M(2l − 1) M M — 100%

BOPV NO (20 + K)Mv 20M Mv Mv — — — variable

BOPV+MH YES (20 + K)Mv 20Ml(t − 1) Mv(l + 1) Mv(l + 1) — — — variable

BOPV + FEC YES (20 + K)Mv 20Mlα Mv(l + 1) Mv(l + 1) — — M/α variable

OTDP YES KPm 20Mlα M(l + 1) Mv(l + 1) — — M/α variable

TFDP YES 20 20X 2Ml Xv — — — variable

SAIDA YES 0 (20l + 128)Mα M(l + 1) M(l + 1) M M M/α 100%

Table 1: Comparison among different schemes to authenticate a stream. M is total number of segment in a file, l is the size of a segment

in packets. v = n

N
, probability to verify a segment. α =

total packets sent per block
total packets need to reconstruct the block , K is the size of a key, Nmin is the

minimum number of segment a peer caches, and X = Ml + M

Nmin

log( M

Nminl
).

4 Analysis and Results

In [5], the authors show that SAIDA performs better than EMSS [7] and augmented chaining [3] in bursty packet loss

tolerance. In this paper, we compare our protocols with SAIDA and Tree chaining [11]. We evaluate the overhead of

Block-Oriented Probabilistic Verification (BOPV) with its variations that integrate multiple hashes (MH) and FEC

codes. The One Time Digest Protocol (OTDP) and Tree-based Forward Digest Protocol (TFDP) use FEC to achieve

robustness against bursty packet losses. Table 1 presents an analytic comparison among these schemes. Before

discussing the comparison, we first describe the setup. We use openSSL crypto library to calculate SHA-1 hash,

RSA sign, and RSA verify. We use the Cauchy-based Reed-Solomon code [1] as forward error correction code to

evaluate our protocols and SAIDA. The computation time for hash, sign, verify, encode, and decode is obtained

using a 700 MHz PC with 256 MB RAM running Linux without any background process.
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Figure 4: Overheads among Tree chaining, BOPV with multiple hashes and FEC, OTDP, TFDP, and SAIDA for movie Matrix of size,

F=1.3 GB. The BOPV+FEC and OTDP have same computation overhead. Left figure does not show Tree chaining to highlight others.

Figure 4 shows the analytical comparison using Table 1 for the movie Matrix. The communication overhead is

the total volume of digests P0 needs to download from other peers and the server. The computation overhead is for

hash computation, signature verification, and FEC decoding. The figure shows that communication overhead can be

reduced significantly if FEC is used to encode digests and signatures. The FEC increases the computation overhead

when segment size grows, because it needs to decode more packets within a block. The Tree chaining has extremely

high communication overhead (260 MB, for l=16, not shown in Figure 4). Its computation overhead is reduced by

caching digests carried by previous packets and using them to verify upcoming packets of a block. The BOPV with

multiple hashes has the lowest computation overhead. Notice that, it has significant communication overhead com-

paring to others with FEC. The SAIDA has low communication overhead, however, the cost of verifying signature

increases its computation overhead. The TFDP has slightly high computation overhead than BOPV+MH because

TFDP sends few more digests for every Nmin segments so that the receiver the verify the digest of the root.

We also conduct simulations using the ns-2 simulator. In this simulation, one peer receives streaming media

from five peers at the same time. The inbound link of the requesting peer is lossy. As SAIDA, we use Two-state

Markov loss model (modified version of ns-2) to introduce bursty packet loss in the shared link. The parameters of

Markov model is Pr{no loss} = 0.95 and Pr{loss} = 0.05. The shared link incurs packet loss rate of 25%. We

calculate the fraction of verifiable packets by 1
M

∑M
i=1

number of verifiable packets in segment i

number of packets received in segment i
, for both SAIDA

and OTDP. We compare SAIDA and OTDP in the simulation. The TFDP uses TCP to download digests and thus

it can verify all packets received. The outcome of the simulation is shown in Figure 5. The digests and signatures

are encoded to tolerate 37.5% packet loss rate. We observe that due to burstiness, some segments have low packet
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verifiability. The reason why OTDP performs better is that SAIDA sends slightly more data than OTDP due to RSA

signature for each segment.
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Figure 5: Packets verification probability at P0.

5 Conclusion

For P2P video streaming, data integrity verification is an important security issue. However, it receives less attention

than other P2P security issues. In this paper, we propose efficient protocols to verify data integrity during P2P video

streaming sessions. Our probabilistic packet verification protocol tunes the security and corresponding overhead.

The proposed One Time Digest Protocol (OTDP) and Tree-based Forward Digest Protocol (TFDP) have very low

communication overhead and tolerate high packet losses with reasonable computation overhead. The FEC codes

can reduce the communication overhead. However, we show that it increases the computation overhead when many

packets are aggregated into one block in order to amortize a signature over large block. Our simulation shows that a

peer can verify 97% of packets even under a packet loss rate of 25%.
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