
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 3, MAY 1983

A Formal Model of Crash Recovery in a
Distributed System

DALE SKEEN AND MICHAEL STONEBRAKER

Abstract-A formal model for atomic commit protocols for a distrib-
uted database system is introduced. The model is used to prove exis-
tence results about resilient protocols for site failures that do not parti-
tion the network and then for partitioned networks. For site failures,
a pessimistic recovery technique, called independent recovery, is intro-
duced and the class of failures for which resilient protocols exist is
identified. For partitioned networks, two cases are studied: the pessi-
mistic case in which messages are lost, and the optimistic case in which
no messages are lost. In all cases, fundamental limitations on the
resiliency of protocols are derived.

Index Tenns-Commit protocols, crash recovery, distributed database
systems, distributed systems, fault tolerance, transaction management.

I. INTRODUCTION
IN THIS PAPER we present a formal model for transaction

processing in a distributed database and then extend it to
model several classes of failures and crash recovery techniques.
These models are used to study whether or not resilient proto-
cols exist for various failure classes.
Crash recovery in distributed systems has been studied ex-

tensivelyintheliterature [2], [4J-[6], [9], [11], [141-[16].
Many protocols have been designed that are resilient in some
environments. All have an "ad hoc" flavor to them in the
sense that the class of failures they will survive is not clearly
delineated.
The purpose of this paper is to formalize the crash recovery

problem in a distributed database environment and then give
some preliminary results concerning the existence of resilient
protocols in various well-defined situations.
Consequently, in the next section we give a brief introduc-

tion to transactions in a distributed database. In Section III
we indicate the assumed network environment and our model
for transaction processing. In Section IV we extend the model
to include the possibility of site failure and give results con-
cerning the existence of resilient protocols in this situation.
Section V turns to the possibility of network failure and shows
the class of failures for which a resilient protocol exists. Sec-
tion VI summarizes the results in the previous two sections.

Manuscript received November 10, 1980; revised December 14, 1982.
This work was supported by the U.S. Air Force Office of Scientific
Research under Grant 78-3596, the U.S. Army Research Office under
Grant DAAG29-76-G-0245, and the Naval Electronics Systems Com-
mand under Contract N00039-78-G-00 13.
D. Skeen is with the Department of Computer Science, Cornell Uni-

versity, Ithaca, NY 14850.
M. Stonebraker is with the Department of Electrical Engineering and

Computer Science, University of California, Berkeley, CA 94720.

II. BACKGROUND
A distributed database management system supports a data-

base physically distributed over multiple sites interconnected
by a communications network. By definition, a transaction
in a distributed database system is a (logically) atomic opera-
tion: it must be processed at all sites or at none of them. De-
signing protocols resilient to various failures, including arbitrary
site failures and partitioning of the communications network,
is a very difficult task.
Preserving transaction atomicity in the single-site case is a

well-understood problem [4], [7] . The processing of a single
transaction is viewed as follows. At some time during its
execution, a "commit point" is reached where the site decides
to commit or to abort the transaction. A commit is an uncon-
ditional guarantee to execute the transaction to completion,
even in the event of multiple failures. Similarly, an abort is an
unconditional guarantee to back out the transaction so that
none of its effects persist. If a failure occurs before the commit
point is reached, then immediately upon recovery the site will
abort the transaction. Both commit and abort are irreversible.
In the multiple site case, it is the task of a commit protocol

to enforce global atomicity. Assuming that each site has a
recovery strategy that provides atomicity at the local level,
the problem becomes one of ensuring that the sites either
unanimously abort or unanimously commit the transaction.
A mixed decision results in an inconsistent database. In the
absence of failures, a unanimous consensus is easily obtained
by a simple protocol. The challenge then is to find protocols
ensuring atomicity in the presence of inopportune and perhaps
repetitive failures.
A basic assumption within this paper is that during the initial

phase of distributed transaction processing any participating
site can unilaterally abort the transaction. A site may choose
to abort for any of the following reasons:

1) one or more sites fail,
2) the network fails,
3) the transaction deadlocks with another transaction,
4) the user aborts the transaction.
Clearly, before any site can commit the transaction, all sites

must relinquish their right to unilaterally abort it. Once a site
has relinquished that right, it can abort the transaction only in
concordance with the other sites.
Let us now examine a commit protocol allowing sites to uni-

laterally abort. One of the simplest and certainly the most
renowned is the two-phase commit protocol [41, [6] illus-

0098-5589/83/0500-0219$01.00 © 1983 IEEE

219

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 3, MAY 1983

Site 1
(coordinator)

(1) Transaction is received.
"Start Xact" is sent.

(2) Site 2's response is received.
If response = "yes" and Site 1 agrees,

then "commit" is sent;
else, "abort" is sent.

Site 2
(slave)

"Start Xact" is received.
Site 2 responds: "yes" to commit,

"no" to abort.
The response is sent to Site 1.

Either "commit" or "abort" is
received and processed.

Fig. 1. The two-phase commit protocol (two sites).

trated in Fig. 1 for two sites.' It is a centralized protocol with
a single coordinator (Site 1) and with the remaining sites act-
ing as slaves.
In the first phase, the coordinator receives the transaction

and forwards it to the slave (Site 2). The slave then partially
executes the transaction, and indicates its readiness to commit
("yes") or its intent to unilaterally abort ("no"). The commit
decision is made by the coordinator after receiving a response
from the slave, and a "commit" message is sent only if both
agree to process the transaction. For a transaction to commit,
three messages are exchanged: "start transaction" is sent to
Site 2; "yes" is sent to Site 1; and finally "commit" is sent
to Site 2. Although the protocol is illustrated for only one
slave, any number of slaves may participate.

Clearly, the protocol is correct in the absence of failures.
Its fundamental weakness is its vulnerability to site failures,
especially failure of the coordinator. When the coordinator
fails, the remaining sites must block transaction execution
until it recovers.

It is always an option for a distributed database system to
block whenever a failure occurs. Even though blocking pre-
serves consistency, it is highly undesirable because the locks
acquired by the blocked transaction cannot be relinquished.
rendering the data inaccessible by other requests. Conse-
quently, the availability of data stored at reliable sites can be
limited by the availability of the weakest component in the
distributed system. For this reason we postulate that blocking
protocols' are unacceptable to many applications.

In this paper we confine our interests exclusively to non-
blocking protocols-protocols in which operational sites never
suspend because of a failure. We say that a commit protocol
is resilient to a class of failures only if the protocol enforces
transaction atomicity and is nonblocking for any failure within
that class. The nonblocking constraint guarantees that a resil-
ient protocol will always terminate irrespective ofthe frequency
of failures. A necessary but not sufficient condition for non-
blocking behavior is a strict bound on the number of messages
sent by a resilient protocol.

'The two-phase commit protocol depicted is an optimized version of
the standard two-phase commit protocol. The standard protocol in-
cludes "ack's" folowing the receipt of as commit or abort by the slaves.
These messages are convenient for bookkeeping purposes but add noth-
ing to the fault tolerance of the protocol and thus have been deleted.

III. THE TRANSACTION MODEL
In this section we introduce the model, ignoring the effects

of failures. Sites failures and network failures are introduced
into the model in Sections IV and V, respectively.

A. The Network Assumptions
The network provides point-to-point communication be-

tween any pair of sites. It is assumed to have the following
characteristics:

1) it delivers a message within a preassigned time period T,
or
2) it reports a "timeout" to the sender.
When a timeout occurs, the sender can safely assume that

the network-or the recipient or both has failed. In the case of
a network failure, it is not known whether the recipient re-
ceived the message.
Notice that we are assuming a somewhat idealized environ-

ment by precluding the possibility that a timeout is caused by
a slow but correctly executing site. However, by adjusting T
and by providing low-level protocols for verifying failures, we
can build systems that differentiate between failures and slow
responses with an arbitrarily high degree of confidence.

B. Specifying a Protocol
Reasoning about commit protocols requires a well-defined

notion of the "state" of the transaction at each participating
site. Broadly speaking, this abstract state is a concise summary
of transaction history and, hence an indicator of the options
available to a recovery protocol. In the above description of
transaction processing, we informally discussed three such
states: the initial state where sites have the right to unilaterally
abort, the abort state, and the commit state. We now formalize
the notion of state by borrowing from classical automata
theory.
The formal specification of a protocol consists of a collec-

tion of nondeterministic finite state automata (FSA)-one for
each site. The automaton executing at Site i is called the local
protocol for Site i. The state of this automaton is the local
transaction state (or, more succinctly, the local state) for Site i.
The network is modeled as a completely passive device. It is
an unbounded buffer that serves as a common read/write
medium for all local protocols. A local state transition consists
of reading one or more messages, perfoming some local pro-

220

SKEEN AND STONEBRAKER: FORMAL MODEL OF CRASH RECOVERY

Fig. 2. The model with four sites.

cessing, and sending zero or more messages. Fig. 2 illustrates
four sites participating in a distributed transaction. Similar
models have been used for network communication protocols
[1], [3].
There are several restrictions on this collection of FSA's.
1) The FSA's are nondeterministic. The behavior of each

FSA is not known a priori because of the possibility of dead-
locks, failures, and user aborts. Moreover, when multiple mes-
sages are addressed to a site, the order of receiving the messages
is arbitrary.
2) The final states of the FSA's are partitioned into two

sets: the "abort" states A and the "commit" states C.
3) There are no transitions from a state in A to a state not

in A . Similarly, there are no transitions from a state in C to a
state not in C. Therefore, once a site enters an "abort" state
("commit" state), the site remains in such a state. This cor-
responds to the requirement that abort and commit are
irreversible operations.
4) The state diagram defining an FSA is acyclic. This suf-

fices to guarantee that a protocol sends a bounded number of
messages.

State transitions are assumed to be asynchronous among the
sites and, in the absence of failures, atomic. It is convenient to
consider a transition to be an instantaneous event.
The local protocols for the two-site, two-phase commit

protocol (Fig. 1) are illustrated in Fig. 3.
The state diagram illustrates the conventions used in the

remainder of the paper. The states for Site i are subscripted
by i, and final states are doubly circled. Messages received
during a state transition are shown above the horizontal line;
messages sent are shown below the line.
Both local protocols begin processing in their initial states

(q, and q2). A transaction begins when a request message is
received from the application program. The receipt of the
request by the coordinator (Site 1) causes a state transition
to state w, (the wait state) and the sending of the transaction
to Site 2. Upon receipt of the transaction, Site 2 nondeter-
ministicly choses one of two possible replies. Either it replies
with a "yes," accepting the transaction and moving into P2
(the prepared or precommit state), or it replies with a "no,"
unilaterally aborting the transaction and moving directly to
a2 . The protocol continues until both sites occupy final states:
either commit (c) or abort (a).

C. The Global Transaction State
The global state of a distributed transaction is defined to

consist of:
1) a global state vector containing the states of the local

protocols,

Site Site 2

zoctrequest start xsct start xact

start xact yes no
abort

no yes
commit commit

a3.bort l p

Fig. 3. The local protocols for the two-phase commit.

2) the outstanding messages-in the network.
The global state defines the complete processing state of a

transaction.
A global state is a final state if all local states contained in its

state vector are final states. It is said to be inconsistent if its
state vector contains both a commit state and an abort state.
A global state transition occurs whenever a local state transi-

tion occurs at a participating site. Barring failures, this is the
only time that global state transitions occur. Since local state
transitions are viewed as instantaneous and hence mutually
exclusive events, exactly one local transition occurs during a
global transition.

If there exists a global transition from global state G to global
state G' then G' is said to be immediately reachable from G.
A global state, together with the definition of the protocol,
contains the minimal information necessary to compute all of
its immediately reachable states. Starting with a unique initial
global state and taking the transitive closure of the immediately
reachable states, we obtain all of the reachable states. The
reachable global state graph for the (2-site) two-phase commit
protocol are illustrated in Fig. 4. In the graph the descendents
of a state are its immediately reachable successors.
The global state graph is an invaluable tool in both analysis

and verification of the protocol, graphically rendering all pos-
sible actions of the protocol. A path from the initial state to
a terminal state (i.e., a state without a successor) corresponds
to a possible execution sequence of the protocol. The graph
itself is easy to generate automatically, but can be quite large
(exponential in N, the number of sites). Fortunately, a small
N usually serves to illustrate a protocol, and proofs seldom
require the generation of the entire graph.
A protocol is operationally correct only if its reachable state

graph contains no inconsistent states and all terminal states are
final states. When a graph contains terminal states that are not
final states, then it is possible for some sites to never commit
or abort the transaction. Applying these definitions to the
state graph of Fig. 4, we can quickly verify the correctness of
the two-phase protocol.

C. The Concurrency and Sender Sets

Two local states are said to be potentially concurrent if there
exists a reachable global state containing both local states.
Thus, for at least one possible execution of the protocol, the

221

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 3, MAY 1983

(initial state)

Fig. 4. Reachable state graph for the two-phase commit.

first state is occupied by one site at the same time that the
second state is occupied by another site.
We now define two sets that will be used extensively in

subsequent proofs. Both sets are easily constructed from the
global state graph.
Definition: Let s be an arbitrary local state. The concur-

rency set of a local state s is the set of all local states that are

potentially concurrent with it. We denote this set by C(s).
From the reachable state graph given in Fig. 4, we observe

that the concurrency set for w, consists of {q2, a2, P2 }.

When a site makes a transition from state s to state t, it is
convenient to consider the messages received and sent during
the transition as being "received" and "sent" by state s. For
example, in the two-phase commit we would say that the
coordinator's wait state w, sends commit messages that are

received by the slave's wait state P2. We will be interested in
the set of local states sending messages to a given state s.

Definition: Let s be an arbitrary local state, and let M be
the set of messages that are received by s. The sender set for s,

denoted S(s), is ft t "sends" m and m EM}.
Again referring to Fig. 4, we observe that S(w,) is {q2 }.

IV. SITE FAILURES
This section examines existence questions on nonblocking

protocols for site failures. Here, we assume that the network
never fails-an assumption that is relaxed in the next section.

A. Modeling Site Failures
A failure of any type is normally detected by the absence

of an expected message. We assume that each site has at its
disposal an interval timer allowing it to bound the time it
waits for the receipt of a message. When the timer expires, the
site is said to have "timed out" and may take appropriate

action. This is modeled by timeout messages that are received
like any other message and can cause a state transition.

Site failures are modeled by a failure transition, which is a
special kind of local state transition [10]. Such a transition
occurs at the failed site the instant that it fails. The resulting
local state is the state initially occupied by the failed site upon
recovering. An underlying assumption is that a site can detect
when it has failed.
Let us temporarily assume atomic state transitions even in

the presence of failures. Hence, a failure cannot occur during
the middle of a transition and interrupt the sending of mes-
sages. In this case a failure transition can be simply defined-
it reads all outstanding messages and sends a timeout message
to all participants.

In real systems, state transitions are not atomic and sites can
fail after sending only a few of the messages associated with a
transition. This can be modeled simply by allowing a failure
transition to send any prefix of the messages normally sent by
a valid transition from the same state. These messages are sent
in addition to the timeout messages sent by the failure transi-
tion. We shall also allow failure transitions from the same state
to terminate in different states. This generalization of failure
transitions is sufficiently powerful to accurately model the
behavior of any implementation of an FSA.

B. Independent Recovery
Independent recovery refers to a scheme where a recovering

site makes a transition directly to a final state without com-
municating with other sites. Only local state information is
used in the recovery protocol, hence recovery is independent
of any event occurring after the site's failure. Independent
recovery is modeled by requiring that all failure transitions
terminate in a final state. This final state is assumed by the
site immediately upon recovering.
Independent recovery is interesting for several reasons.

First, it is easy to implement and leads to simple protocols.
One need not be concerned with messages to a failed site
being queued in the network or at another site that may be
down when the failed site attempts to recover. This recovery
strategy is of theoretic interest because it represents the most
pessimistic recovery strategy. Proving the existence of a class
of resilient protocols using independent recovery implies the
existence of resilient protocols in all more sophisticated strate-
gies of site failures. Its most important practical aspect is that
it qualifies the usefulness of local state information during
recovery. If the local state proves to be insufficient for resilient
recovery then those sites remaining operational during the
duration of the transaction must maintain the transaction's
outcome for the inoperative sites. This history will have to be
maintained indefinitely until all sites have recovered and
completed the transaction. In this regards, independent re-
covery provides the only true nonblocking recovery strategy-
any strategy requiring a history mechanism will necessarily
block when the history becomes temporarily unavailable due
to failures.
When discussing independent recovery, we will restrict our

attention to the two site case. All of the results are easily
extended to the multisite case. The general case is not pre-

222

SKEEN AND STONEBRAKER: FORMAL MODEL OF CRASH RECOVERY

Site 2

start xact start xoct
yes

abort

commit
ack

Fig. 5. The two-phase commit protocol extended with an ack message.

sented here because additional notation is required and the
resulting protocols are of little practical importance.

C. Failure ofa Single Site

Let us first consider the simple case where at most one site
fails during a transaction. Our goal is to develop rules for
assigning failure and timeout transitions to existing protocols
to form protocols resilient to single site failures.
Not all protocols can be made resilient, as the next lemma

demonstrates.
Lemma 1: If a protocol contains a local state with both

abort and commit in its concurrency set, then under indepen-
dent recovery it is not resilient to an arbitrary single failure.

Proof: This follows directly from the definition of "con-
currency set." Consider a local state si, and its concurrency
set C(s,). Let C(s,) contain both an abort state and a commit
state. Clearly, si cannot have a failure transition to the com-

mit state, since the other site may be in the abort state. Simi-
larly, si can not have a failure transition to the abort state,
since the other site may be in the commit state. Hence, when
Site i is in si, it cannot safely and independently recover.

If a protocol has no local states violating the necessary con-

dition in the above lemma, then failure transitions can be
assigned according to the following rule.
Rule 1: For every intermediate state s in the protocol: if

C(s), contains a commit, then assign a failure transition from
s to a commit state; otherWise, assign a failure transition from
s to an abort state.
The two-phase commit protocol does not satisfy the condi-

tion in the lemma: the concurrency set of the slave's prepared
state (P2) contain both cl and a,. However, P2 is the only
local state violating this rule. This occurs because the coordi-
nator moves into the commit state before the slave acknowl-
edges committing the transaction. If instead the coordinator
moves to a prepared state while it is waiting for the acknowl-
edgment from the salve and moves into a commit state only
after the acknowledgment is received, then it is possible to
assign a failure transition to P2. This "extended" two-phase
commit protocol is shown in Fig. 5 and its (reachable) global
state graph is shown in Fig. 6.
From the graph, it is easy to verify that the concurrency set

for each state, including the prepared state, contains only one

kind of final state. Hence, failure transitions satisfying Rule 1

Fig. 6. The reachable global state graph for the protocol of Fig. 5.

can be defined for each state. The assignment of failure transi-
tions is depicted in Fig. 7 (timeout transitions, to be discussed
subsequently, are also illustrated).
The second rule deals with timeout transitions.
Rule 2: For each intermediate state si: if t, is in S(si) (the

sender set for si) and t, has a failure transition to a commit
(abort) state, then assign a timeout transition from si to a

commit (abort) state.
This rule is less obvious than the previous one. A "timeout"

can be viewed as a special message sent by a failed site in lieu
of a normal message. Like any other message received by state
Si, it must have been "sent" by a state in the sender set for si.
Moreover, the failed site, using independent recovery, has
made a failure transition to a fmal state. Hence, the receiving
state must make a consistent decision. Timeout transitions for
the extended commit protocol are illustrated in Fig. 7.
The protocol displayed is resilient to a single failure by either

site. This can be verified by examining its reachable state
graph. In fact, the rules always yield a resilient protocol under
independent recovery.

Theorem 2: Rules 1 and 2 are sufficient for designing pro-

tocols resilient to a single site failure.
Proof: Let P be a protocol with no local states having a

concurrency set containing both a commit state and an abort
state. Let P' be the protocol resulting from assigning failure
and timeout transitions to P according to the above rules. The
proof proceeds by contradiction.
We will assume that P' is not resilient to all single site fail-

ures. Therefore, there must exist a path from the initial global
state to an inconsistent final global state, and this path con-

Site (initial state)

223

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 3, MAY 1983

Site Site 2

start xact '^
yes slart Rod\

no \\
abort/-

cormm .\ ,
ack _

fai lure

time out

Fig. 7. The protocol with failure and timeout transitions obeying Rules
1 and 2.

tains exactly one failure. Without loss of generality, assume

Site 1 fails, and assume that it fails in state s1. Let the incon-
sistent global state contain the final states fi and f2 . Hence,
upon failing, Site 1 made a failure transition from s1 to fl.
There are two cases depending on whether Site 2 is in a final
state or a nonfinal state when Site 1 fails.
Case 1: Site 2 is in the final state f2 . But this implies that

f2 is in C(s1). Therefore, rule 1 is violated.
Case 2: Site 2 is in a nonfinal state. Upon failing, Site 1

sends a "timeout" that is received by Site 2 while in state s
Now, Site 2 makes a timeout transition to f2 that is inconsis-
tent with fi. However, by definition, s, is in the sender set
of s2 . Therefore, Rule 2 has been violated. O

D. Two Site Failures

The rules given above are sufficient for protocols resilient to
a single failure; however, such protocols are not necessarily
resilient to the failure of two sites. This can be demonstrated
for the protocol of Fig. 3. Double failures occurring when
Site 1 is in state Pi and Site 2 is in state P2 results in an incon-
sistent final state. Unfortunately, this is the only possible
assignment of failure and timeout transitions satisfying both
rules; hence, this protocol cannot be made resilient to two
failures using only Rules 1 and 2.

Recall that the addition of a single state to the two-phase
commit resulted in the above protocol, which enjoys a marked
increase in resiliency over its progenitor. Can this protocol be
extended with additional states to deal with double failures?
The next theorem yields a negative answer.

Theorem 3: There exists no protocol using independent
recovery that is resilient to arbitrary failures by two sites.
The double failures that are impossible to handle are "con-

current failures"-failures occurring close enough together
such that neither site detects the failure of the other before
itself failing. Although we will not prove it, concurrent
failures are the only class of double failures from which it
is impossible to recover. We now briefly sketch the non-

existence argument assuming double concurrent fa-ilures. In
the discussion, we use the shorter term "j independently re-

covers to state s from G" instead of the more precise term
"Site j independently recovers to state s after failing while the
global state is G."

Let P be a commit protocol, and consider an execution ofP
resulting in global commit. This execution corresponds to
some path, Go, G1, * - *, G,,, in the global state graph for P.
Clearly, from the initial global state Go, all sites independently
recover to the abort state, and from the global commit state
Gm, all sites independently recover to the commit state. Let
Gk be the first global state where a site recovers to a commit
state, and let j be such a site. Since j independently recovers
to the abort state in Gk -1 (by assumption) but not in Gk, i
must have changed states in the global state transition from
Gk l to Gk. Moreover, j was the only site to make a state
transition (see Section III-C). Hence, the other sites occupy
the same states in Gk as they did in Gk -1, and each must
therefore independently recover to the same state in both Gk
and in Gk - 1 , namely, the abort state. Consequently, the failure
of j coupled with any other failure while the global state is Gk
results in an inconsistent state.
The above argument applies not only to the two-site case but

to any number of sites. The complete proof forN(N> 1) sites
appears in the Appendix.

Several conclusions can be drawn from these results. Since
a site cannot determine concurrent failures from its local state,
it cannot determine when independent recovery can be safely
used. For a two site protocol this means that in all cases a
recovering site must block until it can communicate with its
cohort. Moreover, the cohort must maintain a record of the
transaction's outcome if the transaction completed.
Although it is not possible to design a protocol that allows

nonblocking recovery, it is possible to design commit protocols
that never require an operational site to block. (Here "opera-
tional site" refers to a site that has not failed since the begin-
ning of the transaction.) Such protocols are of great practical
importance: examples include the four-phase protocol of
SDD-1 [51 and the family of three-phase protocols [12]. All
of these protocols require that a recovering site poll the other
sites about the status of any outstanding transaction.

V. NETWORK PARTITIONING
A network failure results in at least two sites that cannot

communicate with each other. We model such a partition in
two ways. The first model is a pessimistic model where all
messages are lost at the time partitioning occurs. The second
model is an (overly) optimistic model where no messages are
lost at the time partitioning occurs; instead, undeliverable
messages are returned to the sender. While the pessimistic
model is more realistic, the optimistic model is theoretically
interesting since it yields upper bounds on the achievable
resiliency.
A simple partitioning occurs when the sites are partitioned

into exactly two sets with no communication possible between
the sets. A multiple partitioning occurs when the sites are
partitioned into k(k > 2) sets. A multiple partitioning can be
viewed as simultaneous occurrences of two or more simple
partitionings.
A protocol is resilient to a network partitioning only if it is

nonblocking, that is, the protocol must ensure that each iso-
lated group of sites can reach a commit decision consistent
with the remaining groups. Since the commit decision within

224

SKEEN AND STONEBRAKER: FORMAL MODEL OF CRASH RECOVERY

a group is reached in the absence of communication to outside
sites, this problem is very similar to the independent recovery

paradigm presented in the previous section.
Unless otherwise stated, we assume that partitions are caused

by link failures rather than site failures.

A. Partitioning With Loss ofMessages
In this pessimistic case, a network partitioning is modeled as

a special type of global state transition. Until now all global
state transitions have been triggered by one local state transi-
tion. However, a network partitioning is modeled as a global
state transition that changes the network state while leaving all
local states unchanged. Specifically, a partitioning erases all

outstanding messages and substitutes timeouts in their place.
As before, upon reading a timeout message, a site may make
a "timeout" transition.
Let us first examine the simplest type of partitioning: a

simple partitioning where each partition contains exactly one

site. This situation is analogous to a double site failure in a

two site protocol using independent recovery. The difference
is that when a double failure occurs, sites make "failure"
transitions; whereas, when a partitioning occurs, sites make
"timeout" transitions. It can be shown that a solution to the
double failure problem implies a solution to the simple parti-
tioning problem. An immediate consequence of this observa-
tion is the next theorem.
Theorem 4: There exists no protocol resilient to a network

partitioning when messages are lost.
This applies to multiple partitionings as well as simple parti-

tionings. The Appendix contains a proof outline that uses the
proof of Theorem 3 as a paradigm.
Any time that a partitioning results in lost messages or there

is the possibility of lost messages, a blocking protocol must be
used. Unfortunately, this is the normal situation, especially
for wide area networks. In the worst case only a single parti-
tion can continue processing.

Finally, let us consider the possibility of site failures in con-

junction with network partitioning. If all participants can

differentiate between site failures and partitioning, then there
is no- problem. On the other hand, if a group of communicat-
ing sites cannot determine conclusively the type of failure
that has occurred, then they must assume the worst, which is
a partitioning. In the special case when there are only two
sites, it is senseless to run any protocol more elaborate than
the two-phase commit unless both sites can frequently differ-
entiate between a site failure and a node failure. When they
cannot differentiate, one site (presumably the slave) will be
forced to block anyway.

B. Partitioning with Return ofMessages
In this environment we assume that the network can detect

the presence of a partition and return undeliverable messages
to their senders. This appears to represent the most optimistic
model for partitions, while loss of messages is the most pessi-
mistic one.

In this optimistic case a partition causes a global state transi-
tion that redirects all undeliverable messages back to their
senders and writes timeout messages to the recipients of

undeliverable messages. A site may make a transition when-
ever an undeliverable message is returned to it or a timeout
is received.

C The Optimistic Two-Site Case
To study this optimistic situation, we now define two design

rules that resilient protocols must satisfy.
Rule 3: For a state si: if its concurrency set, C(s1), contains

a commit (abort) state, then assign a timeout transition from
si to a commit (abort) state.
Here, Site i in state si was expecting a message when the

partition occurred. Instead, it received a "timeout." This site
will then make a decision to abort or commit the transaction
consistent with the state of the sender of the undeliverable
message. At this time the site can infer that any message it
sent arrived at its destination but any reply to that message
was returned undelivered.
The second rule deals with a site sending an undeliverable

message. It must make a commit decision consistent with the
decision of the intended receiver.
Rule 4: For state sj: if ti is in S(sj), the sender set for Sj,

and ti has a timeout transition to a commit (abort) state, then
assign a undeliverable message transition from s, to a commit
(abort) state upon the receipt of an undeliverable message.
An observant reader will note that these rules are equivalent

to the rules given for independent recovery of failed sites. In
fact, the two models are isomorphic. To illustrate the equiva-
lence, consider the information conveyed by a "timeout"
message from a failed site. The following is true when the
operational site i receives the "timeout" indicating a failure of
the other site:

1) the last message sent by Site i was not received (the other
site failed prior to its receipt),
2) communication with the other site is impossible (it is

down),
3) the other site will decide to commit using independent

recovery.
Exactly the same conditions hold when an undeliverable

message is returned to Site i.
Applying the above design rules to the protocol of Fig. 5

yields the protocol illustrated in Fig. 8. As expected, the
protocol is isomorphic to the protocol of Fig. 7.
In light of this isomorphism, Theorem 5 is not surprising.
Theorem 5: Design Rules 3 and 4 are necessary and suffi-

cient for making protocols resilient to a partition in a two-site
protocol.

Sketch of Proof: We can make use of the proof of Theo-
rem 2. In that proof, substitute "undelivered message" for
every occurrence of "timeout" and substitute "timeout" for
every occurrence of "failure." Finally, substitute "Rule 3" for
"Rule 1" and "Rule 4" for "Rule 2." The result is a proof for
Theorem 5. 0
An implicit assumption made above is that a site can distin-

guish between a timeout resulting from a site failure and a
timeout resulting from a partitioning. Comparing the protocol
in Fig. 8 to the protocol in Fig. 6, we note that the coordina-
tor's behavior in state Pi is dependent on the cause of the
timeout. Hence, for this protocol, knowing the cause of the

225

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 3, MAY 1983

Site Site 2

lost message undelivable

time out

Fig. 8. The extended two-phase commit protocol (of Fig. 5) augmented
with timeout transitions and "undeliverable message" transitions
according to Rules 3 and 4.

failure (at least for the coordinator) is crucial. It is not hard to
show that this is always the case. Of course, within this model,
detecting the cause of a timeout is easy to finesse: if a site is
uncertain as to the reason for a timeout, then it can send
another message to the same site. Presumably, if the network
is down, then it will return the message "undelivered" rather
than a "timeout."

D. The Optimistic Multisite Case

In the absence of site failures, the multisite case is very simi-
lar to the two-site case, since preserving consistency within a

connected group of operational sites is not difficult. Thus,
design rules 3 and 4 can be extended to multisite protocols in
a straightforward way. This leads to the following result.
Corollary 6: There exist multisite protocols that are resilient

to a simple partition when undeliverable messages are returned
to the sender.
This result is the complement of the results obtained from

the pessimistic model discussed earlier. The models differ in
their handling of outstanding messages when the network
fails: in the pessimistic model, they are lost; whereas, in the
optimistic model, they are returned to their sender. Since this
is the only difference between the two models, the next result
is implied.
Corollary 7: Knowledge of which messages were undelivered

at the time the network fails is necessary and sufficient for
recovering from simple partitions.
We now turn to multiple partitions. Since we are dealing

with an optimistic situation, we assume that timeouts and
undeliverable messages are unaffected by additional parti-
tions. This, in effect, is an assumption that the network is
partitioned into all subsets simultaneously.
Even in this (overly) optimistic model, our results are nega-

tive, which implies negative results for all realistic partitioning
models.
Theorem 8: There exists no protocol resilient to a multiple

partition.
Therefore, even complete information about message traffic

during a partition, and in particular, information about which
messages are undeliverable, is insufficient for recovering from
multiple partitions.

The proof of this theorem is similar to the proof of Theorem
3, but it is somewhat more complicated since the network
state in addition to the local transaction states must be ex-
amined. The proof appears in the Appendix.

VI. CONCLUSIONS
The major contribution of this paper is the formal model for

atomic commit protocols based on nondeterministic finite
state machine. Nondeterminism is used in modeling unpre-
dictability in the environment, including the order of message
deliveries and failures. Herein, we have used the model to
study the existence of nonblocking protocols for site and net-
work failures. Companion papers have used it for specifying
and verifying several families of very resilient protocols [1],
[121. It has been our experience that the model provides a con-
venient conceptual framework for reasoning about protocols.
The results in Sections IV and V define fundamental limita-

tions on the robustness of protocols with respect to both site
failures and network partitions. Many of the limitations have
been part of the accepted folklore on fault tolerant distributed
computing. For this reason, the results tend to be more illumi-
nating than surprising. However, we believe that this is the
first formal, systematic treatment of such existence questions.
The approach is extensible to problems in related areas, such
as existence results for atomic broadcast.
The only truly nonblocking site recovery strategy, indepen-

dent recovery, uses local state information available at failure
time. Hence, recovery does not depend on messages to down
sites being queued in the network or on operational sites main-
twining a log of completed transactions. This strategy is
resilient to a single failure but no more. From the nonexis-
tence proof for the case of two failures, it is clear that con-
current failures are the most difficult failures to handle: in
general, the database is left in an inconsistent state if indepen-
dent recovery is attempted after concurrent failures. Since a
site cannot deduce from its local state whether another site's
failure was concurrent with its failure, a recovering site cannot
determine when it is safe to use independent recovery.
The results on robust network protocols are more discourag-

ing than the independent recovery results. In realistic network
environments, where a partition can result in lost messages,
there exists no nonblocking protocols-not even for "simple"
partitions. Therefore, in the worst case, the best protocols
allow no more one group of sites to continue while the remain-
ing groups block.

APPENDIX
Herein, the complete proofs for Theorems 3, 4, and 8 are

given.
Theorem 3: There exists no protocol using independent

recovery of failed sites that is resilient to two-site failures.
Proof: Let P be a protocol that always preserves consis-

tency in the absence of failures. Let i and j be two sites. We
will show: for every failure-free execution of P that commits
the transaction, there exists a point in the execution where a
failure of i followed by a failure of j leads to an inconsistency.
A failure-free execution of P corresponds to a path in the

global state graph, Go, G1, - -- , Gm where Go is the initial

226

SKEEN AND STONEBRAKER: FORMAL MODEL OF CRASH RECOVERY

global state and Gm is a final global state. We are assuming
that Gm is a final commit state. A global state consists of a
local state vector and a network state; however, for the re-
mainder of this proof, we will ignore the network state. Hence,
we view the global state Gk as a vector <Skl , Sk2, * * *, SkN>,
where Ski is the local state for Site i when transaction execu-
tion is in state Gk. N is the number of participating sites.
Let f(s) be the result of making a failure transition while in

state s. Let Fk be the global state resulting from the double
failure of i and j when transaction processing is in Gk. Fk is
equal to Gk except that the ski and Skj are replaced by f(Ski)
andf(Skj)
Let us now examine the sequence Fo, , Fm and, in par-

ticular, the local states for i and j in this sequence. The pair
(f(so), f(so0)) must be equal to (ai, a1) since a site will always
abort the transaction when it fails in the initial state. Similarly,
the pair (f(smi), f((sm)) must equal (ci, c;) since we have as-
sumed that the transaction was committed. Let k be the small-
est k such that either f(Ski) or f(sk) yields a commit state.
This situation is depicted below:

Commit Sequence (GI)

<. .., SOW, * -, Soj,. .>

<- * * ,Sk_l,i, ' * * ,Sk-l, j,
- >

< '- - sSk,*--,Si,s >'

Global State (F1) Resulting
from the Failure of i and j

<' .**aji,***,aj,* .>

<- * * ,ai, * * * ,aj, ...>*

Fk where either f (ski) or

f (ski) is a commit state

C *sSm,t, .'* * * .m ,* > < * Ci, *** ci,**>

Since each global transition reflects one local state transition,
two adjacent global states differ by exactly one local state.
Therefore, either Sk-1,i - Ski or Sk -,j = Skj, and therefore,
either f(sk1,i) =f(Ski) or f(sk-,j) =f(Skj). This implies
that f(Ski) or f(Skj) is an abort state. By assumption, the
other one is a commit state. Hence, Fk is inconsistent. [1
Theorem 4: There exists no protocol resilient to a network

partitioning when messages are lost.
Without loss of generality, we will restrict our attention to

only two sites. Hence, the partitioning must be simple.
Sketch of Proof: Let f(s) represent the result of a time-

out transition from state s. Since messages are lost when the
partitions occur, we can ignore the message state portion of a

global state. Let Go, , Gm be a partition-free execution of
the protocol that commits the transaction. Define Fi to be the
global state resulting from a network partition occurring in
state Gi. Using the notation of the previous theorem, Fi =

<f(si I), f(Si2)>. As above, we can find the smallest k such
that Fk contains a commit state. (Recall that Fo contains
only abort states.) Now, the difference between Fk l and
Fk is one local state. Therefore, Fk must contain an abort
state as well, which makes the state inconsistent.
Theorem 8: There exists no protocol resilient to a multiple

partition.
In the proof of this theorem we will only consider protocols

in which each state transition reads at most one message (how-
ever, a transition can still send an arbitrary number of mes-

sages). It is shown in [12] that these protocols are equivalent
in power to more general protocols reading an arbitrary num-
ber of messages per state change. This assumption allows a
simpler proof. The proof follows the same form as the previous
nonexistence proof.

Proof: Let P be a three-site protocol that is correct in the
absence of failures. We will assume that P is resilient to mul-
tiple partitions. Let Go, * *, Gm be a failure free path in the
global state graph for P that commits the transaction. Now,
Gi = (Si, Me), where Si = <si1, Si2, si3> is the vector of local
states and Mi is the outstanding messages. We will consider Mi
to be the union of three sets: Mi1 , Mi2, and M03, where Mij is
the set of messages addressed to Site j.
Let G' be the global state resulting from a partitioning oc-

curring during the global state Gi. Without loss of generality,
we assume that all outstanding messages are returned to their
senders. The recipients will receive only "timeouts." Let Ml
be the resulting set of messages. Thus, G' = (Si, MJ'). Now,
let fj denote the transition function that moves Site j to a final
state during a partitioning, i.e., f1(sii, Mb) is Site j's resulting
final state when a partitioning occurs during G,.
Let k be the smallest k such that a multiple partitioning

occurring while the transaction is in Gk still results in the
transaction being committed. Since we have assumed that the
protocol is resilient to such a partitioning, we have fh(Skj, MXi)
equals commit for j- 1, 2, 3. Moreover, by our choice of k,
we have fj(Sk-1,j, Mk-1,j) equals abort forj= 1, 2, 3. Now
from Gk - to Gk one state transition occurred, and let us
assume that Site 1 made that transition. Furthermore, Site I
read at most one message and, and if so, let this be a message
from Site 2.
Notice that we have Sk-1, 3 = Sk, 3 andMk -1, 3 = Mk, 3 since,

between Gk-1 and Gk, Site 3 did not make a transition and
none of its messages were read. Therefore, f3 (Sk -1, 3 Mk - 1, 3) =
f3 (Sk 3, Mk, 3). But this is a contradiction. E

ACKNOWLEDGMENT

The authors wish to thank K. Birman, K. Keller, and L. Rowe
for their useful comments and for valuable discussions.

REFERENCES
[1] A. V. Aho, J. D. Ullman, and M. Yannakakis, "Modeling com-

munications protocols by automata," in Proc. 20th Annu. Symp.
Foundations Comput. Sci., Oct. 29-31, 1979, pp. 267-273.

[2] P. Alsberg and J. Day, "A principle for resilient sharing of dis-
tributed resources," in Proc. 2nd Int. Conf. Software Eng., San
Francisco, CA, Oct. 1976.

[31 G. V. Bochmann, "Finite state description of communication
protocols," Comput. Networks, vol. 2, pp. 361-372, Oct. 1977.

[4] J. N. Gray, "Notes on database operating systems," in Operating
Systems: An Advanced Course. New York: Springer-Verlag,
1979.

[51 M. Hammer and D. Shipman, "Reliability mechanisms for SDD-1:
A system for distributed databases," ACM Trans. Database Syst.,
vol. 5, pp. 431-466, Dec. 1980.

[61 B. Lampson and H. Sturgis, "Crash recovery in a distributed
storage system," Comput. Sci. Lab., Xerox Parc, Palo Alto, CA,
Tech. Rep., 1976.

[71 B. G. Lindsay et al., "Notes on distributed databases," IBM Res.
Rep. RJ2571, July 1979.

[8] R. Lorie, "Physical integrity in a large segmented data base,"
ACM Trans. Database Syst., vol. 2, Mar. 1977.

[91 D. A. Menasce and R. R. Muntz, "Locking and deadlock detec-

227

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 3, MAY 1983

tion in distributed databases," IEEE Trans. Software Eng., vol.
SE-5, pp. 195-202, May 1979.

[10] P. M. Merlin, "A methodology for the design and implementation
of communication protocols," IEEE Trans. Commun., vol. COM-
24, pp. 614-621, 1976.

[10] J. B. Rothnie, Jr. and N. Goodman, "A survey of research and
development in distributed database management," in Proc. IEEE
3rd Int. Conf. Very Large Databases, 1977.

[11] D. Skeen, "Nonblocking commit protocols," presented at the
SIGMOD Int. Conf. Management of Data, Ann Arbor, MI, 1981.

[12] - "Crash recovery in a distributed database management sys-
tem," -Ph.D. dissertation, Dep. Elec. Eng. Comput. Sci., Univ.
Calif., Berkeley, 1982.

[13] M. Stonebraker, "Concurrency control and consistency of mul-
tiple copies in distributed INGRES," IEEE Trans. Software Eng.,
vol. SE-5, May 1979.

[14] R. Schapiro and R. Milistein, "Failure recovery in a distributed
database system," in Proc. 1978 COMPCON Conf., Sept. 1978.

[15] L. Svobodova, "Reliability issues in distributed information pro-

cessing systems," in Proc. 9th IEEE Fault Tolerant Comput.
Conf., Madison, WI, June 1979.

Dale Skeen was born in Concord, NC. He received the B.S. degree in
computer science from North Carolina State University, Raleigh, and
the Ph.D. degree in computer science from the University of California,
Berkeley, in 1982.
He is currently an Assistant Professor in the Department of Computer

Science, Cornell University, Ithaca, NY, a position he has held since
1981. His current research interests include distributed databases,
highly fault-tolerant distributed systems, parallel algorithms for CAD/
VLSI.
Dr. Skeen is a member of the Association for Computing Machinery,

the IEEE Computer Society, and Phi Kappa Phi.

Michael Stonebraker, photograph and biography unavailable at the time
of publication.

Dynamic Rematerialization: Processing Distributed
Queries Using Redundant Data

EUGENE WONG, FELLOW, IEEE

Abstract-In this paper an approach to processing distributed queries
that makes explicit use of redundant data is proposed. The basic idea is
to focus on the dynamics of materialization, defined as the collection
of data and partial results available for processing at any given time, as
query processing proceeds. In this framework the role of data redun-
dancy in maximizing parallelism and minimizing data movement is
clarified. What results is not only the discovery of new algorithms but
an improved framework for their evaluation.

Index Terms-Distributed databases, distributed query processing,
query processing.

I. INTRODUCTION
IN THIS PAPER we propose a new formulation for the

problem of processing queries in a distributed database sys-
tem; By such a system we mean a collection of autonomous
processors, communicating via a general, communication me-
dium, and accessing separate and possibly overlapping frag-
ments of a database. The user's view of data is to be an inte-
grated whole, both fragmentation and redundancy being

Manuscript received November 11, 1980; revised October 6, 1981.
This work was supported by the Corporate Computer Science Center,
Honeywell Corporation, the U.S. Army Research Offlce under Grant
DAAG29-79-C-0182, and the U.S. Air Force Offlce of Scientific Re-
search under Grant 78-3596.
The author is with, the Department of Electrical Engineering and

Computer Sciences and the Electronics Research Laboratory, Univer-
sity of California, Berkeley, CA 94720.

invisible. Geographical dispersion, although sometimes present,
is not an essential ingredient of such a system, and the range of
systems so encompassed includes not only the classical geo-
graphically distributed databases but also configurations that
are in effect database machines. The problem of distributed
execution of queries is common to all these systems.
In the query processing algorithm designed for the SDD-1

distributed database management system [6], an irredundant
subset of the database is used during the execution of any sin-
gle query. No effort was made to exploit the possible existence
of multiple copies either to maximize parallel operations or to
minimize data moves. A related and somewhat hidden charac-
teristic inherent in the SDD-1 algorithm is that parallel pro-
cessing is opportunistic rather than deliberate.
These characteristics were recognized in [2] where the em-

phasis fell heavily on maximizing parallelism. The algorithm
proposed there, and implemented for the distributed version
of INGRES, achieves a high degree of parallelism by partition-
ing one relation among the processing sites and replicating all
other needed relations at every site. We shall call this the FR
(fragment and replicate) algorithm. For a query referencing
many relations, the degree of data replication and the result-
ing communication cost to achieve this replication may be
prohibitive. Thus, the FR algorithm is best applied to pieces
of a many-variable query, one at a time, each with only two or
three variables. Experience of using the FR algorithm in the

0098/5589/83/0500-0228$01.00 C 1983 IEEE

228

