
Improving the Scalability of Data Center Networks
with Traffic-aware Virtual Machine Placement

Xiaoqiao Meng, Vasileios Pappas, Li Zhang
IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532
Email: {xmeng, vpappas, zhangli}@us.ibm.com

Abstract—The scalability of modern data centers has become a
practical concern and has attracted significant attention in recent
years. In contrast to existing solutions that require changes in
the network architecture and the routing protocols, this paper
proposes using traffic-aware virtual machine (VM) placement to
improve the network scalability. By optimizing the placement
of VMs on host machines, traffic patterns among VMs can be
better aligned with the communication distance between them,
e.g. VMs with large mutual bandwidth usage are assigned to host
machines in close proximity. We formulate the VM placement as
an optimization problem and prove its hardness. We design a
two-tier approximate algorithm that efficiently solves the VM
placement problem for very large problem sizes. Given the
significant difference in the traffic patterns seen in current data
centers and the structural differences of the recently proposed
data center architectures, we further conduct a comparative
analysis on the impact of the traffic patterns and the network
architectures on the potential performance gain of traffic-aware
VM placement. We use traffic traces collected from production
data centers to evaluate our proposed VM placement algorithm,
and we show a significant performance improvement compared
to existing generic methods that do not take advantage of traffic
patterns and data center network characteristics.

I. I NTRODUCTION

Modern virtualization based data centers are becoming the
hosting platform for a wide spectrum of composite applica-
tions. With an increasing trend towards more communication
intensive applications in data centers, the bandwidth usage
between virtual machines (VMs) is rapidly growing. This
raises a number of concerns with respect to the scalability of
the underlying network architecture, an issue that has attracted
significant attention recently [1][2][3][4][5][6][7]. Techniques
in these proposals include rich connectivity at the edge of the
network and dynamic routing protocols to balance traffic load.

In this paper, we tackle the scalability issue from a different
perspective, by optimizing the placement of VMs on host
machines. Normally VM placement is decided by various
capacity planning tools such as VMware Capacity Planner [8],
IBM WebSphere CloudBurst [9], Novell PlateSpin Recon [10]
and Lanamark Suite [11]. These tools seek to consolidate VMs
for CPU, physical memory and power consumption savings,
yet without considering consumption of network resources.As
a result, this can lead to situations in which VM pairs with
heavy traffic among them are placed on host machines with
large network cost between them. To understand how often
this happens in practice, we conducted a measurement study
in operational data centers and observed three apparent trends:

there is a low correlation between the average pairwise traffic
rate and the end-to-end cost; traffic distribution for individual
VMs is highly uneven; VM pairs with relatively heavier traffic
rate tend to constantly exhibit the higher rate and conversely
VM pairs with low traffic rate tend to exhibit the low rate.
These three observations suggest that there is a great potential
in optimizing VM placement to save bandwidth and realizing
such potential is feasible.

We formally define the Traffic-aware VM Placement Prob-
lem (TVMPP) as an optimization problem. Input to such a
problem includes the traffic matrix among VMs and the cost
matrix among host machines. The optimal solution to the
TVMPP dictates where VMs should be placed in order to
minimize the objective, which, with a typical cost matrix
definition, is the aggregate traffic rates perceived by every
switch. We prove that the TVMPP is NP-hard and propose
a heuristic algorithm to solve the TVMPP efficiently even
for large problem sizes. The proposed algorithm takes a
novel two-tier approach: it first partitions VMs and hosts
into clusters separately, then it matches VMs and hosts at
cluster level and consequently at individual level. We evaluate
the algorithm by using traces collected from production data
centers. The experimental results show that the proposed
algorithm can significantly lower the aggregate traffic and
reduce the computational time when compared against two
existing representative methods.

Next, given the variety of the proposed network architec-
tures and the complexity of traffic patterns in data centers,we
investigate under which conditions it is beneficial to applythe
VM placement approach in practice. Specifically, we consider
four architectures under different traffic patterns. We seek to
answer the following question: which network architectureand
what traffic pattern yields the highest performance gain when
the TVMPP is optimally solved? Our study shows that design
choices in each proposed architecture have profound impacton
the network scalability improvement achieved by the TVMPP.
While multi-level network architectures, such as BCube [5],
reap the most benefit, architectures that have been designed
with uniform traffic patterns in mind, such as VL2 [3], see
little benefit in optimally solving the TVMPP. On the other
hand, non-uniform traffic patterns, either due to the variability
in VM usage or due to localized traffic clusters among VMs,
create higher benefit for optimally solving the TVMPP.

The main contributions of this paper are summarized as

0 5 10 15

x 10
5

0

0.2

0.4

0.6

0.8

1

Bytes/Min

C
D

F

Receive traffic
Send traffic

(a) CDF of mean traffic rate

0 1 2 3 4

x 10
6

0

2

4

6

8

10

12
x 10

6

Mean receive rate (bits per 15min)

S
ta

n
d

a
rd

 d
e

vi
a

tio
n

(b) Distribution of (mean, stan-
dard deviation)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Frac. of bins with rate in (mean−std, mean+std)

C
C

D
F

Receive traffic, hourly bin
Send traffic, hourly bin
Receive traffic, 15min bin
Send traffic, 15min bin

(c) CCDF of proportions of stable
intervals

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Auto−correlation

P
D

F

Receive traffic, Lag=30min
Receive traffic, Lag=4hour
Send traffic, Lag=30min
Send traffic, Lag=4hour

(d) PDF of auto-correlation coef-
ficients

Fig. 1. Statistics about VM traffic in 17,000 VMs dataset

following:

• We address the scalability issue of data center networks
with network-aware VM placement. We formulate it as
an optimization problem, prove its hardness and propose
a novel two-tier algorithm.

• We analyze the impact of data center network architec-
tures and traffic patterns on the scalability gains attained
by network-aware VM placement.

• We measure traffic patterns in production data center
environments, and use the data to evaluate the proposed
algorithm as well as the impact analysis.

II. BACKGROUND AND MOTIVATION

In this section, we present a few observations on the traffic
patterns in production data centers. We also describe four data
center network architectures, including the traditional tree-like
architecture and three recently proposed one.

A. Data Center Traffic Patterns

To better understand data center traffic patterns, we examine
traces from two data-center-like systems. The first comes from
a data warehouse hosted by IBM Global Services. It collects
server resource utilization information from hundreds of server
farms. Each server farm contains physical hosts and VMs that
are used by various enterprise customers. Our study is focused
on the incoming and outgoing traffic rates for 17 thousand
VMs. The second trace is from a server cluster with about
hundreds of VMs. Due to some practical constraints, we are
able to measure the incoming and outgoing TCP connections
for 68 VMs. We also measure the round-trip latency between

 450
 400
 350
 300
 250
 200
 150
 100
 50
 0

Sender

R
ec

ei
ve

r

Traffic

 10 20 30 40 50 60

 10

 20

 30

 40

 50

 60

Fig. 2. Traffic matrix

 35
 30
 25
 20
 15
 10
 5
 0

Sender

R
ec

ei
ve

r

Latency

 10 20 30 40 50 60

 10

 20

 30

 40

 50

 60

Fig. 3. Latency matrix

any two servers. This measurement continues for 10 days.
Based on these two traces, we observe the following three
trends regarding traffic patterns in data centers.

Uneven distribution of traffic volumes from VMs: Figure
1.(a) is the CDF for the outgoing and incoming aggregate
traffic rate at individual VMs in the warehouse dataset. The
traffic rate is the average over a two-week period. While 80%
of VMs have average rate less than 800 KBytes/min, 4% of
them have a rate ten times higher. Since the original data do
not report throughput between VMs, we use the second trace
which measures TCP-connection-per-hour between every two
VMs. Figure 2 uses different levels of grayscale to reflect rates.
The inter-VM traffic rate indeed varies significantly. Besides
the VM 21 which has clearly high traffic volume with almost
every other VM, several other VM pairs also exhibit high data
rates.

Stable per-VM traffic at large timescale: Although the
average traffic rates are divergent among VMs, the rate for
a large proportion of VMs are found to be relatively stable
when the rate is computed at large time intervals. Such an
observation is apparent in Figures 1.(b), 1.(c) and 1.(d). In
Figure 1.(b) we plot the mean and standard deviation of traffic
rates for 17K VMs. It shows that for the majority of VMs
(82%), the standard deviation of their traffic rates is no more
than two times of the mean. Figure 1.(c) is the CCDF for
the percentage ofstabletime intervals. An interval is labeled
as stable if the rate within it is no more than one standard
deviation away from the mean in the entire measurement
period. Figure 1.(c) shows that for 82%-92% of VMs, no less
than 80% of the entire set of time intervals are stable. We
also examine traffic constancy by computing auto-correlation
coefficients from the traffic timeseries for each VM. Figure
1.(d) shows the PDF for the auto-correlation coefficients at
two lags: 30 minutes and 4 hours. The long tail indicates that
at the two large timescales, a large fraction of the VMs’ traffic
rates are relatively constant.

Weak correlation between traffic rate and latency:Based
on our measurement on the traffic rate and end-to-end latency
among 68 VMs in a production cluster, in Figure 2 we show
the pairwise traffic intensity, and in Figure 3 we show the
pairwise end-to-end latency. While in Figure 2, darker color
indicates higher traffic rate; on Figure 3, darker color indicates
lower latency. An apparent observation is that the VM pairs

Fig. 4. Network topologies and corresponding cost matricesfor four data center network architectures

with high rate do not necessarily correspond to low latency and
vice versa. The correlation coefficient for these two matrices
is -0.32, indicating a fairly weak correlation.

The above observations make a case for shuffling VM
placement such that more traffic are localized and the pairwise
traffic demand is better coordinated with the pairwise network
cost. The potential benefit is two-fold: increased network
scalability and reduced average traffic latency. In addition, the
observed traffic stability over large timescale suggests that it is
feasible to find good placements based on past traffic statistics.
Finally, the observed large time scales of stable traffic suggest
an amortized VM migration cost.

B. Data Center Network Architectures

Current data centers follow to a great extend a common
network architecture, known as the three-tier architecture [12].
At the bottom level, known as the access tier, each server
connects to one (or two, for redundancy purposes) access
switch. Each access switch connects to one (or two) switches
at the aggregation tier, and finally, each aggregation switch
connects with multiple switches at the core tier. While the
physical topology in such three-tier architecture is a multi-
rooted forest topology, in reality packets are forwarded ac-
cording to the logical layer-2 topology that is created withthe
use of VLANs and the spanning tree algorithm. This layer-2
topology is always a tree, usually rooted at one of the core
switches. Figure 4 shows one such topology with 16 servers
and one VLAN (labeled asTree).

Scaling the three-tier architecture is achieved by scalingup
each individual switch, i.e. by increasing its fan-out, rather
than scaling out the topology itself. For example, based
on [12], the core tier can accommodate 8 switches at most.
Topology scaling limitations as well as other ones such as
the need for flat address space, or the high server over-
subscription, have prompted recently many parallel efforts
in redefining the network architecture of the data centers.
Next, we present three alternative architectures that havebeen
proposed in the last two years.

VL2 [3] is a new architecture that shares many features with

the previous one. More specifically, it is a 3-tier architecture
with main difference that the core tier and the aggregation tier
form a Clos [13] topology, i.e. the aggregation switches are
connected with the core ones by forming a complete bipartite
graph. In addition, traffic originated from the access switches
is forwarded in the aggregation and the core tiers with the
use of valiant load balancing, i.e. it is forwarded first to a
randomly selected core switch and then back to the actual
destination. The main rationale behind this architecture is that
when traffic is unpredictable the best way to balance load
across all available links is to randomly select a core switch as
an intermediate destination. Figure 4 shows one such network
with 16 servers (labeled asVL2).

PortLand [2] is another three-tier architecture that shares
with the VL2 the same Clos topology feature, though at
different levels. The PortLand architecture makes use of fat-
tree [14] topologies and it is built around the concept of pods:
a collection of access and aggregation switches that form
a complete bipartite graph, i.e., a Clos graph. In addition,
each pod is connected with all core switches, by evenly
distributing the up-links between all the aggregation switches
of the pod. As such, a second Clos topology is generated
between the core switches and the pods. PortLand assumes all
switches are identical, i.e., they have the same number of ports
(something not required by the previous two architectures).
The number of available ports per switch is the only parameter
that determines the total number of pods and in consequence
the total number of required switches as well as connected
servers. More specifically, ifk is the number of ports on each
switch, then there arek pods, with k

2 access switches andk2
aggregation switches in each pod. Each pod is connected with
k2

4 core switches and withk
2

4 servers. Thus in total, there are
5k2

4 switches that interconnectk3

4 servers. Figure 4 shows one
such network fork = 4 (labeled asFat-tree).

BCube [5] is a new multi-level network architecture for
the data center with the following distinguishing feature:
servers are part of the network infrastructure, i.e., they forward
packets on behalf of other servers. BCube is a recursively
defined structure. At level0, BCube0 consists ofn servers that

connect together with an-port switch. A BCubek consists of
n BCubek−1 connected withnk n-port switches. Servers are
labeled based on their locations in the BCube structure. E.g., in
a three-layer BCube, if a server is the third server in a BCube0

that is inside the second BCube1 being inside the fourth
BCube2, then its label is4.2.3. Based on such labels servers
identify with which they connect to: servers whose label differs
only at the ith level connect together with a switch at the
BCubei level. In essence, BCube is a generalized hypercube
architecture [15] with the main difference that neighboring
nodes instead of forming a full mesh with each other, they
connect through switches. Note that the number of connected
servers as well as the number of required switches in a BCube
is a function ofn, the total port number of each switch, andk,
the number of BCube levels. Figure 4 shows one such network
for k = 1 andn = 4 (labeled asBCube).

These four architectures have been designed independently
with different goals in mind. In this paper we aim to under-
stand how these topologies compare against each other when
traffic loads can be moved around with the use of VMs.

III. V IRTUAL MACHINE PLACEMENT PROBLEM

In this section we formally define the VM placement
problem and analyze its complexity.

A. Problem Formulation

We study the problem of placing VMs on a set of physical
hosts (hereinafter referred to as hosts). We assume existing
CPU/memory based capacity tools have decided the number
of VMs that a host can accommodate. Thus we use aslot to
refer to one CPU/memory allocation on a host. Multiple slots
can reside on the same host and each slot can be occupied
by any VM. We consider a scenario where there aren VMs
andn slots. By assuming static and single-path routing which
are the current typical settings, we useCij , a fixed value, to
refer to the communication cost from sloti to j. Dij denotes
traffic rate from VM i to j. ei denotes external traffic rate
for VM i. Without loss of generality, we assume all external
traffic are routed through a common gateway switch. Thus we
can usegi to denote the communication cost between VM
i and the gateway. For any placement scheme that assignsn

VMs to n slots on a one-to-one basis, there is a corresponding
permutation functionπ : [1, . . . , n] → [1, . . . , n]. We can
formally define the Traffic-aware VM Placement Problem
(TVMPP) as finding aπ to minimize the following objective
function

∑

i,j=1,...,n

DijCπ(i)π(j) +
∑

i=1,...,n

eigπ(i) (1)

The above objective function is equivalent to

min
X∈Π

tr(DXT CT X) + eXT gT (2)

wheretr() is defined astr(A) =
∑

i Aii for an input matrix
A. X is a permutation matrix which must satisfies three con-
straints:Xij ∈ {0, 1}(∀i, j),

∑n

j=1 Xij = 1(∀i),
∑n

i=1 Xij =
1(∀j). Π is the set of all valid permutation matrices.e, g are

row vectors. In the above formulation, except forπ, all the
other variables are assumed to be known.

The meaning of the objective function in (1) depends on
the definition of Cij . In fact Cij can be defined in many
ways. For the sake of illustration, we defineCij as the number
of switches on the routing path from VMi to j. With such
a definition, the objective function is the sum of the traffic
rate perceived by every switch. If the objective function is
normalized by the sum of VM-to-VM bandwidth demand, it
is equivalent to the average number of switches that a data
unit traverses. If we further assume every switch causes equal
delay, the objective function can be interpreted as the average
latency for a data unit traversing the network. Accordingly,
optimizing TVMPP is equivalent to minimizing average traffic
latency caused by network infrastructure.

The formulation described above assumes equal number
of VMs and slots. When there are more available slots
than VMs, we can always make the two numbers equal by
introducing dummy VMs which do not receive or send any
traffic. Obviously adding such dummy VMs does not affect
VM placement. Notice that the second part in the objective
function of (1) is the total external traffic rate calculatedat all
switches. In reality, this sum is most likely constant regardless
of VM placement, because in typical data center networks,
including those in Figure II-A, the cost between every end
host and the gateway is the same. Therefore, the second part
in the objective function can be ignored in our analysis.

The TVMPP framework is very general and can be applied
in both offline and online scenarios. In a typical offline
scenario, multiple customers request for VMs. The data center
operators first estimate the traffic matrix based on customers’
input, then collect the network topology information, and
solve the TVMPP problem to decide which host(s) should be
used to create VMs. In a typical online scenario, VMs have
been created and running, the operators periodically collect
traffic matrix and re-solve the TVMPP problem. If a new VM
placement scheme is found to yield better objective value,
the operators will decide whether a reshuffling of the VMs
assignment is needed.

B. Complexity Analysis

We now analyze the computational complexity of TVMPP.
When C and D are matrices with arbitrary real values,
TVMPP falls into the category ofQuadratic Assignment
Problem (QAP)in the Koopmans-Beckmann form [16]. QAP
is a known NP-hard [17] problem. In fact, it is one of the
most difficult problems in NP-hard class - as shown in [17],
even finding anσ-approximation algorithm (σ is a constant)
is NP-hard. Although various methods for solving QAP have
been proposed [16], there is a general agreement that finding
the optimality of QAP problems with size> 15 is practically
impossible.

It is conceivable that the TVMPP is a special case of QAP
since the data center network architecture imposes special
constraints onD. We further prove the following:

Theorem 1:For a TVMPP problem defined on a data center
that takes one of the topology in Figure 4, finding the TVMPP
optimality is NP-hard.

Proof: This can be proved by a reduction from the Bal-
anced Minimum K-cut Problem (BMKP) [18][19]. The BMKP
problem is formally described as following:G = (V, E) is an
undirected, weighted graph withn vertices andn is a positive
integer divisible by another positive integerk. A k-cut onG is
defined as a subset ofE that partitionG into k components.
The k-cut weight is defined as the sum of the weights on all
the edges in the k-cut. The BMKP problem is to find a k-
cut with minimum weight whose removal partitionsG into k

disjoint subsets of equal sizen
k

. BMKP is an extended problem
from the Minimum Bisection Problem (MBP). Both BMKP
and MBP are known to be NP-hard [18][19].

Now considering a data center network, regardless of which
topology in Figure 4 being used, we can always create a
network topology to satisfy the following requirements: there
aren slots that are partitioned intok slot-clusters of equal size
n
k

(n
k

is a positive integer). Every two slots have a connection
with certain cost. While connections within the same cluster
have equal costci, connections across clusters have equal cost
co with co > ci.

Suppose there aren VMs with traffic matrixD. By assign-
ing thesen VMs to then slots, we obtain a TVMPP problem.
Meanwhile, if we define a graph with then VMs as nodes and
D as edge weights, we obtain a BMKP problem associated
with the TVMPP problem. Any solution to the TVMPP also
gives a solution to the associated BMKP problem. This is
because the solution to the TVMPP partitions then VMs into
k groups, each group corresponding to a slot-cluster. The edges
between all VM pairs that are assigned to two different slot-
clusters can be considered as a k-cut, and the traffic betweenall
such VM pairs are the k-cut weight. It can be shown that when
the TVMPP is optimal, the associated BMKP is also optimal.
Equivalently, when the TVMPP is optimal, if we swap any
two VMs i, j that have been assigned to two slot-clusterr1, r2

respectively, the k-cut weight will increase. To prove this, we
need to compute the amount of change occurring to the k-cut
weight due to the swap ofi, j. Clearly, this computation only
needs involving those VM pairs of which one isi or j and the
other is assigned tor1 or r2. Let s1 denote the set of VMs
assigned tor1 (s1 excludes the VMi andj). Analogously we
defines2. Now because the TVMPP objective value increases,
we have

∑

∀k∈s1

[Djk(ci − co) + Dik(co − ci)]

+
∑

∀k∈s2

[Djk(co − ci) + Dik(ci − co)] > 0 (3)

The amount of change for the k-cut weight is

[
∑

∀k∈s1

(Dik −Djk) +
∑

∀k∈s2

(Djk −Dik)]

Due to (3) andco > ci, it is straightforward to see that the
above k-cut weight change is positive, i.e., before swapping
VMs i, j, the BMKP problem achieves optimality. Thus, the
k-cut is optimal when the TVMPP is optimal.�

The proof also reveals that the BMKP optimality is a
necessary but insufficient condition for the associated TVMPP
being optimal. This is because when BMKP is optimal, we can
always swap two VMs both of which are assigned to the same
slot-cluster. This does not affect the k-cut weight, but it can
possibly decrease the TVMPP objective value.

IV. A LGORITHMS

Previous analysis shows that the TVMPP problem is NP-
hard and it belongs to the general QAP problem, for which
no existing exact solutions can scale to the size of current
data centers. Therefore, in this section we describe an approx-
imation algorithm Cluster-and-Cutwhich leverages unique
features of traffic patterns and network topologies in data
centers. The proposed algorithm has two design principles,
with the first one being the following well known result:

Proposition 1: [20] Suppose0 ≤ a1 ≤ a2 . . . ≤ an and
0 ≤ b1 ≤ b2 . . . ≤ bn, the following inequalities hold for any
permutationπ on [1, . . . , n]

n
∑

i=1

aibn−i+1 ≤

n
∑

i=1

aibπ(i) ≤

n
∑

i=1

aibi

The TVMPP objective function is essentially to sum up
all multiplications between everyCij and its corresponding
Dπ(i)π(j). According to Proposition 1, solving TVMPP is
intuitively equivalent to finding a mapping of VMs to slots
such thatVM pairs with heavy mutual traffic be assigned to
slot pairs with low-cost connections.

The second design principle is divide-and-conquer: we
partition VMs into VM-clusters and partition slots into slot-
clusters. Then we first map each VM-cluster to a slot-cluster.
For each VM-cluster and its associated slot-cluster, we further
map VMs to slots by solving another TVMPP problem, yet
with a much smaller problem size. VM-clusters are obtained
via classical min-cut graph algorithm which ensures that VM
pairs with high mutual traffic rate are within the same VM-
cluster. Such a feature is consistent with an early observation
that traffic generated from a small group of VMs comprise a
large fraction of the total traffic. Slot-clusters are obtained via
standard clustering techniques which ensures slot pairs with
low-cost connections belong to the same slot-cluster. Again,
this is leveraging the fact that the network usually contains
many groups of densely connected end hosts due to the star
topology created by switches with many ports.

The pseudo-code for the algorithm is described in Algorithm
1. It has two major components:

1) SlotClustering:n slots are partitioned intok clusters by
using the cost between slots as the partition criterion. There
are two approaches in implementing this function. One is a
manual procedure by the operators, who can leverage their
a prior knowledge on network configurations. This approach
may give better results but could be labor intensive. The other

Algorithm 1 Cluster-and-Cut
Require: D(Traffic matrix), C(Cost matrix), k(Number of

clusters, a parameter used in clustering and min-cut com-
ponents)

1: n← size ofD {Find out VM count}
2: SlotClustering(C,k) {Partition slots intok clusters:{ri}}
3: Sort{ri}, in decreasing order of the cost of edges having

one endpoint inri. Each edge only counts once
4: VMMinKcut(D, {|r1|, . . . , |rk|}) {Partition n VMs into

k clusters{si}, |si| = |ri|}
5: Assign si to ri, ∀i = 1, . . . , n {One-to-one mapping

between slot-cluster and VM-cluster}
6: for i = 1 to k do
7: if |si| > 1 then {Multiple VMs in si}
8: Cluster-and-cut(D(si), C(ri), |si|){D(si): traffic

matrix for si. C(ri): cost matrix forri. |si: recur-
sively call Cluster-and-Cut}

9: end if
10: end for

Algorithm 2 VMMinKcut
Require: G(Graph weight matrix),{b1, . . . , bk}(size of each

cluster)
1: n← size ofG
2: Compute Gomory-Hu tree forG and obtainn − 1 cuts
{gi}{Thesen− 1 cuts contains the minimum weight cuts
for all server pairs}

3: Sort {gi} by increasing weight
4: for i = 1 to k do
5: Clearsi

6: Find the minimumj such that removing{g1, . . . , gj}
will partition G into two components:c1 with size |bi|
andc2 with sizen− |bi|

7: si ← c1

8: G← c2

9: n← n− |bi|
10: end for
11: Return{si}

approach is running classical clustering algorithms basedon
the cost matrix. Note that our cost definition is the number of
switches on the path between two slots, so it satisfies the tri-
angle inequality. Thus this becomes the Minimum k-clustering
Problem [18] which is NP-hard. We solve this problem by the
algorithm described in [21], with an approximation ratio 2.
The output from SlotClustering is a set of slot-clusters, sorted
in decreasing order of the total outgoing and incoming cost.

2) VMMinKcut: In this step, we need to partitionn VMs
into k VM-clusters with minimum inter-cluster traffic. More
importantly, we must ensure that for any already formed slot-
cluster, there is a corresponding VM-cluster with the equal
size. The partition method used here is adapted from the
minimum k-cut algorithm in [19]. This algorithm is originally
applied to balanced Minimum k-cut problems in which the

k clusters have equal size. The approximation ratio for the
algorithm isk−1

k
n. The pseudo-code of our adapted algorithm

is described in Algorithm 2. A brief explanation is following:
suppose we need to find a VM-cluster with certain size, we
first find all the min-cut for every VM pair by applying
the classical Gomory-Hu’s algorithm [22]. It is shown in
[22] that there are onlyn − 1 distinct min-cut among the
n(n−1)

2 total pairs of VMs. Then we find a subset of these
n − 1 min-cut such that their removal fromG leads to
a partition with the requested size. This process continues
until all VM-clusters with requested size are formed. With
similar proof as in [19], we can shown that this process
terminates after findsk clusters with the same set of size
as the previousk slot-clusters. Besides, the cut sorting and
removal procedure ensures that smaller cost cuts have higher
chance to be removed earlier. As a result, VM-clusters with
low outgoing/incoming traffic more likely correspond to slot-
clusters with low-cost outgoing/incoming connections. This
complies with the aforementioned first design principle.

In Algorithm 1, after establishing a one-to-one assignment
between slot-clusters and VM-clusters (Line 6), the rest of
the code solves the VM-to-slot assignment problem within
each cluster. Our strategy is the following: given the small
cluster size|si|, we treat each single VM (or a single slot) as
a cluster and run Cluster-and-Cut; if|si| is still large, we can
call Cluster-and-Cut to further dividesi into smaller partitions
and solve the problem recursively.

The computational complexity of this algorithm is deter-
mined bySlotClusteringandVMMinKcut. SlotClustering has
complexity O(nk) [21]. VMMinKcut is reported to have
complexityO(n4) [19]. Thus the total complexity isO(n4),
which does not consider the recursive procedure.

V. I MPACT OF NETWORK ARCHITECTURES ANDTRAFFIC

PATTERNS ONOPTIMAL VM PLACEMENT

We have discussed the advantage of using VM placement
for improving network scalability. Through the problem for-
mulation, we can notice that the traffic and cost matrices are
the two determining factors for optimizing the VM placement.
Consequently, we seek to answer a fundamental question:
given that traffic patterns and network architectures in data
centers have significant differences, how the performance
gains due to optimal VM placement are affected. Answering
this question not only allows us to better understand the value
and limit of our approach, it also benefits the design of future
data center network architecture in general.

Since computing the TVMPP optimality with generalD and
C is intractable, to gain insight, we focus on two special traffic
models : 1) global traffic model in which each VM communi-
cates with every other at a constant rate; 2) partitioned traffic
model in which VMs form isolated partitions, and only VMs
within the same partition communicate with each other. The
global model is one of the very few cases that we can obtain
the TVMPP optimality in polynomial time. Traffic patterns
in reality can be roughly considered to be generated from a
mixture of these two special models.

We also need to derive the cost matrixC under various
network architectures. For this purpose, we develop analytical
expressions ofC for the four architectures described in Sec-
tion II. For the Tree topology, the cost between two VMs is a
function of the fan-out of the access switches (p0) as well as
the fan-out of the aggregation ones (p1):

CTree
ij =



















0 if i = j

1 if b i
p0

c = b j

p0

c

3 if b i
p0

c 6= b j
p0

c ∧ b i
p0p1

c = b j
p0p1

c

5 if b i
p0p1

c 6= b j

p0p1

c
In the VL2 architecture, the cost is a function only of the

fan-out of the access switches (p0), given that traffic that leaves
the access switches always goes through the core switches (due
to the valiant load balancing):

CV L2
ij =







0 if i = j

1 if b i
p0

c = b j
p0

c

5 if b i
p0

c 6= b j

p0

c
In the PortLand Fat-tree architecture, the cost is a function

of k, the total number of ports on each switch:

CFat−tree
ij =















0 if i = j

1 if b 2i
k
c = b 2j

k
c

3 if b 2i
k
c 6= b 2j

k
c ∧ b 4i

k2 c = b 4j

k2 c

5 if b 4i
k2 c 6= b

4j
k2 c

In the BCube architecture, the cost is a function of the
Hamming distance of server addresses:

CBCube
ij =

{

0 if i = j

2 hamming(addr(i), addr(j)) − 1 if i 6= j

A. Global Traffic Model

Under the global traffic model, each VM sends traffic to
every other VM at equal and constant rate, whereas this
sending rate can differ among VMs. Accordingly, the traffic
matrixD consists of constant row vectors. For any permutation
matrix X , DXT = D holds. This simplifies the TVMPP
problem in the form of (2) to the following

min
X∈Π

S = tr(DCT X) (4)

which is the classical Linear Sum Assignment Problem
(LSAP) [23]. The complexity for LSAP isO(n3) and there
exist a number of efficient algorithms. Here we apply the
Hungarian algorithm to find its optimal solution.

We then consider a random placement in which any VM has
equal probability to be assigned to any slot. Such a random
placement reflects assignment of VMs that does not take
advantage of the TVMPP optimization. LetSrand denote the
expected objective value achieved by a random placement. It
can be easily computed from (4) as

Srand =
1

n

n
∑

i=1

n
∑

j=1

(i, j) entry in DCT

We now compareSopt with Srand under various settings.
Figure 5 shows their comparison under the four network ar-
chitectures, in a network of 1024 VMs. In the figure, each bar
is an overlapping ofSopt and Srand. BecauseSrand ≥ Sopt

always holds, the gap appearing on the top of each bar

represents the improvement space for a random placement.
In Figure 5, we let the four traffic matrices follow the global
traffic model, with the total outgoing traffic from each VM
following a normal distribution with a mean of 1 and a
variance of 0, 0.25, 0.5 and 0.75.

When all the entries of the traffic matrix are equal, corre-
sponding to variance 0, the random placement achieves the
optimal value, given that the gap betweenSrand and Sopt

is zero. As the traffic variance increases, we notice that the
gap becomes larger. This indicates that under a global traffic
model, a random VM placement has improvement space, and
this space increases with the increase of traffic variance. In
other words, if a data center is devoted to just one application
with homogeneous traffic pattern among VMs, such as a
map-reduce type of workload, then traffic-aware placement of
the VMs provides little improvements. In contrast, network
scalability improvements are greater for data centers devoted
to workloads with very heterogeneous traffic among VMs,
such as ones produced by multi-tiered web applications.

Moreover, the figure shows that the improvement space
varies among the four architectures: While the BCube has the
largest improvement space, the VL2 comes with the smallest.
The BCube sees the most benefit mainly because for a system
of 1024 VMs, the required BCube network has four levels of
intermediate switches, which results in larger path cost. Thus,
optimizing VM placement based on network traffic yields a
higher gain. In contrast, almost every element ofC in the
VL2 is equal (due to the valiant load balancing) and as such
any efforts in optimizing VM placement is almost fruitless.
Nevertheless, such an argument does not necessarily mean the
BCube architecture is more scalable than the VL2. It depends
on many other factors, with most notably the network oversub-
scription. Our results only indicate that a BCube architecture
can greatly benefit in terms of its scalability with TVMPP,
while the VL2 sees the smallest benefit.

B. Partitioned Traffic Model

Under the partitioned traffic model, each VM belongs to a
group of VMs and it sends traffic only to other VMs in the
same group, with the pairwise traffic rate following a normal
distribution. ComputingSopt in this case requires an exact
solution, which becomes prohibitively expensive for problem
sizes larger than 15 VMs/slots. As such we report here results
by replacingSopt by the classical Gilmore-Lawler Bound
(GLB) [24]. The GLB is a lower bound for the optimal
objective value of a QAP problem and it can be computed
reasonablely fast. When the objective value for a solution is
close to the GLB, it suggests that the space for improving
that solution is limited. On the other hand, if the objective
value of a solution is far higher than the GLB, it does not
necessarily mean the solution is much worse than the optimal
one. Rather, the only conclusion we can draw is that the
performance improvement potential for that solution is high.

Figure 6 compares for the four architectures the GLB
against the objective value of a random placement in a system
of 1024 VMs, when there are 16 groups of size 64 VMs each.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000

 0 0.25 0.5 0.75

O
bj

ec
tiv

e
va

lu
e(

x1
03)

Traffic Variance

Tree (Random Placement)
VL2 (Random Placement)

FatTree (Random Placement)
BCube (Random Placement)

Tree (Optimal)
VL2 (Optimal)

FatTree (Optimal)
BCube (Optimal)

Fig. 5. Optimal objective valuevs objective
value achieved by random placement (global traf-
fic model, different traffic variance)

 0
 250
 500
 750

 1000
 1250
 1500
 1750
 2000
 2250
 2500
 2750
 3000
 3250
 3500
 3750
 4000
 4250
 4500

 0 0.25 0.5 0.75

O
bj

ec
tiv

e
va

lu
e(

x1
03)

Traffic Variance

Tree (Random Placement)
VL2 (Random Placement)

FatTree (Random Placement)
BCube (Random Placement)

Tree (Lower-Bound)
VL2 (Lower-Bound)

FatTree (Lower-Bound)
BCube (Lower-Bound)

Fig. 6. GLB vs objective value achieved by
random placement (partitioned traffic model, 16
partitions of 64 VMs each)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.25 0.5 0.75

O
bj

ec
tiv

e
va

lu
e(

x1
03)

Traffic Variance

Tree (Random Placement)
VL2 (Random Placement)

FatTree (Random Placement)
BCube (Random Placement)

Tree (Lower-Bound)
VL2 (Lower-Bound)

FatTree (Lower-Bound)
BCube (Lower-Bound)

Fig. 7. GLB vs objective value achieved by
random placemente (partitioned traffic model, 10
partitions with2

i VMs in each,i = 1, ..,10)

Figure 6 shows that even when the pairwise traffic rates are
equal within each partition (namely, zero variance), the random
placement comes with a performance gap relative to the GLB.
As in the case of the global traffic model, this gap increases
when the traffic variance within each partition increases. In
addition, the figure shows that the gap is larger under the
BCube architecture compared to the other ones, for the same
reasons as in the case of global traffic model.

Figure 7 shows similar results for a system of different
partition size. More specifically, the results are for a system
of 10 groups of2i VMs each (i = 1, .., 10). We observe the
same trends as in the previous two cases, with the performance
improvement potential being even more prominent. This can
be partially attributed to the existence of small partitionsizes.
Indeed, Figure 8 compares different partition sizes, with equal
pairwise traffic rates within each partition. It is clear that
the improvement potential is proportionally higher for smaller
partition sizes. When the partition size reaches the total system
size the improvement potential becomes zero, given the equal
pairwise traffic rates within the partition.

C. Summary

To summarize, the above results provide the following
insights:

• The potential benefit of optimizing TVMPP is greater
with increased traffic variance within one partition, i.e.
one composite application. This is attributed to the fact
that VMs with high pairwise traffic volume are placed
close to each other.

• The potential benefit of optimizing TVMPP is greater
with increased number of traffic partitions, i.e. number
of isolated composite applications, or decreased partition
size, i.e. applications running on less VMs. This is
attributed to the fact that VMs belonging to the same
composite application are placed close to each other.

• The potential benefit of optimizing TVMPP depends on
the network architecture. The benefit is greater for a
multi-layer architecture, such as BCube; the benefit is
minimal for an architecture that employs network load
balancing techniques, such as in VL2.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000
O

bj
ec

tiv
e

va
lu

e(
x1

03)

Partition size

Tree (Lower-Bound)
VL2 (Lower-Bound)

FatTree (Lower-Bound)
BCube (Lower-Bound)

Tree (Random Placement)
VL2 (Random Placement)

FatTree (Random Placement)
BCube (Random Placement)

Fig. 8. GLBvsobjective value of random placement (with different partition
size)

VI. EVALUATION OF ALGORITHM CLUSTER-AND-CUT

A. Experiment Settings

We compare the proposed Cluster-and-Cut algorithm and
two benchmark algorithms in a number of trace-driven set-
tings. There are many heuristics for general QAP problems.
Among them, we select two representative ones: Local Opti-
mal Pairwise Interchange (LOPI) [25] and Simulated Anneal-
ing (SA) [26]. The detailed descriptions are referred to their
original papers.

We use the equations in Section V to generate the cost
matricesC. For D, we consider a hybrid traffic model which
combines real traces with the classicalGravity model[27].
The trace collected from production data centers (mentioned
in Section II) provides the aggregate incoming and outgoing
traffic rates at VMs. To decompose it into rates between VMs,
we assume the Gravity model holds in data centers, i.e., the

rate from VM i to j is decided byDij =
Dout

i Din
j

∑

k
Din

k

, where

Dout
i is the total outgoing rate at VMi, Din

j is the total
incoming rate at VMj. Obviously, the Gravity model tends
to produce global traffic pattern. For comparison purposes,we
also compute the GLB for each settings.

B. Experiment Results

We compare the above three algorithms by using the hybrid
traffic model. The number of slots (and VMs) is 1024. The
results are summarized in Table I. It is noticeable that the

Topology Algorithms Gilmore-Lawler Performance
bound Best value CPU min

LOPI 8.22e+10 22
Tree SA 4.63e+10 8.35e+10 27

Cluster-and-Cut 8.13e+10 11
LOPI 1.09e+11 25

VL2 SA 7.03e+10 1.12e+11 31
Cluster-and-Cut 1.05e+11 12

LOPI 1.07e+11 26
Fat-tree SA 6.43e+10 1.12e+11 32

Cluster-and-Cut 0.97e+11 13
LOPI 1.43e+11 29

BCube SA 5.55e+10 1.41e+11 35
Cluster-and-Cut 1.21e+11 14

TABLE I
ALGORITHM PERFORMANCE WITH HYBRID TRAFFIC MODEL

objective function value given by the Cluster-and-Cut is about
10% smaller than the two benchmarks, with CPU time being
halved. This experiment demonstrates the efficacy of the
proposed Cluster-and-Cut algorithm.

VII. D ISCUSSION

Combining VM migration with dynamic routing proto-
cols: We have assumed static layer 2 and 3 routing protocols.
From the perspective of our problem formulation, a dynamic
routing means the cost matrix may be changing. This could
happen either due to topology changes or due to the routing
protocols being traffic aware. Such a change may potentially
improve the TVMPP objective value without requiring shuf-
fling VMs. However, such an improvement has a limit. E.g.,
two VMs with high mutual traffic may reside in two physically
remote LANs, in which case the dynamic routing can not
benefit much.

VM placement by joint network and server resource
optimization: We have considered the VM placement problem
only with respect to network resource optimization. Previ-
ous approaches have considered the VM placement problem
with respect to server resource optimization, such as power
consumption or CPU utilization. The formulation of a joint
optimization of network and server resources is still an open
problem, with many practical applications. For example, min-
imizing the total energy consumption in a data center requires
the formulation of a joint optimization problem.

VIII. C ONCLUSION

This paper presents an approach of manipulating VM
placement to address the scalability concern in modern data
center networks. A careful VM placement can localize large
chunks of traffic and thus reduce load at high-level switches.
We formulate the Traffic-aware Virtual Machine Placement
Problem (TVMPP), prove its NP-hardness and propose a two-
tier approximation algorithm to efficiently solve it. Another
major result is an analysis on how traffic patterns and the
network topology in data centers affect the potential network
scalability benefit by optimally solving the TVMPP. This
analysis considers four representative data center network
topologies. The analysis shows the value and limit of using

VM placement to improve network scalability under different
network topologies and traffic patterns.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” inSIGCOMM ’08: Proceedings of
the ACM SIGCOMM 2008 conference on Data communication. ACM,
2008, pp. 63–74.

[2] N. F. N. H. P. M. S. R. V. S. Radhika Niranjan Mysore, Andreas Pam-
boris and A. Vahdat, “PortLand: A scalable fault-tolerant layer 2 data
center network fabric,” inSIGCOMM ’09: Proceedings of the ACM
SIGCOMM 2009 conference on Data communication, 2009.

[3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible
data center network,” inSIGCOMM ’09: Proceedings of the ACM
SIGCOMM 2009 conference on Data communication, 2009.

[4] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable
and fault-tolerant network structure for data centers,” inSIGCOMM
’08: Proceedings of the ACM SIGCOMM 2008 conference on Data
communication. ACM, 2008, pp. 75–86.

[5] ——, “Bcube: A high performance, server-centric networkarchitecture
for modular data centers,” inSIGCOMM ’09: Proceedings of the ACM
SIGCOMM 2009 conference on Data communication. ACM, 2009.

[6] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “Thecost of a
cloud: research problems in data center networks,”SIGCOMM Comput.
Commun. Rev., vol. 39, no. 1, pp. 68–73, 2009.

[7] J. P. Srikanth kandula and P. Bahl, “Flyways to de-congest data center
networks,” inACM Workshop on Hot Topics in Networks (HotNets-VIII),
2009.

[8] VMware Capacity Planner, “http://www.vmware.com/products/capacity-
planner/.”

[9] IBM WebSphere CloudBurst, “http://www-
01.ibm.com/software/webservers/cloudburst/.”

[10] Novell PlateSpin Recon, “http://www.novell.com/products/recon/.”
[11] Lanamark Suite, “http://www.lanamark.com/.”
[12] “Cisco data center infrastructure 2.5.”
[13] W. J. Dally and B. Towles., “Principles and practices ofinterconnection

networks,” inMorgan Kaufmann Publishers, 2004.
[14] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient

supercomputing,” inIEEE Transactions on Computers, 1985.
[15] L. Bhuyan and D. Agrawal., “Generalized hypercube and hyperbus

structures for a computer network,” inIEEE Transactions on Computers,
1984.

[16] P. O. B.-N. P. H. Eliane Maria Loilola, Nair Maria Maia deAbreu and
T. Querido, “A survey for the quadratic assignment problem,” European
Journal of Operational Research, vol. 176, pp. 657–690, 2007.

[17] S. Sahni and T. Gonzalez, “P-complete approximation problems,”Jour-
nal of the Association of Computing Machinery, vol. 23, pp. 555–565,
1976.

[18] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H.Freeman, 1979.

[19] H. Saran and V. V. Vazirani, “Finding k cuts within twicethe optimal,”
SIAM J. Comput., vol. 24, no. 1, pp. 101–108, 1995.

[20] G.G.Hardy, J.E.Littlewood, and G.Polya,Inequalities. London and New
York: Cambridge University Press, 1952.

[21] T. Gonzalez, “Clustering to minimize the maximum intercluster dis-
tance,”Theoretical Computer Science, vol. 38, pp. 293–306, 1985.

[22] R. E. Gomory and T. C. Hu, “Multi-terminal network flows,” Journal
of the Society for Industrial and Applied Mathematics, vol. 9, no. 4, pp.
551–570, 1961.

[23] R. E. Burkard and E. la, “Linear assignment problems andextensions,”
1998.

[24] P. Gilmore, “Optimal and sub-optimal algorithms for the quadratic
assignment problem,”J. SIAM, pp. 305–313, 1962.

[25] G. C. Armour and E. S. Buffa, “A heuristic algorithm and simulation
approach to relative location of facilities,”Management Science, vol. 9,
no. 2, pp. 294–309, 1963.

[26] E. Burkard and F. Rendl, “A thermodynamically motivated simulation
procedure for combinatorial optimization problems,”European Journal
of Operation Research, vol. 17, pp. 169–174, 1984.

[27] Y. Zhang, M. Roughan, N. Duffield, and A. Greeberg, “Fastaccurate
computation of large-scale IP traffic matrices from link loads,” in ACM
SIGMETRICS, 2003, pp. 206–217.

