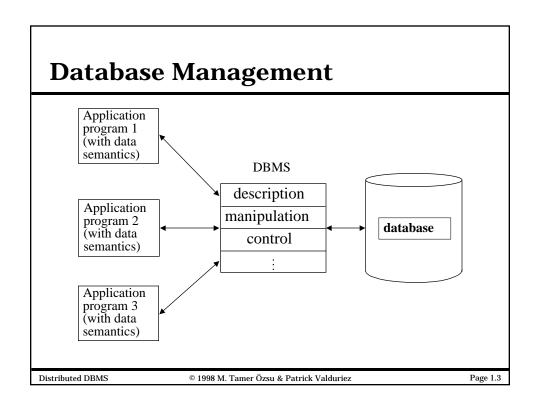
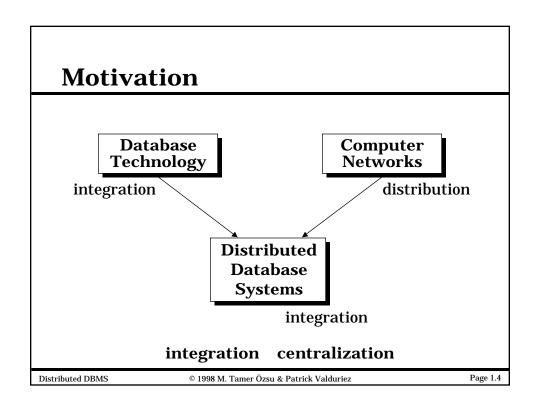
Outline


- Introduction
 - **➡** What is a distributed DBMS
 - **→** Problems
 - **→** Current state-of-affairs
- □ Background
- □ Distributed DBMS Architecture
- □ Distributed Database Design
- □ Semantic Data Control
- □ Distributed Query Processing
- □ Distributed Transaction Management
- □ Parallel Database Systems
- □ Distributed Object DBMS
- □ Database Interoperability
- □ Current Issues


Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Page 1

File Systems program 1 data description 1 program 2 data description 2 program 3 data description 3 Distributed DBMS © 1998 M. Tamer Özsu & Patrick Valduriez Page 1.2

Distributed Computing

- A concept in search of a definition and a name.
- A number of autonomous processing elements (not necessarily homogeneous) that are interconnected by a computer network and that cooperate in performing their assigned tasks.

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Page 1

Distributed Computing

■ Synonymous terms

- **■** distributed function
- **■** distributed data processing
- multiprocessors/multicomputers
- **⇒** satellite processing
- **■** backend processing
- dedicated/special purpose computers
- **■** timeshared systems
- **➡** functionally modular systems

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

What is distributed ...

- **■** Processing logic
- **■** Functions
- Data
- Control

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Page 1.7

What is a Distributed Database System?

A distributed database (DDB) is a collection of multiple, *logically interrelated* databases distributed over a *computer network*.

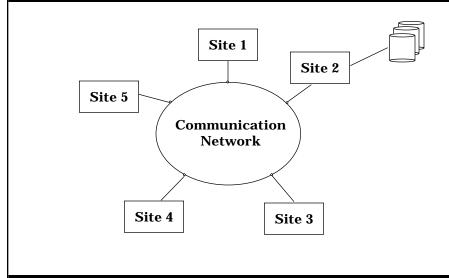
A distributed database management system (D–DBMS) is the software that manages the DDB and provides an access mechanism that makes this distribution transparent to the users.

Distributed database system (DDBS) = DDB + D-DBMS

Distributed DBMS

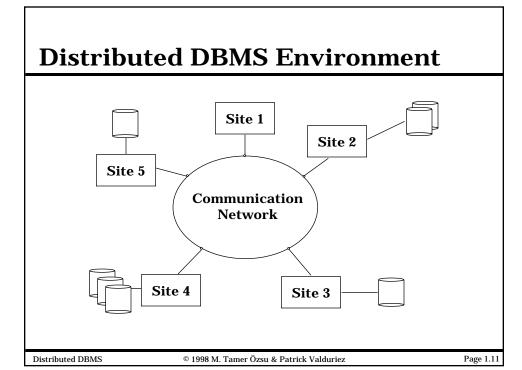
© 1998 M. Tamer Özsu & Patrick Valduriez

What is not a DDBS?


- A timesharing computer system
- A loosely or tightly coupled multiprocessor system
- A database system which resides at one of the nodes of a network of computers this is a centralized database on a network node

Distributed DBMS

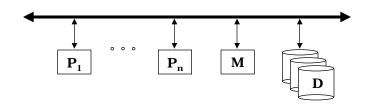
© 1998 M. Tamer Özsu & Patrick Valduriez


Page 10

Centralized DBMS on a Network

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

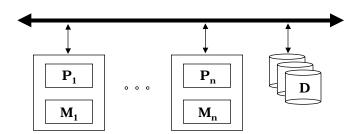

Implicit Assumptions

- Data stored at a number of sites ⇒ each site *logically* consists of a single processor.
- Processors at different sites are interconnected by a computer network ⇒ no multiprocessors
 - **⇒** parallel database systems
- Distributed database is a database, not a collection of files ⇒ data logically related as exhibited in the users' access patterns
 - ➡ relational data model
- D-DBMS is a full-fledged DBMS
 - not remote file system, not a TP system

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Shared-Memory Architecture

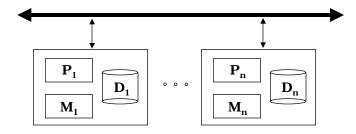

Examples : symmetric multiprocessors (Sequent, Encore) and some mainframes (IBM3090, Bull's DPS8)

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Page 1.13

Shared-Disk Architecture



Examples : DEC's VAXcluster, IBM's IMS/VS Data Sharing

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Shared-Nothing Architecture

Examples: Teradata's DBC, Tandem, Intel's Paragon, NCR's 3600 and 3700

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Page 1.15

Applications

- Manufacturing especially multi-plant manufacturing
- Military command and control
- **■** EFT
- **■** Corporate MIS
- Airlines
- **■** Hotel chains
- Any organization which has a decentralized organization structure

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Distributed DBMS Promises

- Transparent management of distributed, fragmented, and replicated data
- ② Improved reliability/availability through distributed transactions
- Improved performance
- Easier and more economical system expansion

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Page 1 17

Transparency

- Transparency is the separation of the higher level semantics of a system from the lower level implementation issues.
- Fundamental issue is to provide data independence

in the distributed environment

- Network (distribution) transparency
- Replication transparency
- ➡ Fragmentation transparency
 - ♦ horizontal fragmentation: selection
 - ◆ vertical fragmentation: projection
 - hybrid

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

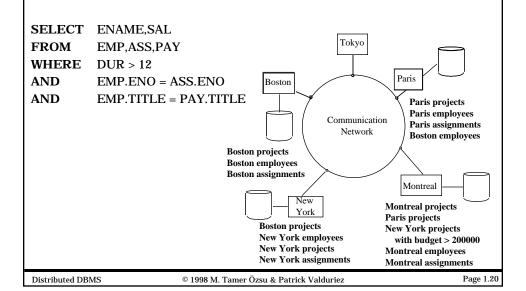
Example

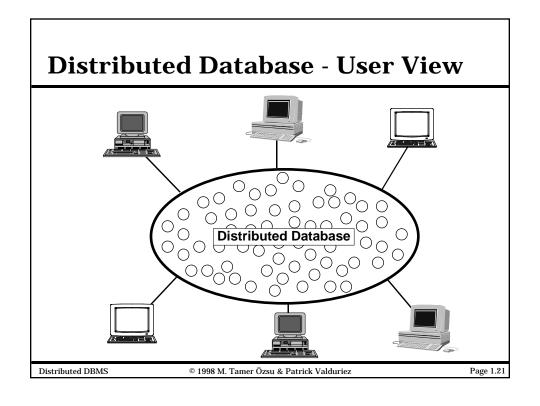
EMP		
ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng.
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

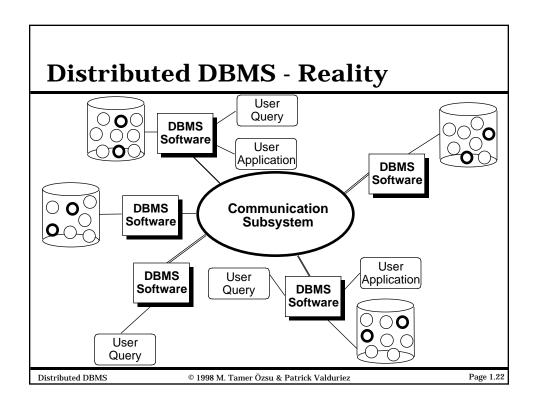
ASG			
ENO	PNO	RESP	DUR
E1	P1	Manager	12
E2	P1	Analyst	24
E2	P2	Analyst	6
E3	P3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E5	P2	Manager	24
E6	P4	Manager	48
E7	P3	Engineer	36
E7	P5	Engineer	23
E8	P3	Manager	

PROJ								
PNO	PNAME	BUDGET	LOC					
P1 P2 P3 P4 P5	Instrumentation Database Develop. CAD/CAM Maintenance CAD/CAM	135000	Montreal New York New York Paris Boston					

PAY


TITLE SAL


Elect. Eng. 40000
Syst. Anal. 34000
Mech. Eng. 27000
Programmer 24000


Distributed DBMS © 1998 M. Tamer Özsu & Patrick Valduriez

Page 1.19

Transparent Access

Potentially Improved Performance

- Proximity of data to its points of use
 - **➡** Requires some support for fragmentation and replication
- **■** Parallelism in execution
 - **■** Inter-query parallelism
 - **➡** Intra-query parallelism

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Page 1 23

Parallelism Requirements

- Have as much of the data required by each application at the site where the application executes
 - **➡** Full replication
- **■** How about updates?
 - Updates to replicated data requires implementation of distributed concurrency control and commit protocols

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

System Expansion

- Issue is database scaling
- Emergence of microprocessor and workstation technologies
 - **■** Demise of Grosh's law
 - **➡** Client-server model of computing
- Data communication cost vs telecommunication cost

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Page 1.25

Distributed DBMS Issues

■ Distributed Database Design

- **→** how to distribute the database
- replicated & non-replicated database distribution
- → a related problem in directory management

■ Query Processing

- convert user transactions to data manipulation instructions
- optimization problem
- min{cost = data transmission + local processing}
- **■** general formulation is NP-hard

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Distributed DBMS Issues

■ Concurrency Control

- **■** synchronization of concurrent accesses
- consistency and isolation of transactions' effects
- **→** deadlock management

■ Reliability

- **■** how to make the system resilient to failures
- **■** atomicity and durability

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Page 1.2

Relationship Between Issues Directory Management Distribution Design Concurrency Control Deadlock Management Distributed DBMS © 1998 M. Tamer Özsu & Patrick Valduriez Page 1.28

Related Issues

■ Operating System Support

- → dichotomy between general purpose processing requirements and database processing requirements

■ Open Systems and Interoperability

- **➡** Distributed Multidatabase Systems
- **■** More probable scenario
- **➡** Parallel issues

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez