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Abstract—The scalability of modern data centers has become a there is a low correlation between the average pairwisédraf
practical concern and has attracted significant attentionh recent  rate and the end-to-end cost; traffic distribution for indial
years. In contrast to existing solutions that require changs in VMs is highly uneven: VM pairs with relatively heavier traffi
the network architecture and the routing protocols, this pger ! . .
proposes using traffic-aware virtual machine (VM) placemen to rate ter_ld to_constantly _eXh'b't the higher r_at_e and conlerse
improve the network Sca|abi|ity_ By opt|m|z|ng the p|aceme‘]t VM paIrS W|th IOW traf'fIC rate tend to eXh|b|t the IOW rate.
of VMs on host machines, traffic patterns among VMs can be These three observations suggest that there is a greatipbten
better aligned with the communication distance between th®, jn optimizing VM placement to save bandwidth and realizing
e.g. VMs with large mutual bandwidth usage are assigned to &b such potential is feasible.

machines in close proximity. We formulate the VM placement a ) .
an optimization problem and prove its hardness. We design a We formally define the Traffic-aware VM Placement Prob-

two-tier approximate algorithm that efficiently solves the VM  lem (TVMPP) as an optimization problem. Input to such a
placement problem for very large problem sizes. Given the problem includes the traffic matrix among VMs and the cost

significant difference in the traffic patterns seen in currert data  matrix among host machines. The optimal solution to the
centers and the structural differences of the recently propsed TVMPP dictates where VMs should be placed in order to

data center architectures, we further conduct a comparatie . th biecti hich ith tvpical t tri
analysis on the impact of the traffic patterns and the network minimize the objective, which, with a typical cost matrix

architectures on the potential performance gain of trafficaware  definition, is the aggregate traffic rates perceived by every
VM placement. We use traffic traces collected from productio  switch. We prove that the TVMPP is NP-hard and propose

data centers to evaluate our proposed VM placement algorit, a heuristic algorithm to solve the TVMPP efficiently even
and we show a significant performance improvement compared o |arge problem sizes. The proposed algorithm takes a
to existing generic methods that do not take advantage of tiffic . e o
patterns and data center network characteristics. _novel two-tier approach: it flrs_t partitions VMs and hosts
into clusters separately, then it matches VMs and hosts at
|. INTRODUCTION cluster level and consequently at individual level. We este
Modern virtualization based data centers are becoming ttie algorithm by using traces collected from productioradat
hosting platform for a wide spectrum of composite applicaenters. The experimental results show that the proposed
tions. With an increasing trend towards more communicati@igorithm can significantly lower the aggregate traffic and
intensive applications in data centers, the bandwidth eisagduce the computational time when compared against two
between virtual machines (VMs) is rapidly growing. Thisxisting representative methods.
raises a number of concerns with respect to the scalability o Next, given the variety of the proposed network architec-
the underlying network architecture, an issue that haaaéd tures and the complexity of traffic patterns in data centees,
significant attention recently [1][2][3][4][5][6][7]. Tehniques investigate under which conditions it is beneficial to apibly
in these proposals include rich connectivity at the edgénef tVM placement approach in practice. Specifically, we cornside
network and dynamic routing protocols to balance traffidloafour architectures under different traffic patterns. Wekstee
In this paper, we tackle the scalability issue from a différe answer the following question: which network architectanel
perspective, by optimizing the placement of VMs on hosthat traffic pattern yields the highest performance gainrwhe
machines. Normally VM placement is decided by variouhe TVMPP is optimally solved? Our study shows that design
capacity planning tools such as VMware Capacity Planner [&hoices in each proposed architecture have profound ingpact
IBM WebSphere CloudBurst [9], Novell PlateSpin Recon [10he network scalability improvement achieved by the TVMPP.
and Lanamark Suite [11]. These tools seek to consolidate VMéhile multi-level network architectures, such as BCube [5]
for CPU, physical memory and power consumption savinggap the most benefit, architectures that have been designed
yet without considering consumption of network resouréess. with uniform traffic patterns in mind, such as VL2 [3], see
a result, this can lead to situations in which VM pairs withittle benefit in optimally solving the TVMPP. On the other
heavy traffic among them are placed on host machines witand, non-uniform traffic patterns, either due to the valitsb
large network cost between them. To understand how oftenVM usage or due to localized traffic clusters among VMs,
this happens in practice, we conducted a measurement stacgate higher benefit for optimally solving the TVMPP.
in operational data centers and observed three apparadstre The main contributions of this paper are summarized as
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e Lo any two servers. This measurement continues for 10 days.
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Based on these two traces, we observe the following three
trends regarding traffic patterns in data centers.

Uneven distribution of traffic volumes from VMs: Figure
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02" -~ Send aff. hourybin_ i 0005 1.(a) is the CDF for the outgoing and incoming aggregate
gl Sendaffc, 5minbin_| | 0 traffic rate at individual VMs in the warehouse dataset. The
®Frac. of b with e n (ea-st, meanste) © % conemion 0 traffic rate is the average over a two-week period. While 80%

(c) CCDF of proportions of stabled) PDF of auto-correlation coef- of VMs have average rate less than 800 KBytes/min, 4% of
intervals ficients them have a rate ten times higher. Since the original data do

o o not report throughput between VMs, we use the second trace
Fig. 1. Statistics about VM traffic in 17,000 VMs dataset  \yhich measures TCP-connection-per-hour between every two
VMs. Figure 2 uses different levels of grayscale to refletdga
o The inter-VM traffic rate indeed varies significantly. Bessd
following: the VM 21 which has clearly high traffic volume with almost
« We address the scalability issue of data center networgsery other VM, several other VM pairs also exhibit high data
with network-aware VM placement. We formulate it asates.
an optimization problem, prove its hardness and proposestaple per-VM traffic at large timescale: Although the
a novel two-tier algorithm. average traffic rates are divergent among VMs, the rate for
« We analyze the impact of data center network architeg-jarge proportion of VMs are found to be relatively stable
tures and traffic patterns on the scalability gains attaingghen the rate is computed at large time intervals. Such an
by network-aware VM placement. observation is apparent in Figures 1.(b), 1.(c) and 1.a). |
« We measure traffic patterns in production data centgfgyre 1.(b) we plot the mean and standard deviation of traffi
environments, and use the data to evaluate the propoggfs for 17K VMs. It shows that for the majority of VMs
algorithm as well as the impact analysis. (82%), the standard deviation of their traffic rates is no enor
than two times of the mean. Figure 1.(c) is the CCDF for
the percentage dftabletime intervals. An interval is labeled
In this section, we present a few observations on the trafig stable if the rate within it is no more than one standard
patterns in production data centers. We also describe fatar ddeviation away from the mean in the entire measurement
center network architectures, including the traditioneétlike period. Figure 1.(c) shows that for 82%-92% of VMs, no less

II. BACKGROUND AND MOTIVATION

architecture and three recently proposed one. than 80% of the entire set of time intervals are stable. We
. also examine traffic constancy by computing auto-cormtati
A. Data Center Traffic Patterns coefficients from the traffic timeseries for each VM. Figure

To better understand data center traffic patterns, we examin(d) shows the PDF for the auto-correlation coefficients at
traces from two data-center-like systems. The first conms fr two lags: 30 minutes and 4 hours. The long tail indicates that
a data warehouse hosted by IBM Global Services. It colleatthe two large timescales, a large fraction of the VMs'ficaf
server resource utilization information from hundredsesf/sr rates are relatively constant.
farms. Each server farm contains physical hosts and VMs thatWeak correlation between traffic rate and latency:Based
are used by various enterprise customers. Our study isédcusn our measurement on the traffic rate and end-to-end latency
on the incoming and outgoing traffic rates for 17 thousaraimong 68 VMs in a production cluster, in Figure 2 we show
VMs. The second trace is from a server cluster with abotite pairwise traffic intensity, and in Figure 3 we show the
hundreds of VMs. Due to some practical constraints, we gpairwise end-to-end latency. While in Figure 2, darker colo
able to measure the incoming and outgoing TCP connectiandicates higher traffic rate; on Figure 3, darker color dadiés
for 68 VMs. We also measure the round-trip latency betwedéower latency. An apparent observation is that the VM pairs



Tree VL2 Fat-Tree BCube

Il B B B

< < < <
0111333355555555 0111555555555555 0133555555555555 0111133313331333
1011333355555555 1011555555555555 1033555555555555 1011313331333133
1101333355555555 1101555555555555 3301555555555555 1101331333133313
1110333355555555 1110555555555555 3310555555555555 1110333133313331
3333011155555555 5555011155555555 5555013355555555 1333011113331333

Cost Matrix Cost Matrix Cost Matrix Cost Matrix

Fig. 4. Network topologies and corresponding cost matrfoegour data center network architectures

with high rate do not necessarily correspond to low latemz athe previous one. More specifically, it is a 3-tier architeet
vice versa. The correlation coefficient for these two magic with main difference that the core tier and the aggregaiem t
is -0.32, indicating a fairly weak correlation. form a Clos [13] topology, i.e. the aggregation switches are
The above observations make a case for shuffling ViEbnnected with the core ones by forming a complete bipartite
placement such that more traffic are localized and the psérwigraph. In addition, traffic originated from the access shét
traffic demand is better coordinated with the pairwise nekwois forwarded in the aggregation and the core tiers with the
cost. The potential benefit is two-fold: increased netwonkse of valiant load balancing, i.e. it is forwarded first to a
scalability and reduced average traffic latency. In addjtthbe randomly selected core switch and then back to the actual
observed traffic stability over large timescale suggesisiths destination. The main rationale behind this architectsriat
feasible to find good placements based on past traffic statistwhen traffic is unpredictable the best way to balance load
Finally, the observed large time scales of stable traffigesty across all available links is to randomly select a core $wéte

an amortized VM migration cost. an intermediate destination. Figure 4 shows one such nktwor
with 16 servers (labeled agl 2).
B. Data Center Network Architectures PortLand [2] is another three-tier architecture that share

Current data centers follow to a great extend a commdfith the VL2 the same Clos topology feature, though at
network architecture’ known as the three-tier archnmtmg] different levels. The PortLand architecture makes use bf fa
At the bottom level, known as the access tier, each senjge [14] topologies and it is built around the concept ofspod
connects to one (or two, for redundancy purposes) accés$ollection of access and aggregation switches that form
switch. Each access switch connects to one (or two) switcHegomplete bipartite graph, i.e., a Clos graph. In addition,
at the aggregation tier, and finally, each aggregation switeéach pod is connected with all core switches, by evenly
connects with multiple switches at the core tier. While thdistributing the up-links between all the aggregation shéts
physical topology in such three-tier architecture is a multof the pod. As such, a second Clos topology is generated
rooted forest t0p0|ogy, in rea]ity packets are forwarded aeetween the core switches and the pOdS. PortLand assumes all
cording to the logical layer-2 topology that is created vifte SWitches are identical, i.e., they have the same numberrtd po
use of VLANs and the spanning tree algorithm. This layer{&omething not required by the previous two architectures)
topology is always a tree, usually rooted at one of the cofde number of available ports per switch is the only paramete
switches. Figure 4 shows one such topology with 16 servéf@t determines the total number of pods and in consequence
and one VLAN (labeled a3res. the total number of required switches as well as connected

Scaling the three-tier architecture is achieved by scalipg S€rvers. More specifically, & is Fhe number of ports on each
each individual switch, i.e. by increasing its fan-outhest Switch, then there aré pods, with§ access switches angl
than scaling out the topology itself. For example, bas%?gregat'oﬂ switches in each pod. Each pod is connected with
on [12], the core tier can accommodate 8 switches at m()3t2core switches and W|t|4?4— segzrvers. Thus in total, there are
Topology scaling limitations as well as other ones such ég switches that interconneé} servers. Figure 4 shows one
the need for flat address space, or the high server oveuwch network fork = 4 (labeled adat-tree).
subscription, have prompted recently many parallel effort BCube [5] is a new multi-level network architecture for
in redefining the network architecture of the data centethe data center with the following distinguishing feature:
Next, we present three alternative architectures that haea servers are part of the network infrastructure, i.e., theward
proposed in the last two years. packets on behalf of other servers. BCube is a recursively

VL2 [3] is a new architecture that shares many features wittefined structure. At levél, BCubg consists of: servers that



connect together with a-port switch. A BCubg consists of row vectors. In the above formulation, except for all the
n BCube,_; connected witm”* n-port switches. Servers areother variables are assumed to be known.
labeled based on their locations in the BCube structure, 5.9 The meaning of the objective function in (1) depends on
a three-layer BCube, if a server is the third server in a Bgubthe definition of C;;. In fact C;; can be defined in many
that is inside the second BCubéeing inside the fourth ways. For the sake of illustration, we defi@g; as the number
BCube, then its label i4.2.3 Based on such labels serversf switches on the routing path from VMto j. With such
identify with which they connect to: servers whose labeledl a definition, the objective function is the sum of the traffic
only at theith level connect together with a switch at theate perceived by every switch. If the objective function is
BCubeg level. In essence, BCube is a generalized hypercubhermalized by the sum of VM-to-VM bandwidth demand, it
architecture [15] with the main difference that neighbgrinis equivalent to the average number of switches that a data
nodes instead of forming a full mesh with each other, theynit traverses. If we further assume every switch causealequ
connect through switches. Note that the number of connectgelay, the objective function can be interpreted as theaaxeer
servers as well as the number of required switches in a BCuk&ncy for a data unit traversing the network. Accordingly
is a function ofn, the total port number of each switch, ahd optimizing TVMPP is equivalent to minimizing average traffi
the number of BCube levels. Figure 4 shows one such netwdakency caused by network infrastructure.
for k =1 andn = 4 (labeled asBCubg. The formulation described above assumes equal number

These four architectures have been designed independepflyyMs and slots. When there are more available slots
with different goals in mind. In this paper we aim to underthan VMs, we can always make the two numbers equal by
stand how these topologies compare against each other whfbducing dummy VMs which do not receive or send any
traffic loads can be moved around with the use of VMs.  traffic. Obviously adding such dummy VMs does not affect
VM placement. Notice that the second part in the objective
) ) ) function of (1) is the total external traffic rate calculasgdll

In this section we formally define the VM placementyitches. In reality, this sum is most likely constant reigss
problem and analyze its complexity. of VM placement, because in typical data center networks,
A. Problem Formulation including those in Figgre lI-A, the cost between every end
. ._host and the gateway is the same. Therefore, the second part
We study the problem of placing VMs on a set of physic the objective function can be ignored in our analysis.

hosts (hereinafter referred _to as hosts). We assume @(lstm.l_he TVMPP framework is very general and can be applied
CPU/memory based capacity tools have decided the number : : : . .
N~ both offline and online scenarios. In a typical offline
of VMs that a host can accommodate. Thus we uséoato . .
; . cenario, multiple customers request for VMs. The dataetent
refer to one CPU/memory allocation on a host. Multiple slofs , . ; . ,
. aperators first estimate the traffic matrix based on custsmer
can reside on the same host and each slot can be occupi

by any VM. We consider a scenario where there aréMs input, then collect the network topology information, and

. ) : . . solve the TVMPP problem to decide which host(s) should be
andn slots. By assuming static and single-path routing whic . . .
. ) . used to create VMs. In a typical online scenario, VMs have
are the current typical settings, we uSg;, a fixed value, to

S A been created and running, the operators periodically colle
refer to the communication cost from sloto j. D,; denotes . .
. , , , traffic matrix and re-solve the TVMPP problem. If a new VM
traffic rate from VM to j. e; denotes external traffic rate

lacement scheme is found to yield better objective value,

for \./M . Without loss of generality, we assume al externzﬂ_le operators will decide whether a reshuffling of the VMs
traffic are routed through a common gateway switch. Thus we

can useg; to denote the communication cost between Vl\ﬁlSSIgnment 's needed.
1 and the gateway. For any placement scheme that assign
VMs to n slots on a one-to-one basis, there is a correspondi
permutation functionr : [1,...,n] — [1,...,n]. We can  We now analyze the computational complexity of TVMPP.
formally define the Traffic-aware VM Placement Problemivhen C and D are matrices with arbitrary real values,
(TVMPP) as finding ar to minimize the following objective TVMPP falls into the category ofQuadratic Assignment

IIl. VIRTUAL MACHINE PLACEMENT PROBLEM

ﬁg Complexity Analysis

function Problem (QAP)in the Koopmans-Beckmann form [16]. QAP
N o is a known NP-hard [17] problem. In fact, it is one of the
_ ; DijCr(iym(s) + _ﬂz: €ign(4) (1) most difficult problems in NP-hard class - as shown in [17],
BT T even finding ans-approximation algorithmd is a constant)
The above objective function is equivalent to is NP-hard. Although various methods for solving QAP have
min tr(DXTCTX) + exTgT ) been p_ropo_sed [16], there is a ge_nera_l agregment that finding
Xel the optimality of QAP problems with size 15 is practically

wheretr() is defined agr(A) = -, A;; for an input matrix impgssible. _ _ _
A. X is a permutation matrix which must satisfies three con- It is conceivable that the TVMPP is a special case of QAP
straints: X;; € {0,1}(%’,]’),2;?71 X = 1(Vi), >0, Xy = since the data center network architecture imposes special

1(Vj). I is the set of all valid permutation matrices.g are constraints onD. We further prove the following:



Theorem 1:For a TVMPP problem defined on a data center Due to (3) and:, > ¢;, it is straightforward to see that the
that takes one of the topology in Figure 4, finding the TVMPRbove k-cut weight change is positive, i.e., before swappin
optimality is NP-hard. VMs i, j, the BMKP problem achieves optimality. Thus, the

Proof: This can be proved by a reduction from the Balk-cut is optimal when the TVMPP is optimal.
anced Minimum K-cut Problem (BMKP) [18][19]. The BMKP The proof also reveals that the BMKP optimality is a
problem is formally described as following: = (V, E) is an necessary but insufficient condition for the associated P¥M
undirected, weighted graph with vertices anch is a positive being optimal. This is because when BMKP is optimal, we can
integer divisible by another positive integlerA k-cut onG is  always swap two VMs both of which are assigned to the same
defined as a subset @ that partitionG into & components. slot-cluster. This does not affect the k-cut weight, butahc
The k-cut weight is defined as the sum of the weights on gibssibly decrease the TVMPP objective value.
the edges in the k-cut. The BMKP problem is to find a k-
cut with minimum weight whose removal partitiosinto &

disjoint subsets of equal size BMKP is an extended problem Previous analysis shows that the TVMPP problem is NP-
from the Minimum Bisection Problem (MBP). Both BMKpNard and it belongs to the general QAP problem, for which
and MBP are known to be NP-hard [18][19]. no existing exact solutions can scale to the size of current

Now considering a data center network, regardless of whigﬁ‘ta_ centtlars. _Tr?ergore, n th(;sgectlrc:_n %N T describe aroappr
topology in Figure 4 being used, we can always creategation algorithm Cluster-and-Cutwhich leverages unique

network topology to satisfy the following requirementsera features of traffic patterns a_nd network topol(_)gies _in _data
aren slots that are partitioned intoslot-clusters of equal size centers. The proposed algorithm has two design principles,

7 (% s a positive integer). Every two slots have a connectid’ﬁ'tg the f!r_st o;\.e Zbg'ng the foIIovilng w<ell knowi result: d
with certain cost. While connections within the same cluste oPOSition 1:[20] Supposed < a; < az... < a, an

have equal cost;, connections across clusters have equal cdst b1 = b2 .- < by, the following inequalities hold for any
co With ¢, > ¢ permutationr on [1,...,n]
o ) i

Suppose there ane VMs with traffic matrix D. By assign- n n n
o el S b i1 <3 e < 3 aih;
=1 =1 =1

IV. ALGORITHMS

ing thesen VMs to then slots, we obtain a TVMPP problem.

Meanwhile, if we define a graph with theVMs as nodes and

D as edge weights, we obtain a BMKP problem associatedThe TVMPP objective function is essentially to sum up
with the TVMPP problem. Any solution to the TVMPP alsc@ll multiplications between everg’;; and its corresponding
gives a solution to the associated BMKP problem. This i (i)=(j)- According to Proposition 1, solving TVMPP is
because the solution to the TVMPP partitions th¥Ms into  intuitively equivalent to finding a mapping of VMs to slots
k groups, each group corresponding to a slot-cluster. Thesed§uch thatvM pairs with heavy mutual traffic be assigned to
between all VM pairs that are assigned to two different sloglot pairs with low-cost connections

clusters can be considered as a k-cut, and the traffic betaleen The second design principle is divide-and-conquer: we
such VM pairs are the k-cut weight. It can be shown that whdartition VMs into VM-clusters and partition slots into slo
the TVMPP is optimal, the associated BMKP is also optima$lusters. Then we first map each VM-cluster to a slot-cluster
Equivalently, when the TVMPP is optimal, if we swap anyor each VM-cluster and its associated slot-cluster, winéur
two VMs i, j that have been assigned to two slot-clusier, Map VMs to slots by solving another TVMPP problem, yet
respectively, the k-cut weight will increase. To prove thig with a much smaller problem size. VM-clusters are obtained
need to compute the amount of change occurring to the k-Mia classical min-cut graph algorithm which ensures that VM
weight due to the swap df ;. Clearly, this computation only Pairs with high mutual traffic rate are within the same VM-
needs involving those VM pairs of which oneiisr j and the cluster. Such a feature is consistent with an early observat
other is assigned to, or 7. Let s; denote the set of VMs that traffic generated from a small group of VMs comprise a
assigned to; (s; excludes the VM and ). Analogously we large fraction of the total traffic. Slot-clusters are obtal via

defines;. Now because the TVMPP objective value increasegandard clustering techniques which ensures slot paifs wi
we have low-cost connections belong to the same slot-cluster. ®gai

this is leveraging the fact that the network usually corgain
many groups of densely connected end hosts due to the star

Z [Dji(ci — co) + Dir(co — )] topology created by switches with many ports.
Vhes The pseudo-code for the algorithm is described in Algorithm
1. It has two major components:
+ sze: [Djk(co = €i) + Dirlei —co)] >0 (3) 1) SlotClustering:n slots are partitioned inté clusters by
. using the cost between slots as the partition criterionr@he
The amount of change for the k-cut weight is are two approaches in implementing this function. One is a
manual procedure by the operators, who can leverage their
[ Z (Dir — Dji) + Z (Dj1. — Dit,)] a prior knowledge on network configurations. This approach

VkEs: VkEss may give better results but could be labor intensive. Theroth



Algorithm 1 Cluster-and-Cut k clusters have equal size. The approximation ratio for the
Require: D(Traffic matrix), C(Cost matrix), k(Number of algorithm is®Ln. The pseudo-code of our adapted algorithm
clusters, a parameter used in clustering and min-cut cois-described in Algorithm 2. A brief explanation is follovgn

ponents) suppose we need to find a VM-cluster with certain size, we
1: n « size of D {Find out VM coun} first find all the min-cut for every VM pair by applying
2: SlotClustering(C,k) {Partition slots intd: clusters:{r;}} the classical Gomory-Hu’'s algorithm [22]. It is shown in
3: Sort{r;}, in decreasing order of the cost of edges havif@2] that there are only:» — 1 distinct min-cut among the

one endpoint in-;. Each edge only counts once @ total pairs of VMs. Then we find a subset of these
4: VMMinKcut( D, {[r1],...,|rx|}) {Partitonn VMs into  n — 1 min-cut such that their removal froni¥ leads to
k clusters{s;}, |s:| = |r:|} a partition with the requested size. This process continues
5: Assign s; to 75, Vi = 1,...,n {One-to-one mapping until all VM-clusters with requested size are formed. With
between slot-cluster and VM-cluster similar proof as in [19], we can shown that this process
6: for i =1 to k do terminates after findg clusters with the same set of size
7. if [s;] > 1 then {Multiple VMs in s;} as the previous: slot-clusters. Besides, the cut sorting and
8: Cluster-and-cut@(s;), C(r;), |si[){D(s;): traffic removal procedure ensures that smaller cost cuts haverhighe
matrix for s;. C(r;): cost matrix forr;. [s;: recur- chance to be removed earlier. As a result, VM-clusters with
sively call Cluster-and-Cut low outgoing/incoming traffic more likely correspond to tslo
9: endif clusters with low-cost outgoing/incoming connections.isTh
10: end for complies with the aforementioned first design principle.
In Algorithm 1, after establishing a one-to-one assignment
Algorithm 2 VMMinKcut between slot-clusters and VM-clusters (Line 6), the rest of

h the code solves the VM-to-slot assignment problem within
each cluster. Our strategy is the following: given the small
1 n  size of G cluster sizgs;|, we treat each single_z VM (o_r a single slot) as
2: Compute Gomory-Hu tree fof and obtainn — 1 cuts 2 cluster and run CIuster-and-C.u.t;|$fi|. is still large, we can
{g:}{Thesen — 1 cuts contains the minimum weight CutscaII Cluster-and-Cut to further_dlwdg into smaller partitions
for all server pairs and solve the prpblem recursn(ely. _ . _
. Sort{g;} by increasing weight .The computatlona_l complexny of this aIgonthmlls deter-
for i — 1 to k do mined by SlotClusteringand VMMinKcut SlotClustering has

complexity O(nk) [21]. VMMinKcut is reported to have

Require: G(Graph weight matrix){b, ..., bx }(size of eac
cluster)

o ahhw

Clears; . o
Find thze minimum; such that removindgs,...,g;} compIeX|tyO(n4) [19]. Thus the total complexity (%),
will partition G into two componentsz; with size |b;] which does not consider the recursive procedure.
andc, with sizen — [b| V. IMPACT OF NETWORK ARCHITECTURES ANDTRAFFIC
£ 5(’;1 —a PATTERNS ONOPTIMAL VM PLACEMENT
8: . .
9o n :__;2_ 1b,] We have discussed the advantage of using VM placement
10'_ end for ‘ for improving network scalability. Through the problem for

mulation, we can notice that the traffic and cost matrices are
the two determining factors for optimizing the VM placement
Consequently, we seek to answer a fundamental question:
given that traffic patterns and network architectures iradat
approach is running classical clustering algorithms bamed centers have significant differences, how the performance
the cost matrix. Note that our cost definition is the number ghins due to optimal VM placement are affected. Answering
switches on the path between two slots, so it satisfies the tfiis question not only allows us to better understand theeval
angle inequality. Thus this becomes the Minimum k-clus@ri and limit of our approach, it also benefits the design of fitur
Problem [18] which is NP-hard. We solve this problem by theata center network architecture in general.
algorithm described in [21], with an approximation ratio 2. Since computing the TVMPP optimality with genefaland
The output from SlotClustering is a set of slot-clusterstesb (' is intractable, to gain insight, we focus on two speciafiaf
in decreasing order of the total outgoing and incoming cosinodels : 1) global traffic model in which each VM communi-
2) VMMinKcut: In this step, we need to partitiom VMs cates with every other at a constant rate; 2) partitionefidra
into & VM-clusters with minimum inter-cluster traffic. More model in which VMs form isolated partitions, and only VMs
importantly, we must ensure that for any already formed slavithin the same partition communicate with each other. The
cluster, there is a corresponding VM-cluster with the equglobal model is one of the very few cases that we can obtain
size. The partition method used here is adapted from ttiee TVMPP optimality in polynomial time. Traffic patterns
minimum k-cut algorithm in [19]. This algorithm is origifgl in reality can be roughly considered to be generated from a
applied to balanced Minimum k-cut problems in which thenixture of these two special models.

11: Return{s;}




We also need to derive the cost matdx under various represents the improvement space for a random placement.
network architectures. For this purpose, we develop aicalyt In Figure 5, we let the four traffic matrices follow the global
expressions of” for the four architectures described in Sectraffic model, with the total outgoing traffic from each VM
tion Il. For the Tree topology, the cost between two VMs is #llowing a normal distribution with a mean of 1 and a
function of the fan-out of the access switchgg)(as well as variance of 0, 0.25, 0.5 and 0.75.

the fan-out of the aggregation ones X When all the entries of the traffic matrix are equal, corre-
0 ifi=y . sponding to variance 0, the random placement achieves the
Tree 1 it =] =L optimal value, given that the gap betweén,,; and S,y
Cz‘j = 3 if LLJ + LLJ Al i =1 J | is zero. As the traffic variance increases, we notice that the
Po Po PpoP1 PopP1 . . .
5 if 1| # || gap becomes larger. This indicates that under a globaldraffi

In the VL2 architecture, the cost is a function only of théhodel, a random VM placement has improvement space, and

fan-out of the access switchas), given that traffic that leaves this space increases with the increase of traffic variance. |
the access switches always goes through the core switches @Ner words, if a data center is devoted to just one apptinati

to the valiant load balancing): with homogeneous traffic pattern among VMs, such as a
0 ifi=j map-reduce type of workload, then traffic-aware placemént o
cviz — ) 1 if | L] =|L] the VMs provides little improvements. In contrast, network
N 5 if Lpz_'OJ 4 LIDJ—QJ scalability improvements are greater for data centers téevo
0

pﬁitecture the cost is a functid® workloads with very heterogeneous traffic among VMs,

In the PortLand Fat-tree arc a L
of k, the total number of ports on each switch: such as ones produced by multi-tiered web applications.

0 ifi=j Moreover, the figure shows that the improvement space

Fat—tree 1 if L%J =% varies among the four architectures: While the BCube has the
Cij =9 3 if |2 £ LﬁJ NEIEES largest improvement space, the VL2 comes with the smallest.
¥ ﬁ_% w w The BCube sees the most benefit mainly because for a system

5 if [3] # L75)

Hamming distance of server addresses: intermediate switches, which results in larger path cosusT
BCube 0 if i =4 optimizing VM placement based on network traffic yields a
Cjj = 2 hamming(addr (i), addr(j)) — 1 if i # j higher gain. In contrast, almost every element(ofin the

) VL2 is equal (due to the valiant load balancing) and as such
A. Global Traffic Model any efforts in optimizing VM placement is almost fruitless.

Under the global traffic model, each VM sends traffic tjevertheless, such an argument does not necessarily mean th
every other VM at equal and constant rate, whereas tiBEube architecture is more scalable than the VL2. It depends
sending rate can differ among VMs. Accordingly, the traffign many other factors, with most notably the network oversub
matrix D consists of constant row vectors. For any permutatigfgription. Our results only indicate that a BCube architest
matrix X, DX” = D holds. This simplifies the TVMPP can greatly benefit in terms of its scalability with TVMPP,
problem in the form of (2) to the following while the VL2 sees the smallest benefit.

§(n€irﬁS =tr(DCTX) (4) B. Partitioned Traffic Model

which is the classical Linear Sum Assignment Problem Under the partitioned traffic model, each VM belongs to a
(LSAP) [23]. The complexity for LSAP i€)(n3) and there 9roup of VMs z_:md it ser!ds_trafﬂc (_)nly to other_VMs in the
exist a number of efficient algorithms. Here we apply th&2Me group, with the pairwise traffic rate following a normal
Hungarian algorithm to find its optimal solution. dlstrlpunon. ComputingS,,; |n.tr_1|.s case requires an exact
We then consider a random placement in which any VM haglu'uon, which becomes prohibitively expensive for peshl
equal probability to be assigned to any slot. Such a randdi%es Iargt_ar than 15 VMs/slots. As suc_h we report here esult
placement reflects assignment of VMs that does not taR¥ replacingSopt by the classical Gilmore-Lawler Bound
advantage of the TVMPP optimization. L&, denote the (G_LB)_ [24]. The GLB is a lower boun_d for the optimal
expected objective value achieved by a random placementojective value of a QAP problem and it can be computed

can be easily computed from (4) as reasonablely fast. When the objective value for a s_,olutizm i
close to the GLB, it suggests that the space for improving

LR _ - that solution is limited. On the other hand, if the objective

Srana = >_>_(i.j) entry in DC value of a solution is far higher than the GLB, it does not
=1j=1 necessarily mean the solution is much worse than the optimal

We now compareS,,; with S,q,q under various settings. one. Rather, the only conclusion we can draw is that the
Figure 5 shows their comparison under the four network gwerformance improvement potential for that solution ishhig
chitectures, in a network of 1024 VMs. In the figure, each bar Figure 6 compares for the four architectures the GLB
is an overlapping ofS,,; and S;q,q. BecauseS,.,q > Sop+ against the objective value of a random placement in a system
always holds, the gap appearing on the top of each h#rl024 VMs, when there are 16 groups of size 64 VMs each.
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value achieved by random placement (global traf- random placement (partitioned traffic model, 16 random placemente (partitioned traffic model, 10
fic model, different traffic variance) partitions of 64 VMs each) partitions with2* VMs in each,i = 1, .., 10)

Figure 6 shows that even when the pairwise traffic rates are 10000
equal within each partition (namely, zero variance), thelcan

1000 F
placement comes with a performance gap relative to the GLB.

)

As in the case of the global traffic model, this gap increases 5 100 ¢ 1
when the traffic variance within each partition increases. | § 0l ]
addition, the figure shows that the gap is larger under the ¢
. [}
BCube architecture compared to the other ones, for the same 2 iy Tree (Lower-Bound) 1
. . k VL2 (Lower-Bound)
reasons as in the case of global traffic model. T o1l FatTree (Lower-Bound)
. . . o ' BCube (Lower-Bound)
Figure 7 shows similar results for a system of different Tree (Random Placement)
. . ip 0.01 + VL2 (Random Placement)  x R
partition size. More specifically, the results are for a egst FatTree (Random Placement -
of 10 groups of2! VMs each ( = 1,..,10). We observe the 0.001  BCube (Random Placement),
1 10 100 1000

same trends as in the previous two cases, with the perfognanc
|mprov§ment p_otentlal being e.ven more prommen?'. ThIS Cia—'rlb. 8. GLBvsobjective value of random placement (with different pamtit
be partially attributed to the existence of small partit&zres. gjze)
Indeed, Figure 8 compares different partition sizes, withat
pairwise traffic rates within each partition. It is clear ttha
the improvement potential is proportionally higher for $iela  VI. EVALUATION OF ALGORITHM CLUSTER-AND-CUT
partition sizes. When the partition size reaches the tgttesn Experiment Settings

size the improvement potential becomes zero, given thelequa

Partition size

pairwise traffic rates within the partition. We compare the proposed Cluster-and-Cut algorithm and
two benchmark algorithms in a number of trace-driven set-
tings. There are many heuristics for general QAP problems.
C. Summary Among them, we select two representative ones: Local Opti-
mal Pairwise Interchange (LOPI) [25] and Simulated Anneal-

To summarize, the above results provide the followinﬁ'g _(SA) [26]. The detailed descriptions are referred tarthe
insights: original papers. o -
We use the equations in Section V to generate the cost
« The potential benefit of optimizing TVMPP is greatematricesC. For D, we consider a hybrid traffic model which
with increased traffic variance within one partition, i.ecombines real traces with the classi@itavity model[27].
one composite application. This is attributed to the fagthe trace collected from production data centers (mendone
that VMs with high pairwise traffic volume are placedn Section Il) provides the aggregate incoming and outgoing
close to each other. traffic rates at VMs. To decompose it into rates between VMs,

« The potential benefit of optimizing TVMPP is greateive assume the Gravity model holds in data centers, i.e., the

with increased number of traffic partitions, i.e. nUMb&L from VM i to i is decided byD;; — Dy DY where
of isolated composite applications, or decreased pattitig__ . . ' . " 2Dt
z)i is the total outgoing rate at VM, D;" is the total

size, i.e. applications running on less VMs. This i ) > . A
attributed to the fact that VMs belonging to the samigcoming rate at VMj. Obviously, the Gravity model tends

composite application are placed close to each other. o produce global traffic pattern. For _comparison purposes,
« The potential benefit of optimizing TVMPP depends oﬁ‘lso compute the GLB for each settings.

the network architecture. The benefit is greater for 8 Experiment Results

multi-layer architecture, such as BCube; the benefit is

minimal for an architecture that employs network Ianir

balancing techniques, such as in VL2.

We compare the above three algorithms by using the hybrid
affic model. The number of slots (and VMs) is 1024. The
results are summarized in Table I. It is noticeable that the
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