
Concurrency Control in a System
for Distributed Databases (SDD-1)

PHILIP A. BERNSTEIN, DAVID W. SHIPMAN, and JAMES 6. ROTHNIE, JR.

Computer Corporation of America

This paper presents the concurrency control strategy of SDD-1. SDD-1, a System for Distributed
Databases, is a prototype distributed database system being developed by Computer Corporation of
America. In SDD-1, portions of data distributed throughout a network may be replicated at multiple
sites. The SDD-1 concurrency control guarantees database consistency in the face of such distribution
and replication.

This paper is one of a series of companion papers on SDD-1[4,10,12,21].

Key Words and Phrases: distributed database system, concurrency control, serializability, time-
stamps, synchronization, conflict graph
CR Categories: 4.32,4.33

1. INTRODUCTION

SDD-1 is a prototype distributed database system being designed and imple-
mented at Computer Corporation of America. The system is designed to support
databases that can be physically distributed with arbitrary redundancy over a
network of hundreds of sites, while keeping data distribution and data redundancy
invisible to the user. A principal problem of implementing systems of this type is
maintaining the consistency of the database while concurrent user transactions
attempt to update it. The concurrency control mechanism that SDD-1 uses to
overcome this problem is the subject of this paper.

2. LITERATURE REVIEW

The concurrency control problem in database systems has been a major research
focus for some time. In centralized database management systems (DBMSs), the
conventional method to control concurrent update activity is two-phase locking
[9]. Two-phase locking requires that every transaction

Permission to copy without fee aII or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract NOOO39-77-C-0074, ARPA Order No. 3175-6. The views and conclusions
contained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the Advanced Research Projects
Agency or the U.S. Government.
Authors’ present addresses: P. A. Bernstein, Center for Research in Computing Technology, Aiken
Computation Laboratory, Harvard University, Cambridge, MA 02138, D. W. Shipman and J. B.
Rothnie, Jr., Computer Corporation of America, 575 Technology Square, Cambridge, MA 02139.
0 1960 ACM 0362-5915/60/0300-6018 $06.75

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980, Pages 19-51.

Concurrency Control in a System for Distributed Databases 19

(1) lock the data it reads and writes before it actually accesses them, and
(2) not obtain any new locks after it has released a lock.

Once a data item is locked, no other transaction may lock that data item until
the owner of that lock releases it. Research into locking-based concurrency
controls has analyzed deadlock problems, logical locks described by predicates
(instead of by data item names), granularity of locks, and efficient locking
algorithms [7, 9, 11, 13, 181.

Locking methods have also been proposed for distributed DBMSs. One tech-
nique, called primary-site, uses a central lock controller to manage the locks [l].
Alternatively, locks can be distributed with the data. In theprimary copy method,
a primary copy of each redundantly stored file is designated, and only the primary
copy is locked [23]. A centralized deadlock detector resolves distributed deadlock.
Locks are also distributed in the method of [19, 221, but distributed deadlock
detection is avoided by using timestamps to resolve locking conflicts. A method
that avoids locks entirely is the majority consensus algorithm, in which sites
“vote” on update requests to resolve conflicts [24]; however, the amount of
concurrency attained here is the same as locking [6]. Another method, which
uses timestamped versions, is described in [17]. A survey of distributed concur-
rency control methods appears in [3].

These distributed locking approaches are quite similar to centralized concur-
rency controls. However, these mechanisms do differ from centralized schemes in
one respect-the possibility of asynchronous failures of sites and communication
links while an update is in the midst of being processed. Many of the proposed
distributed concurrency controls have concentrated on this problem of failure
(e.g., [l, 15, 23, 241).

The concurrency control mechanism of SDD-1 differs from all of the above
mechanisms in at least one way. In SDD-1, information about how transactions
can conflict is preanalyzed before the transactions are submitted. This preanalysis
step determines the amount of run-time synchronization required; in many cases,
preanalysis shows that very little run-time synchronization is needed. Preanalysis
is the heart of the SDD-1 concurrency control and is the main topic of this paper.
Also, the run-time synchronization mechanisms of SDD-1, which differ consid-
erably from locking, are discussed. An early restricted version of the SDD-1
concurrency control appears in [5].

This paper is organized in 15 sections. We begin, in Section 3, with a review of
those aspects of SDD-1 architecture that impact concurrency control. Section 4
defines correctness for a concurrency control mechanism. Then, in Sections 5 and
6, we discuss two important techniques on which the SDD-1 concurrency control
is based: timestamps and transaction classes. Sections 7 through 10 develop the
preanalysis technique. An overview of the mathematics used in preanalysis has
been isolated in Section 9 and can be skipped without loss of continuity. Sections
11 and 13 describe implementation aspects of the mechanism, and Section 12
describes a special protocol for transactions that would otherwise induce tremen-
dous synchronization overhead. In Section 14 we discuss the reliability aspects of
the implementation. We conclude in Section 15 with a summary of the advantages
of our method.

The concepts and mechanisms of SDD-1 concurrency control are complex, and
ACM Transactions on Database System, Vol. 5, No. 1, March 1980.

20 * P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

therefore their correctness is not obvious. In a companion paper [4], we produce
a formal model of the concurrency control mechanism and prove that it does
indeed work correctly.

3. REVIEW OF SDD-1 ARCHITECTURE

The architecture of SDD-1 is described in [20,21]. We review here those aspects
of the architecture that are needed for understanding the concurrency control
mechanism.

A user of SDD-1 sees a conventional DBMS. The logical database is expressed
in a relational data model which from the viewpoint of the user’s transaction is
nonredundant and nondistributed. Issues that are consequences of physical data
distribution and redundancy are entirely handled by the system and are visible
to the user transaction only insofar as they affect performance. Transactions are
expressed as a program written in a semiprocedural data manipulation language
called Datalanguage [8].

Internally, SDD-1 consists of two types of modules, called transaction modules
(TMs) and data modules (DMs). Each site can contain either one or both types
of modules. DMs store physical data and behave much like conventional nondis-
tributed DBMSs. TMs are responsible for supervising the execution of user
transactions, translating from the user’s nondistributed view of the data to the
realities of its distribution and redundancy.

For purposes of concurrency control the important messages processed by DMs
are READ and WRITE messages. A READ message is a request by a TM to
read some of the data items stored at a DM and to store them in a local workspace
at that DM on behalf of some transaction. A WRITE message is sent by a TM to
a DM to report updates produced by a transaction which the TM supervised.
Each DM performs READS and WRITES as atomic operations. This means, for
example, that none of the data read by a READ message can be updated by any
WRITE during the time the READ is being processed.

The basic unit of user computation in SDD-1 is the transaction. A transaction
essentially corresponds to a program in a high-level host language with several
data manipulation language statements sprinkled within it. The execution of each
transaction is supervised by a TM and proceeds in three phases called read,
execute, and write.

In the read phase, SDD-1 analyzes the transaction to determine which portions
of the (logical) database it reads, called its read-set. Since the transaction is
coded in terms of the logical database, and since the physical database in general
has redundant copies of many logical data items, the TM must choose which
copies of the read-set will be read. It reads this copy of the read-set into a private
distributed workspace by sending READ messages to those DMs at which the
selected copies are stored. When all READ messages have been processed (i.e.,
when the TM has received positive acknowledgments from all the DMs), the read
phase is complete.

During the read phase a TM sends at most one READ message to each DM on
behalf of a single transaction. If, for example, a transaction reads data from two
data items that reside at the same DM, then only one READ message is issued
to read both data items.

During the execute phase the TM supervises the execution of the transaction.
ACM Transactions on Database Systems, Vol. 5. No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 21

This function of the TM is performed by the access planner and is described in
[lo, 251. Since the concurrency control mechanism in the read phase guarantees
that the physical read-set obtained by READ messages is internally consistent,
the transaction will produce correct output. The output of this phase is a list of
data items to be written into the database or displayed to the user. This output
list is produced in a workspace, not the permanent database. When the output
list is constructed and the transaction terminates, the execute phase is complete.

In the write phase, the output list produced by the transaction is broadcast to
the “relevant” DMs as WRITE messages. A DM is relevant if it contains a
physical copy of some logical data item that is referenced in (i.e., updated by) the
output list. So each update to a logical data item, say x, is sent to all DMs that
have a stored copy of x. Aspects of resiliency to failure are handled in this phase.

Since each transaction produces (at most) one output list, and since that output
list is sent to each relevant DM as a single WRITE message, all of a transaction’s
updates are performed atomically at each individual DM. Since each TM sends
at most one READ message to each DM on behalf of a single transaction, this
means that each READ message only reads data produced by complete trans-
actions. It is the job of the concurrency control mechanism to guarantee (among
other things) that READ messages which are sent on behalf of a single transaction
and which are processed at different DMs all read data produced by the same set
of complete transactions.

4. CONCURRENT CORRECTNESS

The system usually has many transactions in progress at any one time, both
because there are multiple TMs operating concurrently within the system and
because individual TMs are processing transactions concurrently. If the READS
and WRITES that implement these transactions were arbitrarily interleaved,
then serious problems of database consistency could result. The usual method of
avoiding these consistency problems is by guaranteeing that the execution of
transactions is serializable [9, 16, 191.

We say that an interleaved execution of a set of transactions is serializable if
it is “equivalent” to a history of operation in which each of the transactions runs
alone to completion before the next one begins. Two executions are equivalent if
in both executions each transaction produces the same output, thereby leading to
the same final state of the database. That is, an interleaved execution is,serializ-
able if it can be reproduced by a noninterleaved (i.e., serial) execution of the same
set of transactions. Note that serializability requires only that there exist some
serial order equivalent to the actual interleaved execution. There may in fact be
several such equivalent serial brderings.

The adoption of serializability as the criterion for concurrent correctness is
based on the assumption that each user transaction will preserve database
consistency if it runs atomically. That is, if only one transaction is allowed to
execute at a time, and if the database state is initially consistent, then after
executing a transaction the database state must still be consistent. So, a serial
ordering of transaction executions will, by induction, result in a consistent
database state. Since a serializable execution is equivalent to some serial one, a
serializable execution results in a consistent database state as well.

The issue of serializability arises because a system’s atomic actions are at a

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

22 * P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

finer granularity than its users’ atomic actions. In SDD-1, the users’ atomic
actions are transactions, while the system’s atomic actions are the execution of
READ and WRITE messages at the DMs. When a system allows the execution
of several transactions at the same time, then the system’s operations correspond-
ing to different transactions are interleaved. If the interleaving is not controlled,
there is no guarantee that the behavior of such a system conforms to the user’s
expectation that each transaction is processed as an indivisible computation.

For example, assume there is a single copy of data item x, which initially has
the value x = 0. There are two transactions in the system; transaction i sets
x := x + 1, and transaction j sets x := x + 2. The following sequence of events
occurs:

transaction i reads x = 0;
transaction j reads x = 0;
transaction j sets x := 2;
transaction i sets x := 1.

Any serial execution of the two transactions, one after the other, would have
resulted in setting x to 3. However, the result of this interleaved execution is to
set x to 1, contrary to the user’s intention. This execution history is not serializ-
able, since no serial processing of these transactions can produce the observed
effects.

To guarantee serializability in SDD-1, we apparently need to avoid undesirable
interleavings of READ and WRITE messages-those that lead to nonserializable
executions. We accomplish this goal using two mechanisms. First, we examine
each transaction to determine if it is conceivable that it could participate in a
nonserializable execution. As we will see, many transactions will never produce
READS and WRITES that interleave badly with other transactions, and hence
they can be run unsynchronized. Second, for those transactions that are deter-
mined to be dangerous because they can participate in nonserializable executions,
we synchronize their READ and WRITE messages using protocols that avoid
undesirable interleavings. These protocols are based on a timestamping mecha-
nism and are quite different from the locking protocols used in conventional
centralized DBMSs.

As we will see, most of the effort in distinguishing transactions that require no
synchronization from the dangerous ones is done statically when the database is
designed. When a transaction is actually submitted, a simple local table look-up
is sufficient to determine how much, if any, synchronization is required. The run-
time mechanism is the collection of protocols that must be invoked for those
transactions that do require synchronization.

Note that these two components of the concurrency control mechanism are
independent. Our technique for analyzing transactions to determine sources of
nonserializability could be used in conjunction with conventional locking proto-
cols. Or we could run all transactions using our timestamp-based protocols and
ignore the preanalysis step entirely, as in present systems that use locking without
preanalysis. Together the two mechanisms provide a powerful technique for
synchronizing concurrent transactions at low cost.

Before describing the heart of the system-the method for determining the
amount of synchronization required by each transaction and the protocols that

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 23

effect that synchronization-we must first describe two basic concepts that
underlie much of the concurrency control mechanism. These concepts, time-
stamps and transaction classes, are described in the next two sections.

5. TIMESTAMPS

Each transaction i executed by SDD-1 is assigned a globally unique timestamp,
denoted TSi, by its TM before READ messages are broadcast on its behalf.
Transaction timestamps serve a number of purposes for synchronizing READS
and WRITES. To generate globally unique timestamps, a TM reads its local clock
and appends its unique TM number as the low-order bits of the timestamps. By
requiring that once a clock is read it cannot be read again until it has been
incremented, we ensure that every timestamp is globally unique within the system
r241.

The clocks are actually maintained as part of the Reliable Network, the reliable
communications facility of SDD-1. By using the clock synchronization method
described in [14], the system behaves as if there were a single virtual clock
available to all sites.

One use of timestamps is in processing WRITE messages that arrive at a DM
out of order. The problem is that the WRITE messages sent by two transactions
that update the same logical data item may be processed in different orders at
different DMs, thereby producing mutually inconsistent copies of the data item.
One way to solve this problem is to attach the transaction’s timestamp to all of
its WRITE messages and then require that WRITE messages be processed in
timestamp order at all DMs. A better method that gives more flexibility to DMs
in the processing of WRITE messages uses timestamped data items and is
adopted in SDD-1 (this method was originally suggested in [24]).

A transaction’s timestamp is carried on all of its WRITE messages. In addition,
every physical data item at every DM has an associated timestamp. Note that
timestamps are attached to physical data items; there may be many physical
copies of a logical data item, and each one has its own attached timestamp. The
timestamp of a data item is the timestamp of the last WRITE message that
updated it. Each DM processes WRITE messages according to the following
WRITE message rule: A data item is updated by a WRITE message if and only
if the data item’s timestamp is less than the WRITE message’s timestamp.
(Recall that a WRITE message contains the final values of data items, not
computations to be performed on them.) So to process a data item in a WRITE
message, the DM compares the timestamp of the WRITE message with the
timestamp of its stored copy of the data item. If the timestamp of the WRITE
message exceeds the timestamp of the stored data item, then the new value of
the data item in the WRITE message is written into the stored data item along
with the new timestamp. Otherwise, the update is not performed on that stored
data item. This is a data item by data item check; some data items in the WRITE
message may result in update operations, while others may not.

Whenever a WRITE message for a recent transaction that updates some data
item is processed at a DM before a WRITE message for an earlier (i.e., older)
transaction that updates the same data item, the latter WRITE message will
contain a data item update that is not performed. Such a situation is not an error.
It is simply the way that the system reorders updates to occur in the same order

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

24 * P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

that their generating transactions executed. That is, the net effect of a set of
WRITE messages processed at a DM in arbitrary order is the same as the effect
of processing them in timestamp order without the WRITE message rule.

The principal advantage of using the WRITE message rule is that WRITE
messages can be processed as soon as they are received, thereby avoiding artificial
queuing delays at the DMs. However, since later WRITES may be processed
before earlier ones, a database copy may be temporarily inconsistent. As we will
see, the concurrency control never permits a transaction to read such an incon-
sistent state if this could lead to incorrect results.

Note that the WRITE message rule reorders updates into timestamp order
even if clocks in different TMs are not synchronized. All other timestamp-related
mechanisms in SDD-1 also operate correctly with unsynchronized clocks. For
reasons of efficiency, however, it is necessary to assume that clock values in
different TMs are reasonably close to each other.

A principal objection to timestamped data items is their cost. However, not all
timestamps actually need to be stored. If the timestamp of a data item is earlier
than the timestamp of any transaction whose WRITE messages have not yet
been processed, then the data item’s timestamp is effectively zero. Any WRITE
message that tries to update that data item will succeed, because the WRITE
message will have a later timestamp than the data item. So we need only maintain
the timestamps of recently updated data items. If a data item is not updated for
a while (say a few minutes), then its timestamp can be assumed to be zero and
therefore dropped. A caching mechanism for timestamps using differential files
has been designed for this purpose. Using this mechanism, we judge that the
overhead in maintaining timestamps will be small, since only a small portion of
the data items will require their timestamps to be stored in the cache at any
given time.

6. TRANSACTION CLASSES

A crucial aspect of the SDD-1 concurrency control mechanism is its ability to
distinguish between transactions that require synchronization and those that do
not. By examining the read-set and write-set of transactions, the system can
determine which transactions conflict with each other. Intuitively, two transac-
tions conflict if the read-set or write-set of one intersects the write-set of the
other. Such conflicts can lead to nonserializability under certain interleavings of
READS and WRITES. Such nonserializable interleavings are avoided in conven-
tional DBMSs by locking data items so that two conflicting transactions never
run concurrently. However, synchronizing all conflicting READS and WRITES
is more than what is required to guarantee serializability. By analyzing a graph-
theoretic representation of the transactions, called a conflict graph, the system
can isolate the dangerous conflicts that can potentially lead to nonserializability.
This analysis technique is described in detail later in the paper.

Unfortunately, analyzing the conflict graph at run-time for all executing trans-
actions is too time consuming. Also, since the transactions are distributed at run-
time, assembling a conflict graph would require too much communication. So we
transform this run-time analysis into a static analysis done only once at database
design time by capitalizing on the predictability of transaction types in the
following way.
ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 25

Relation Schema: INVENTORY (ITEM#, DESCRIPTION, PRICE,
QUANTITY)

Class 1
TM: TM1
read-set: INVENTORY [ITEM#, PRICE]
write-set: INVENTORY [PRICE]
comments: transactions that update prices

Class 2
TM: TM2
read-set: INVENTORY [ITEM#, QUANTITY]

WHERE (PRICE > $100)
write-set: INVENTORY [QUANTITY]
comments: transactions that update quantities of

high-priced items

Class 3
TM: TM2
read-set: INVENTORY [ITEM#, DESCRIPTION, PRICE]

WHERE (QUANTITY > 0)
write-set: user’s terminal
comments: transactions that display item information

about items currently in stock

Fig. 1. Class definitions using simple predicates.

When designing the database, the database administrator establishes a static
set of transaction classes. Formally, each transaction class is defined by a logical
read-set and write-set and is assigned to run at a particular TM. A transaction
fits in a class if the read-set and write-set of the transaction are contained
(respectively) in the read-set and write-set of the class. Clearly, a transaction can
fit in many classes. Read-set and write-set definitions are expressed using simple
restrictions,’ so that class membership can be checked quickly (see Figure 1).

Note that two classes at different TMs can have identical read-sets and write-
sets. However, it is important that they be distinguished as separate classes, and
that they be analyzed as separate classes during conflict graph analysis.

The conflict graph analysis is now done on the statically defined transaction
classes instead of on the transactions themselves. This analysis yields the type of
synchronization, if any, required for each class. At run-time, when a transaction
is submitted to a TM, the TM selects a class in which the transaction,fits and
applies the type of synchronization specified by the analysis for that class.

The utility of classes lies in the property that two transactions that run in
different classes conflict only jf their classes conflict.2 Hence, conflicts between
transactions can be determined by conflicts between classes. So an analysis of the
classes at database design time is sufficient to determine potentially dangerous
conflicts between transactions at run time. We believe that for many kinds of
applications, the most frequent determination will be that the class participates
in no dangerous conflicts and can therefore run with only local synchronization.

’ A simple restriction is a Boolean expression whose clauses are of the form (attribute) (rel-op)
(constant), where (rel-op) is =, #, <, >, etc.
*Of course, transactions within a class may also conflict. Section 7 shows how to synchronize
transactions within a class.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

26 - P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

Do Forever;
Wait for a transaction, T, to arrive;
Find a class, C, in which T fits;
If C cannot be processed locally

then forward 2’ to a site that can process C
else begin

look up the synchronization rules for class C,
send out appropriate READ messages on

behalf of T, synchronizing where necessary;
supervise the distributed execution of T;
send out WRITE messages on behalf of T
end

end

Fig. 2. How a TM processes a transaction.

For a set of class definitions to be feasible, it must cover all transactions that
might ever be submitted. It is not necessary that every TM have enough classes
to accept all possible transactions, since a TM can forward a transaction to some
other TM for execution. However, it is necessary that every possible transaction
fit in a class supported by some TM. A sketch of how a transaction is routed and
executed by TMs appears in Figure 2.

7. SYNCHRONIZING TRANSACTIONS WITHIN A CLASS

To ensure the serializability of transactions which execute in the same class, we
require that conflicting transactions within a class be executed in timestamp
order. To formalize this requirement, some notation is helpful. Let the processing
of a READ message on behalf of transaction i at DM, be denoted Rb.3 Similarly,
let the processing of a WRITE message on behalf of transaction i at DM, be
denoted Wz. Then we can express the requirement that transactions within a
class run serially as follows:

Class Pipelining Rule. For each DM,, for each class i, and for each pair of
transactions il and iz in i, if il reads some data item x at DM, and iZ writes into x
at DM,, then Ri is processed before Wi if and only if TSi, < TSk (i.e., il has an
earlier timestamp than i2).

The class pipelining rule is sufficient to guarantee that the transactions within
a single class are serializable. This follows from the fact that a serial execution of
the transactions in a class in timestamp order is equivalent to an execution that
obeys the class pipelining rule.

The class pipelining rule, although stated in terms of DMs, is actually enforced
by mechanisms at both TMs and DMs. For each class that a TM processes, the
messages from that class are sent to each DM in an order that is consistent with
the pipelining rule. The communications network (ARPANET, in our case)
guarantees that messages are received in the order that they were sent, for any
point-to-point communications channel. The DMs process messages within a
class in the order in which they are received, thereby enforcing the pipelining
rule.

3 We use lowercase Greek letters to denote DMs. We use lowercase Roman letters i, j, k, . . . to denote
transactions. We denote the class in which transaction i executes by i.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 27

8. INTERCLASS INTERFERENCE

8.1 An Example of Safe Interference

We say that a set of transactions interferes if the system allows the transactions
to be interleaved in a nonserializable manner. Given the class pipelining rule, we
need not be concerned with interference among transactions in the same class.
The problem now is to avoid interference among transactions in different classes.
A critical aspect of our solution to this problem is isolating those cases where
transactions in different classes never interfere with each other. This requires
some subtlety, for even when transactions read and write the same data items,
they may not interfere, as illustrated by the following simple example.

Suppose we run two transactions, say i and j, in two different classes, i and j.
Transaction i first finds the EMPLOYEE record whose NAME domain has the
value “JAMES BOND,” and then writes a new value into the PHONE# domain
of that record. Transaction j finds the EMPLOYEE record whose SOC-SEC#
domain is 007 (which is JAMES BOND’s SOC-SEC#) and writes a new value
into the PHONE# domain of that record, different from the PHONE# written
by i. Naturally, the final value of JAMES BOND’s PHONE#, after both trans-
actions execute, is dependent on the order in which their write operations were
processed. However, no matter how their read and write operations are inter-
leaved, the execution will be serializable. The transactions wilI always appear to
have executed serially with the order of their writes determining the order of the
transactions in the serialization; the first transaction that writes JAMES BOND’s
PHONE# appears first in the serialization. Therefore, even though the transac-
tions have overlapping write-sets-a situation that conventionally requires lock-
ing-no synchronization is necessary.

To exploit situations where no synchronization is required, we must determine
if unsafe patterns of interleaved reads and writes are possible. This determination
is accomplished by analyzing conflicts between transaction classes. For example,
an analysis of classes i and j above would show that all patterns of interleaved
reads and writes are serializable. This analysis is performed on a graph-theoretic
representation of transaction conflicts and is the subject of the next section.

8.2 Conflict Graphs

As we observed in Section 6, two transactions from different classes conflict only
if their classes conflict. To formalize this, we say that WRITE message WL
conflicts with a READ message R’, iff transaction i’s write-set intersects trans-
action j’s read-set. A WRITE message Wb conflicts with another WRITE message
Wd iff transaction i’s write-set intersects transaction j’s write-set. It follows that if
Rh conflicts with Wh, then the read-set of class i intersects the write-set of class
j. By examining class conflicts, we can predict potential transaction conflicts,
which are a primary component of the serializability problem. It will turn out
that this examination of class conflict will lead us to our goal-a method for
determining the amount of synchronization required by each transaction.

The method begins with the construction of a conflict graph (see Figure 3). In
the graph, each class, say i, is modeled by two nodes labeled r’ and wi. For each
class i an edge (ri, wi), called a vertical edge, is drawn [Figure 3(a)]. When the

ACM Transactions on Database System, Vol. 5, NO. 1, March 1980.

28 - P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

(b)

Fig. 3. Conflict graph edges. (a) A vertical edge ia drawn between
every (ri, w’) pair. (b) A horizontal edge is drawn between a

(w’, WI) pair iff the write-sets of i and j intersect. (c) A diagonal
edge ia drawn between an (ri, w’) pair iff the read-set of i

intersects the write-set of j.

write-sets of two classes, say i and j, intersect, then an edge (wit wj), called a
horizontal edge, is drawn [Figure 3(b)]. Similarly, if the read-set of one class (say
i), intersects the write-set of another class (say j), then an edge (ri, w’), called a
diagonal edge, is drawn [Figure 3(c)].

For a given set of classes, C, we denote the conflict graph for C by CGc. A
sample conflict graph appears in Figure 4.

We will use the conflict graph to help us predict the amount of synchronization
required by each transaction class. The connection between synchronization
protocols and conflict graphs is developed in Section 9. Since this development is
lengthy and may not be of interest to all readers, we summarize the principal
results of Section 9 in Section 10. Hence, if desired, Section 9 can be skipped
without loss of continuity.

9. CONFLICT GRAPH ANALYSIS

9.1 Serializing Logs

Depending on the order in which READ and WRITE messages are processed by
the system, an interleaved execution of transactions may or may not be serializ-
able. To understand which message orderings are serializable, we need a notation
that models these orderings. In our notation we represent the ordered processing
of READ and WRITE messages at a DM by a log. A log is simply a string of R’s
and W’s that have the same DM subscript. For example, R~W~W~R~W~R~ is a
log describing the order in which READ and WRITE messages were processed
at DM,. When we say, for example, that RL precedeswid (in DM,‘s log), we mean
that Ri was processed before Wd at DM,.

A log is a complete representation of the computations performed on the
ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 29

Fig. 4. A sample conflict graph.

database at a DM. If we were to be given the list of data items read by each
READ message and written by each WRITE message, as well as the timestamps
of transactions (so that we could correctly apply the WRITE message rule), then
we would be able to reproduce the computation that was actually performed at
the DM. So an “interleaved execution of transactions” in SDD-1 is modeled by
a “collection of DM logs, one per DM.” We therefore use these two terms
interchangeably.

Suppose we are given an interleaved execution of N transactions, represented
by a set of DM logs. Which of the N! possible serializations of the transactions is
an equivalent serialization of the given logs? A serialization is equivalent to the
given logs if that serial execution of the transactions on a nondistributed,
nonredundant database (represented by the serialization) produces the same
computation as the interleaved execution on the distributed, redundant database
(represented by the DM logs). It is a theorem that if each transaction reads
from a database that has had exactly the same write operations applied to it in
the serialization as were applied to it in the given interleaved execution, then
each transaction will perform the same computation in the serialization as it
did in the given interleaved execution [16]. We can guarantee this condition by
requiring that the serialization satisfy the following three rules. For each i, j, and
DM,:

(1) If WL precedes and conflicts with R’,, then i must precede j in the serialization.
(2) If R$ precedes and conflicts with Wa, then j must precede i in the serialization.
(3) If Wh conflicts with Wi, then i and j must appear in the serialization in their

timestamp order.

If the serialization obeys rules (1) and (2), then write operations in the
serialization precede exactly the same read operations as they did in the given
interleaved execution. However, this is not the same as saying that each trans-
action reads from a database.that has had exactly the same write operations
applied to it in the serialization as were applied to it in the given execution. The
reason is that owing to the WRITE message rule, the order in which WRITE
messages are processed is not the same as the effective order in which the write
operations are applied to the database; indeed, some write operations are not
applied at all. To understand this distinction is to understand the need for
rule (3).

In the logs, the WRITE message rule prevents certain write operations from
being applied; this occurs when a WRITE message with an early timestamp
arrives after a WRITE message with a later timestamp and both WRITE

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

30 * P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

messages write into a common data item. The WRITE message rule is an artifact
of the distributed execution of SDD-1 and would not have been applied if the
transaction were executed serially on a nondistributed, nonredundant database.
In essence, this means that the serialization must produce the same computation
without the WRITE message rule that the given logs produced with the WRITE
message rule. Rules (1) and (2) alone are not strong enough to make this
guarantee.

For example, suppose the log for DM, contains the subsequence WLW’,Rk
where j has an earlier timestamp than i and the three messages either write or
read only data item 3~. The WRITE message rule prevents Wd from overwriting
x, so Rk reads x from WL. We want the same relative ordering ofR! and WL to
appear in the serialization. So transaction j must either precede transaction i or
follow transaction k in the serialization. However, the serialization [i, j, k] would
be permitted by the rules (1) and (2) alone; this is incorrect because transaction
k would read x from j (not i) in this serialization.

Rule (3) guarantees that write operations in the serialization are applied in the
same relative order as they are applied in the given logs. It “factors out” the
WRITE message rule from the serialization by requiring the write operations to
appear in the order in which they were effectively applied, rather than the order
in which they were processed.

By developing rules (l)-(3), we have related the order of conflicting READ
and WRITE messages in DM logs to the order of transactions in serializations.
As we know, not all interleaved executions are serializable. So, as we would
expect, there are DM logs that have no serialization obeying rules (l)-(3). In
principle, we could schedule READ and WRITE messages by continually check-
ing rules (l)-(3) at run time so that the order in which READ and WRITE
messages are processed can always be serialized. However this would be very
costly in computation time and communication traffic. Instead, we use the conflict
graph model of transaction conflicts to guide us in synchronizing READ and
WRITE messages so that a serialization obeying rules (l)-(3) is always possible.

The conflict graph is used to determine potentially nonserializable executions
of conflicting transactions. Diagonal and horizontal edges can be used to deter-
mine if READ and WRITE messages may conflict, leading to the following
extension of rules (l)-(3). For each i (in i), j (in j), and DM,:

(1’) If (wi, r’) is a diagonal edge of CG and Wb precedes Rd in DM,‘s log, then i
must precede j in any serialization.

(2’) If (ri, w’) is a diagonal edge of CG and RL precedes Wi in DM,‘s log, then i
must precede j in any serialization.

(3’) If (wi, wj) is a horizontal edge of CG, then i and j must appear in the
serialization in their timestamp order.

Since two transactions conflict only if their classes conflict, any serialization
that satisfies rules (l’)-(3’) will satisfy rules (l)-(3) as well. The advantage to
using rules (l’)-(3’) in place of rules (l)-(3) is that the former are stated entirely
in terms of class conflicts, which are known in advance.

In SDD-1 there is always a serialization of the executed transactions that
satisfies rules (1’)~(3’). The mechanisms that are used to guarantee that such a
serialization always exists are called protocols.
ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases . 31

9.2 Protocol Pl and the Acyclicity Theorem

To understand why we need protocols, let us consider a system consisting of two
classes, say i and j, such that only one transaction is processed in each class, say
transactions i and j. Under what conditions will these two transactions be
serializable? If there are no horizontal or diagonal edges connecting i and j in the
conflict graph, then rules (l’)-(3’) are trivially satisfied. In this case i and j are
serializable; in fact, either serialization will do. What if i and j are connected by
some edge?

If (wi, wj) appears in CG, and if Wl and Wi are processed (for some DM,),
then according to rule (3’) i and j must be serialized in timestamp order. If this is
the only edge connecting i and j, then the transactions are surely serializable. For
example, suppose TSi < TSj; then no matter how many DMs process WRITE
messages from both transactions, each DM will apply the WRITE message rule,
thereby making it look as if i was processed before j. Therefore, applying rule (3’)
at all DMs will yield the same requirement that i and j be serialized in the same
timestamp order. The only way we could get into trouble is if one DM believes i
should precede j in the serialization while another believes j should precede i-a
clear impossibility using rule (3’). So if (wi, w’) is the only edge connecting i and
j, we are safe.

If (ri, wj) appears in CG, then we have a potential problem. Suppose Wj,
precedes and conflicts with Ra and Rk precedes and conflicts with Wg. Rule (1’)
applied at DM, says that j should precede i, while rule (2’) applied at DMB says
that i should precede j. Since both cannot be simultaneously satisfied, we have a
nonserializable interleaving. Apparently, we must introduce some synchronization
mechanism to avoid this problem produced by the diagonal edge.

Protocol Pl is the mechanism used to synchronize diagonal edge conflicts. The
effect of running transaction i under protocol Pl against transaction j is that the
relative ordering of READ messages from i and WRITE messages from j are the
same at all DMs where both appear and conflict. If for every diagonal edge
(ri, wj), transaction i in i obeyed Pl against j in j, and if each class ran only a
single transaction (and then became permanently inactive), then the nonserial-
izable situation due to the opposite serializations consistent with rules (1’) and
(2’) could not occur.

However, this effect of Pl is insufficient to synchronize a diagonal edge when
multiple transactions run in each class. To illustrate the potential problem,
suppose i and i’ run in class i, j and j’ run in class j, and (ri, w’) is in the conflict
graph. Consider an execution history in which

(a) Wb precedes Rb at DM,;
(b) Rg precedes Wi at DM,;
(c) TSi < TS?, and W\ and WY execute at DM,;
(d) TSj,, < TSj, and WA and WJ’ execute at DMs.

These four properties of the execution tell us that in any serialization j must
precede i (by property (a) and rule (l’)), i must precede i’ (by property (c) and
rule (3’)), i’ must precede j’ (by property (b) and rule (2’)), and j’ must precede j
(by property (d) and rule (3’)). However, this implies that j both precedes and
follows j’ in the seriaIiza6on which is an impossibility.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

32 - P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

To avoid nonserializable executions due to a diagonal edge when many trans-
actions run in each class, we use the following definition of Pl. Transactions in
i obey protocol PI with respect to transactions in j if for any i, i’ in i, and j, j’ in
j, whenever Wl precedes and conflicts with Rb at DM,, and R$ precedes and
conflicts with W$ at DMp, and either TSi < T&, or i = i’, then TSj < TSj,. We
require that if (ri, wj) is an edge in CG, then transactions in i must obey Pl with
respect to transactions in j. This is sufficient to prevent rules (1’) and (2’) from
ever leading to opposite serializations of transactions in i and j, even when
multiple transactions execute in each class [4].

The above observations regarding single edge conflicts between two classes
generalize directly to paths of conflicts. Suppose there is a single edge conflict
between i and k, and another one between k and j. Assume again that one
transaction runs in each class, say i, j, and k. Rules (l’)-(3’) only restrict the
order of serialization between pairs of conflicting transactions. They will either
require that i and j have a defined relative ordering (i.e., either i precedes k and
k precedes j, or i follows k and k follows j) or that they have no special required
order (i.e., either i precedes k and j precedes k, or i follows k and j follows k). In
either case the three transactions are serializable.

The only way the transactions might not be serializable is if there were two
differentpaths from i to j. Then one path could lead to i preceding j according to
rules (l’)-(3’), while the other path could lead to i following j. If this occurred,
then the execution would be nonserializable. But note that it can only occur if
there are two distinct paths. Two distinct paths that link i to j constitute a cycle.
So as long as there are no cycles in the conflict graph and each class runs one
transaction, Pl is sufficient to guarantee serializability.

The class pipelining rule guarantees that transactions within a single class are
serializable. So the above statement about acyclic conflict graphs generalizes to
the case of multiple transactions per class. (A proof of this fact is nontrivial and
appears in [4].)

Our observations in this section can now be stated more formally as follows:

Acyclicity Theorem. For a given set of transaction classes C, if

(1) CGc has no cycles,
(2) all classes in C obey the class pipelining rule, and
(3) for each diagonal edge (ri, w’) in CGc, transactions in i obey Pl with respect

to transactions in j,

then all possible interleaving; of transactions in classes in C are serializable.
To make the acyclicity theorem effective, we need to demonstrate an imple-

mentation for Pl. This we will do in Section 11. First, however, we will show how
to synchronize nonserializable situations caused by cycles.

9.3 Cycles, P3, and the Serializability Theorem

We have shown that if no cycles exist in the conflict graph and if Pl is properly
applied, then all possible interleaved executions of transactions are serializable.
We have also observed that cycles in the conflict graph can cause a nonserializable
ACM lhnsactiom on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 33

ri

I24

r j

wi w j

(a)

log for DM,: R, Ri W h W i

(b)

Fig. 5. A nonserializable execution caused by a cycle. Classes i and j
have data item x in their read-sets and write-sets. (a) The conflict graph.

(b) A nonserializable log of transactions from classes i and j.

execution. If two distinct paths exist between two classes i and j, then the paths
may lead to opposite serializations of transactions i in i and j in j according to
rules (l’)-(3’)-a nonserializable situation. To eliminate this possibility, we
introduce a protocol that forces any two paths between i and j to always lead to
the same relative ordering of i and j in all serializations. To illustrate the problem
and the protocol that solves it, let us consider another example.

This time suppose that the database has one data item x stored at DM,. Classes
i and j both read from and write into X; for example, they both run transactions
that increment x. The conflict. graph of these classes contains two distinct edge?,
(ri, wj) and (wi, r’), connecting i and j. These two edges together with (ri, w’)
and (rj, w’) constitute a cycle (see Figure 5). The problem is that the diagonal
edges may force opposite serializations of transactions in i and j.

Consider, for instance, transactions i in i and j in j which execute their READ
and WRITE messages in the following order: RbRdWh Wd (cf. example in Section
4). Notice that Pl is trivially obeyed. Since RL precedes and conflicts with Wi ,
rule (2’) implies that i must be serialized before j. SinceR’, precedes and conflicts
with Wb, the same rule implies that j must be serialized before i. Since both
cannot be simultaneously satisfied, the execution is nonserializable. This occurs
because the edges between i and j lead to opposite serializations.

Protocol P3 prevents executions such as this one by making the following
guarantee: If two transactions belong to two classes connected by a diagonal
edge in a cycle, then the timestamp order of the two transactions is the same as
the relative ordering dictated by rules (1’) or (2’) applied to the messages that
correspond to the edge. Before examining how P3 accomplishes this task, let us
first see how P3 corrects the above example.

Since (r’,wj), (wj, lj), (rj, wi), (wi, r’) comprise a cycle, P3 applies to transac-
tions i and j. Suppose the timestamp of i is smaller than the timestamp of j. We
have observed that rule (2’) requires that i be serialized before j because RL
precedes Wd, and that j be serialized before i because Ra precedes W b. But the
latter requirement violates P3. Since (rj, w’) is in a cycle, protocol P3 implies

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

34 - P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

that rule (2’) applied to Rh and Wk must lead to the serialization of i and j in
timestamp order. However, the opposite occurs. What P3 must do, therefore, is
make sure that WL precedes Ri. Then both edges will lead to the serialization of
i and j in timestamp order, and the nonserializability problem goes away.

Formally we define protocol P3 as follows. Transactions in i obey protocol P3
with respect to transactions in j if for each i in i, j in j, and each DM, at which
Rk and Wh both appear and conflict, Rs and W’, are processed in timestamp
order. We require that for each diagonal edge (ri, w’) in a cycle, transactions in
i must obey P3 with respect to transactions in j.

Protocol P3 synchronizes multiclass cycles as well as the simple two-class cycle
just illustrated. In a cycle consisting of several diagonal and horizontal edges, P3
requires that each conflict due to a diagonal edge lead to the pair of transactions
being serialized in timestamp order. Rule (3’) makes the very same requirement
for horizontal edges. So insofar as this cycle is concerned, if rules (l’)-(3’) say
anything about the relative ordering of two transactions whose classes are on the
cycle, then the requirement must be that the transactions be serialized in
timestamp order. Since there is only one timestamp ordering of transactions,
conflicting serialization orderings are impossible. Generalizing this observation
for the case of multiple transactions per class as we did for the acyclic&y theorem
leads to the correctness theorem for the SDD-1 concurrency control [4].

Serializability Theorem. For a given set of transaction classes C, if

(1) all classes in C obey the class pipelining rule, and
(2) for each diagonal edge (ri, wj) in CGc, transactions in i obey Pl with respect

to transactions in j, and
(3) for each diagonal edge (ri, wj) in a cycle in CGc, transactions in i obey P3

with respect to transactions in j,

then all possible interleavings of transactions in classes in C are serializable.

9.4 P2: A Faster Protocol for Read-Only Transactions

While P3 is sufficient for synchronizing all diagonal edges in a cycle, we can do
somewhat better with those transactions that intersect the cycle only with their
r-nodes. These read-only transactions contribute to nonserializability only be-
cause they may observe certain WRITE messages being processed in reverse
timestamp order.“ Protocol P2 is a weaker version of P3 that prevents this
situation and thereby provides a less expensive alternative for synchronizing such
transactions.

Let us begin by taking a slightly different view of P3. Suppose transactions i
and j execute in classes i and j (respectively) and that i and j lie on a cycle. P3
attains serializability by guaranteeing that i and j can be serialized in timestamp
order. It accomplishes this by requiring that for each diagonal edge in the cycle,
the READ and WRITE messages corresponding to the edge’s endpoints are
processed in timestamp order. In essence, each diagonal edge in the cycle is
individually synchronized. However, we can relax the synchronization require-
ments somewhat, synchronizing certain pairs of edges as a unit.

4 Strictly speaking, these transactions need not be read-only. It is just that their write operations, if
they have any, do not participate in a conflict graph cycle.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 35

To illustrate, suppose the edges (wj, r’) and (ri, wk) lie on a cycle. Since j and
k are also connected by some other path, we must ensure that executions of reads
and writes corresponding to this two-edge path are consistent with serializing
transactions in j and k in timestamp order. This two-edge path will prevent a
timestamp ordered serialization only if transaction i observes WRITE messages
from j and k in reverse timestamp order. For example, suppose TSj < TSk. IfRb
precedes and conflicts with Wh and Ra follows and conflicts with Wi, then from
i’s viewpoint and according to rules (1’) and (2’), k must be serialized before i,
which must be serialized before j. If either Rk had followed Wj, or Ri had
preceded Ws, j and k could have been serialized in timestamp order. Protocol P2
is designed to make precisely this guarantee, without requiring that the edge be
synchronized as strongly as by P3.

Transactions in i obey protocol P2 with respect to transactions in j and k if
for any i in i, j in j, k in k, and for any (Y

(1) if Rb precedes and conflicts with Wd and TSk > TSj, then Rb precedes Wi at
every DM, where they both appear and conflict, and

(2) if Rh follows and conflicts with Wd and TSj > TSk, then Rh follows Wi at
every DMB where they both appear and conflict.

That is, if TSj < TSk, then transaction i observes a WRITE message from
transaction k only if it has observed all WRITE messages from transaction j, and
conversely if TSk < TSj. Protocol P2 prevents i from observing a WRITE message
from the later transaction unless it has observed all WRITE messages from the
earlier one.

Protocol P2 is strictly weaker than P3 in that if i obeys P3 with respect to j and
k, then it obeys P2 with respect to j and k (but not conversely). Yet we can use
it correctly for synchronizing classes which only intersect cycles with their
r-nodes. Stated precisely, if [(w’, r’), (ri, wk)] is a subpath of a cycle, and if we
require that transactions in i obey P2 with respect to transactions in j and k,
then we need not synchronize these two diagonal edges using P3. That is, if we
use P2 to synchronize edge combinations [(wj, ri), (ri, wk)] in cycles and use P3
to synchronize all other diagonal edges in cycles, then the serializability theorem
in the last section still holds.

10. A SUMMARY OF THE PROTOCOL SELECTION RULES

In Section 9 we have described the three basic protocols for synchronizing
transactions and the conflict graph topologies that require the use of the protocols.
While the analysis that leads to the protocols is somewhat complex, the rules for
selecting the protocols are not. It is these protocol selection rules that completely
govern the concurrency control mechanism of SDD-1. We present these rules
here in order to summarize and encapsulate the results of Section 9 and to
incorporate a few more details to make the statement of the rules precise.

First, let us restate each of the three protocols.

Protocol Pl. Transactions in i obey protocol Pl with respect to transactions in
j if for any i, i’ in i and j, j’ in j, whenever Wi precedes Rh at DM,, and Rg
precedes WL at DMB, and either TSi c TSi,, or i = i’, then TSj < TSj*.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

36 l P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

(a) (b)

(d

Fig. 6. Protocol selection rules. (a) Transactions in i must obey PI with respect to
transactions in j. (b) Transactions in i must obey P2 with respect to transactions in j

and k. (c) Transactions in i must obey P3 with respect to transactions in j.

Protocol P2. Transactions in i obey protocol P2 with respect to transactions in
j and k if for any i in i, j in j, k in k, and any DMa

(1) if Ri is processed before and conflicts with Wd and TSk > TSj, then Rb is
processed before Wi at every DMB where they both appear and conflict, and

(2) if Rb is processed after and conflicts with W$ and T& < TSj, then Rb is
processed after Wi at every DMB where they both appear and conflict.

Protocol P3. Transactions in i obey protocol P3 with respect to transactions in
j if for each i in i, j in j, and each DM, at which Ra and Wh both appear and
conflict, RL and Wl, are processed in timestamp order.

Briefly, these protocols serve the following purposes:

Pl Prevents READ messages from one transaction that conflict with WRITE
messages from another transaction from being processed in different relative
orders at different DMs.

P2 Prevents a READ message from seeing WRITE messages from two other
transactions in reverse timestamp order.

P3 Prevents two transactions that read each other’s output from both reading
before either writes, i.e., prevents a classical race condition.

The protocol selection rules state which protocols should be invoked by which
transactions. They are as follows.

I. For all classes in i and j such that (ri, w’) is in the conflict graph, transactions
in i must obey protocol Pl with respect to transactions in j [see Figure 6(a)].

II. For each cycle in the conflict graph the following hold:
(a) for all distinct classes i, j, k, if edges (ri, w’) and (r’, wk) lie on the cycle,

then transactions in i must obey P2 with respect to transactions in j and
k [see Figure 6(b)]; and

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 37

(b) for all distinct classes i and j such that (ri, w’) and (ri, w’) lie on the
cycle, then transactions in i must obey P3 with respect to transactions in
j [see Figure 6(c)].

The protocol selection rules are easily transformed into an algorithm that
analyzes the conflict graph and produces the protocols that each class must obey.
However, the definitions of the protocols are not algorithmic. To make the
protocols effective, we now show how TMs and DMs can enforce the relative
orderings of READ and WRITE messages required by the protocols.

11. IMPLEMENTING THE PROTOCOLS

11 .l Implementing Protocol Pl

Each protocol demands that certain relative orderings of READ and WRITE
messages be obeyed. These orderings are enforced by synchronization information
that is carried entirely by the READ messages from i in the form of read
conditions.

A read condition is attached to a READ message and specifies which WRITE
messages from certain other classes must be processed before the READ message
can be correctly processed. The read condition includes a timestamp, say TS, and
one or more classes, say {ji, . . . , j,}. The DM can only process the READ
message when the attached read condition is satisfied. Read condition (TS, (jl,
. , , , j,}) is satisfied when all WRITE messages from classes {jl, . . . , j,} with
timestamps earlier than TS have been processed and no WRITE messages from
classes {jl, . . . , j,} with timestamps later than TS have been processed. Then
the READ message can be processed. If a READ message contains multiple read
conditions, then all of them must be simultaneously satisfied when the DM
processes the READ.

Before discussing the implementation of read conditions at DMs, let us first
show how read conditions implement protocol Pl. Suppose transactions in i must
obey Pl with respect to transactions in j. To process a transaction i in i, we select
a timestamp TS! (not necessarily equal to the transaction’s timestamp) and
require that the read condition (TSI, (j)) be attached to each READ message
sent on behalf of i to each DM at which conflicting WRITE messages from j are
processed. In addition, we require that for any il, iZ in i, if ii has an earlier
timestamp than iz, TSI, for i, must be earlier than TS/, for iZ.

To see why this implementation is correct, recall the definition of Pl: Trans-
actions in i obey Pl withrespect to transactions in j if for any i,, iz in i, and ji, j,
in j, whenever (1) W$ precedes and conflicts withR2 at DM,, and (2) R$ precedes
and conflicts with W$ at DMB, and (3) either TSi, < TSi, or ii = iz, then
TSj, < TSj,. So, suppose we have ii, iZ, ji, and j, satisfying (l), (2), and (3). Let
TS;, and TSiZ be the timestamps used on read conditions for ii and iZ. By (1) and
read condition (TSI,, {j)) attached to R& we have TSj, < TSI,. By (3) and the
implementation of Pl, we have TS!, 5 TSG2. By (2) and read condition (TSL,
{j}), we have TS[* < TSj,. So by transitivity, TSj, < TSj, as desired.

To effectively implement read conditions, we need a mechanism that allows a
DM to determine when it has received all WRITE messages with timestamps
earlier than some TS from a specified set of classes and none with later time-
stamps from these classes. The mechanism we use is called WRITE pipelining.

ACM Transactions on Database Systems, Vol. 5, No. I, March 1980.

38 * P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

WRITE pipelining requires that WRITE messages from each class must be
processed in timestamp order at all DMs. That is, for each class i, for each DM,,
and for any pair of transactions i1 and is in i, Wi is processed before Wk at DM,
only if TSi, < TSi,. WRITE pipelining can be implemented in the same way as
the class pipelining rule (cf. Section 7); each class sends its WRITE messages to
all DMs in timestamp order, the network ensures messages are received in the
order sent, and DMs process messages from each class in the order in which they
were received.

Given that WRITE pipelining is used, a DM can determine when a read
condition (TS, {j}) is satisfied. Since WRITE messages from any given class are
processed in timestamp order at every DM, as soon as the DM receives a WRITE
message timestamped later than TS, it knows it must hold it and process the
READ message first. Of course, if a WRITE message from j with timestamp later
than TS has been processed before the read condition is received, then the read
condition cannot be satisfied without backing out the WRITE message. In
SDD-1, no WRITE message is backed out for concurrency control reasons. So in
this case the READ message would have to be rejected, and the originating class
must resubmit it with a later timestamp. Notice that all READ messages on
behalf of transaction i have to be resubmitted with a new transaction timestamp,
since their read conditions are now obsolete. WRITE messages from the resub-
mitted transaction carry the new timestamp.

There is some danger that a transaction may be continually rejected. This can
be avoided by choosing a timestamp for the resubmitted transaction such that
the difference between the transaction timestamp and that of the previously
submitted transaction grows with each resubmission. Eventually, the READ
messages for the transaction will be received at all DMs before any earlier
timestamped WRITE messages from conflicting classes. Since a DM never
processes a WRITE message which would force the rejection of an already
received READ message, the transaction will not be rejected in this case. In
practice, however, choosing transaction timestamps equal to the local clock times
will keep the number of rejections very small, as long as clocks at different sites
are reasonably well synchronized.

An important optimization is used when transactions in i only conflict with
transactions in j at one DM, say DM,. In this case we avoid read conditions
entirely by using READpipelining: READ messages from i to DM, are processed
in order of transaction timestamps. That is, if ii has an earlier timestamp than is,
then R: is processed before Ri. The implementation of READ pipelining is
exactly analogous to WRITE pipelining. If transactions in i use READ pipelining
at DM, and transactions in j use WRITE pipelining at DM,, then Pl of i with
respect to j is obeyed. To see this, suppose Wj,l precedes and conflicts with
R$, R$ precedes and conflicts with W$, and TSi, < TSi,. By READ pipelining,
R$ is processed before R? and, hence, Wi is processed before Wt. Now, by
WRITE pipelining, we have TSj, < TSj,, thereby satisfying Pl. We expect that
most diagonal edges will correspond to single DM conflicts, SO this optimization
will usually apply.

When read conditions are used, a problem arises when class j is idle because it
has no transactions to process. In this case the DM will wait for a long time until
a WRITE message timestamped later than TS arrives. One way to solve this
ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 39

Fig. 7. A conflict graph illustrating PI

problem is to have idle classes periodically send NULLWRITE messages.5 A
NULLWRITE message specifies the originating class and a timestamp and is
interpreted as an empty WRITE message from that class with that timestamp.
When a DM receives such a NULLWRITE message, it can be sure that it has
received all WRITE messages from the indicated class through the given time-
stamp. If a DM chooses not to wait passively for a WRITE or NULLWRITE
message from j, it can request a NULLWRITE by sending a SENDNULL
message to j.

The choice of timestamps for read conditions and the rate at which NULL-
WRITES are sent are important tuning parameters to avoid the frequent use of
SENDNULLs. In addition, the choice of timestamp for read conditions a affect

how long a READ message has to wait for conflicting WRITE messages to be
processed. Essentially, the timestamp should be as small as possible without
actually forcing the read condition to be rejected.

To illustrate the operation of protocol Pl, let us consider a database that
consists of two data items, x and y, where x is stored at DM, and y is stored at
DMB. Class j writes both x and y, and class i reads both x and y. For definiteness,
suppose class i runs at TMi and j runs at TMj. The conflict graph for this situation
is shown in Figure 7. The edge (ri, w’) implies transactions in i must obey Pl
with respect to transactions in j.

For TMi to process a transaction, say i, it must send READ messages Rh to
DM, and Rb to DMB. By Pl, both messages must have a read condition (TSf,
{j}) attached. DM, will not process Rk to read x until it has received (but not
processed) a WRITE message or a NULLWRITE for TM1 on behalf of j with
timestamp later than TS. DMB will behave the same way. SoRb will wait for (i.e.,
will be processed after) WRITE messages from the same set of transactions in j
as Rb wiIl wait for. Hence, for each j in j, rules (1’) and (2’) will require the same
serialization order for i and j at both DM, and DMB, and the result will be
serializable. The nonserializable situation of Rh preceding Wj, but Rb following
Wb cannot occur.

11.2 Implementing Protocol P3

The same read condition mechanism that we described for implementing Pl is
sufficient for implementing P3 as well. For transaction i to obey P3 with respect
to transactions j at DM,, Rb must be processed after all Wi with earlier
timestamps and before all Wh with later timestamps. Attaching the read condition
(TSi, {j}) to Rk will force DM, to processRL according to P3; DM, will wait for

“The use of periodic NULLWRITE messages can be avoided by use of special protocols that are
tailored for low-frequency classes. However, their description is beyond the scope of this paper.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

40 * P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

exactly those Wi with TSj < TSi. Rejected READ messages are handled exactly
as per Pl.

From this implementation we see immediately that protocol P3 is strictly
stronger than protocol Pl. If transactions in i obey P3 with respect to transactions
in j at DM,, then they obey Pl with respect to transactions in j at DM,. The
difference between Pl and P3 is that Pl allows any timestamp to appear in the
read condition while P3 requires that timestamp to be TSi. Also note that the
class pipelining rule is essentially an implementation of P3; class pipelining has
the effect of i’s obeying P3 with respect to i.

Our earlier remarks about NULLWRITEs and SENDNULLs apply here as
well. We noted under Pl that choosing a timestamp for the read condition was
important to avoid lengthy delays. Since the read condition timestamp is the
transaction’s timestamp in P3, we must be careful to run the P3 transaction as
early as possible-early enough so that READ messages need not wait for many
WRITE messages, but not so early as to require its being rejected.

11.3 Implementing Prctocol P2

As with the other protocols, P2 is implemented using read conditions. If trans-
action i must obey P2 with respect to transactions in j and k, then it must attach
a read condition (TS, {j, k}) to each of its READ messages that are sent to a
DM that processes conflicting WRITE messages from j or k. As in Pl, any
timestamp for the read condition will do. Since some DMs will only process
conflicting WRITE messages for either j or k (but not both), these DMs will only
use one of the two classes in the second read condition parameter.

If i conflicts with WRITE messages from j and k at only one DM, an interesting
optimization is possible. Rather than specifying the timestamp TS in the read
condition, the DM can select the timestamp itself. As long as there is some time
TS such that all earlier WRITE messages and no later WRITE messages from j
and k have been processed, P2 will be obeyed. However, if two or more DMs are
involved, the timestamp must be fixed in advance because all DMs must use the
same timestamp; they cannot choose timestamps independently.

12. P4: A CYCLE-BREAKING PROTOCOL

Although Pl, P2, and P3 are sufficient to guarantee serializability, from an
efficiency standpoint these protocols have a very serious problem. The problem
is that a single class can cause many cycles and thereby force many classes to use
P2 and P3, even though very few transactions are ever run in that class.

While we expect that the vast majority of transactions that we wish to execute
are predictable and belong to predefined classes, we still want to be able to
execute an unexpected transaction that does not fit into any of our class defini-
tions. One way to accomplish this is to define a “very large” class, call it itoM, that
has a read-set and write-set that include the entire logical database. Every
conceivable transaction can fit into itotal, so this apparently solves the problem,
But the cost is enormous, for iti,,d induces a two-class cycle with every other class
in the system. So every class has to run P3 against itotal, and itotal has to run P3
against every other class. Since P3 is the most expensive protocol (measured by
the delay of the transaction obeying it), this is an unfortunate state of affairs. It
is especially unfortunate because transactions will rarely need to execute in itotal,
ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 41

since most transactions fit into other less expensive classes. So itotal introduces
considerable synchronization overhead for synchronizing against a class that will
rarely run a transaction.

In general, any class in which transactions are only infrequently run, but which
creates many cycles in the conflict graph, exhibits this phenomenon. Although
the problem of proliferation of cycles is especially acute in itotal, other classes with
smaller read-sets and write-sets may manifest the same problem.

To alleviate these problems, we introduce a new protocol called P4, the purpose
of which is to “break” cycles in the conflict graph. That is, if a class runs P4, then
other classes that are in a.cycle with the P4 class can behave as if the cycle did
not exist.

One way to implement P4 is to shut off the system when a P4 transaction is
introduced. No new transactions are processed, and the system works until all
outstanding WRITE messages from transactions already in progress have been
processed. When the system has finally quiesced, we can safely run the P4
transaction serially. After all of the P4 transaction’s WRITE messages are
processed, we can safely permit the system to process trailsactions again. Since
the execution before and after the P4 transaction ran was serializable (by the
serializability theorem) and since the P4 transaction ran serially, the entire
execution is serializable.

We can state the desired effect of P4 more formally as follows: Transactions in
i obey P4 with respect to transactions in {jl, . . . , j,} if for each transaction i in
i, j, in j,, and j, in j, (1 5 u, v % p),

(a) if j, must precede j, in any serialization satisfying rules (l’)-(3’) and TSi 5
TSj,,6 then TSi < TSj,; and

(b) if j, must precede j, in any serialization satisfying rules (l’)-(3’) and TSi 2
TSj,, then TSi > TSj,.

To “break a cycle” in which i lies, transactions in i must obey P4 with respect
to all classes on the cycle (including i). In this case the remaining transactions in
the cycle need not obey P2 and P3 as would normally be required. Note that one
need not break all cycles on which i lies; one can use P4 to break some of i’s
cycles and use {Pl, P2, P3) as usual to synchronize the others.

The key property of protocol P4 is summarized as follows. If transaction i obeys
P4 with respect to transactions in {jl, . . . , j,} , then there is a serialization such
that for each transaction j processed in one of jl, . . . , jp, j precedes i‘ in the
serialization if and only if j’s timestamp is smaller than i’s timestamp. Thus,
processing i under P4 has the same effect as shutting off the system when i is
submitted, executing i, and then returning to normal operation. To see why P4
guarantees the above property, suppose TSj < TSi but j must follow i in all
serializations according to rules (l’)-(3’). Substituting i for j, and j for j, in part
(a) of the definition of P4, we see that TSj > TSi, which is a contradiction. The
inverse situation is handled by part (b) of P4.

Implementing P4 by shutting off the system-even temporarily-is likely to be
unacceptable because of a severe performance degradation. We can improve this
implementation considerably by exploiting two observations. First, a P4 trans-

’ It is possible that TSi = Tj, This occurs when i = ju and i = j, .

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

42 * P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

action need only synchronize against classes that lie on a cycle that includes the
P4 class, since only classes on cycles can cause nonserializability. Second, even
these classes need not quiesce completely before running a P4 transaction. Only
conflicting WRITE messages must be completed before the P4 transaction
executes and subsequently allows the other classes to resume processing. WRITE
messages that do not conflict with READS in the same cycle cannot affect the
ordering of transactions in the serialization according to rules (1%(3’1, and
therefore they do not require synchronization under the definition of P4.

The implementation of P4 differs structurally from the other protocols in two
ways. First, P4 requires some direct communication between TMs. By this
communication the TM supervising the P4 class requests that certain other TMs
perform synchronization to avoid interfering with the P4 transaction.- Second,
P4 requires an augmented form of read condition. Recall that a standard
read condition is a pair of the form (timestamp, {classes}). For P4, the timestamp
may be interpreted as a “minimum time,” i.e., (mintime = timestamp,
{classes}). This condition is satisfied if all WRITE messages from {classes}
timestamped less than “timestamp” have been processed. It does not require that
no messages from {classes} timestamped greater than “timestamp” be processed
(as in standard read conditions). The utility of mintime read conditions is
explained shortly.

To implement P4, we use three additional types of messages that are sent from
TMs to TMs (not from TMs to DMs). A P4-ALERT message is sent from a TM
supervising a P4 class to a TM supervising some other class. A P4-ALERT
message includes the name of the P4 class and the timestamp of the P4 transaction
as its parameters. A class responds to a P4-ALERT with either a PCACCEPT or
a P4-REJECT.

To run a transaction i in the P4 class i with respect to some cycle CYC, one
performs the following P4 algorithm:

(1) Choose a timestamp for i, say TSi.
(2) For every class that lies on CYC, send a message P4-ALERT(i, TSi) to the

TM supervising that class.
(3) Wait for the P4-ACCEPTS to be received from all classes to which a P4-

ALERT was sent. If a P4-REJECT is received, then restart the protocol from
step (1).

(4) Construct the READ messages for i. For each DM, and class j such that (r’,
w’) lies on CYC and j sends WRITE messages to DM, that can conflict with
Ri, attach the read condition (TSi, {j}) to RL .

When a TM receives a PCALERT(i, TSi) for a particular class, j, it performs
the following P6ALERT algorithm:

(1) If the TM has run or begun running a transaction in j with a timestamp
greater than TSi, then respond to the TM supervising i by sending P4-
REJECT. Otherwise, send P4-ACCEPT and do not run another transaction
in j timestamped earlier than TSi.

(2) For each DM, to which j sends a READ message and for each class k which
sends WRITE messages to DM, and for which (r’, wk) lies on CYC, the frst
transaction in j with timestamp greater than TSi which issues a READ

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 43

message to DM, must attach the read condition (mintime = TSi, (k}) to
Ri. These conditions are in addition to those normally carried byRb. (Note:
Only do this step for the first transaction in j with timestamp later than TSi
which sends a READ message to DM,.)

The combination of P4-ALERT and the read conditions in step (4) of the P4
algorithm are enough to guarantee that P4 is obeyed. Step (4) of the P4 algorithm
guarantees that WRITE messages from conflicting transactions in CYC with
timestamps earlier than i are processed before i’s READ messages. Step (2) of
the P4-ALERT algorithm guarantees that WRITE messages from transactions
conflicting with classes on CYC other than i and with timestamps earlier than
TSi are processed before READ messages from conflicting transactions with
timestamps later than TSi. This ensures that the transactions sending the WRITE
messages can be serialized before i. P4-REJECT messages are needed in case the
first transaction in j with timestamp later than TSi is already in progress, for
then it is too late to attach the read condition required by step (2) of the P4-
ALERT algorithm. The mintime read condition is sufficient because only conflict-
ing transactions with earlier timestamps need to be processed before the first
transaction in j; later ones can be safely processed. Together; the rules guarantee
that transactions with earlier timestamps can be serialized before i and those with
later timestamps can be serialized after i.

13. THE CONCURRENCY MONITOR

The implementation of the run-time concurrency control mechanism primarily
lies in a software module at the DMs called the concurrency monitor. The
concurrency monitor at a DM accepts READ, WRITE, and NULLWRITE
messages from TMs and schedules their execution at the DM. In essence, it is
responsible for determining the ordering of events for local DM logs. In this
section we describe the operation of the concurrency monitor. As we will see, the
mechanism is quite simple.

The concurrency monitor accepts and schedules messages of three types:

WRITE(TS, CLASS, UPDATES)
TS is the timestamp of the transaction issuing the WRITE, and CLASS is its transaction class.
UPDATES is a list of data item identifiers and values. When a WRITE is processed, the indicated
data items are updated to the specified values according to the WRITE message rule (see Section 5).

NULLWRITE(TS, CLASS)
This message indicates that all future messages in CLASS will have timestamp greater than TS.
Processing the NULLWRITE simply involves taking note of this fact in the internal tables of the
concurrency monitor.

READ(TS, CLASS, READSET, CONDITIONS)
TS and CLASS are the timestamp and transaction class of the transaction issuing the READ message.
CONDITIONS is a list of read conditions associated with the READ message. Processing a READ
involves reading the current values for data specified by READSET into a local transaction workspace.

The read conditions have the following format:

(TYPE, CLASSES, TS)
CLASSES is a list of transaction classes. TS is either a timestamp or is blank, dependiig on TYPE.
If TYPE is “normal,” then the read condition is satisfied when all WRITE messages from the listed

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

44 ’ P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

classes with timestamps less than TS have been processed, but no WRITE messages from those
classes with greater timestamps have been processed. “Normal” read conditions are used in all four
protocols. If TYPE is “DMchoice,” then the TS specification is blank; the read condition is satisfied
when the condition for “normal” read conditions can be satisfied for some selected value for TS.
“DMchoice” read conditions are used in the single-DM optimized version of protocol P2. If TYPE is
“mintime,” then the read condition is satisfied when all WRITE messages from the listed classes with
timestamps less than TS have been processed. “Mintime” read conditions are used in the P4 protocol.
The TS specification in a read condition must always be less than the transaction TS specified in the
READ message itself (to prevent a deadlock within the concurrency monitor).

The DM returns an ACCEPT-READ message when all the read conditions on
a READ message have been satisfied and the READ has been processed. If the
read conditions cannot be satisfied, even by waiting for new WRITE messages to
be processed, then a REJECT-READ message is returned to the originator of
the READ.

The function of the concurrency monitor is to schedule the processing of READ
and WRITE messages under the constraints imposed by read conditions. A
READ message can be processed as soon as its read conditions are satisfied.
While WRITE messages should be processed without unnecessary delay, a
WRITE message will be delayed if its immediate processing causes the rejection
of a pending READ message. When a READ message is received, it is checked
to see if it is immediately rejectable. If it is not, then the READ will eventually
be satisfied because the concurrency monitor will not process any WRITE
messages that will cause it to be rejected.

The concurrency table, shown in Table I, contains the information needed by
the concurrency monitor to resolve the status of read conditions. For each class
it holds a timestamp associated with the most recently processed WRITE or
NULLWRITE message and a pointer to a queue of pending messages from that
class to be processed. Messages are ordered on the queue by their arrival order.
To avoid violating any of the pipelining rules, the concurrency monitor schedules
the messages on each queue in the order in which they appear (with one exception,
noted below). The message at the head of the queue is said to be immediately
pending.

The concurrency monitor chooses the next message to be processed from
among those immediately pending. Process any pending NULLWRITE. If there
are none, process any immediately pending WRITE, as long as this does not
cause any pending READ to be rejected. If there are no such WRITES, process
any immediately pending READS whose read conditions are satisfied.

It is important that the concurrency monitor not postpone indefinitely the
processing of any immediately pending message either because of timing anom-
alies or deadlock. One way to guarantee this would be to schedule immediately
pending messages according to the following priority rule. The priority of an
immediately pending NULLWRITE or WRITE message is the TS parameter in
the message; for a READ message it is the lowest timestamp in an unsatisfied
read condition in the READ. The concurrency monitor schedules lowest priority
first.

Unfortunately, this scheduling mechanism still has a potential deadlock. As an
example, suppose the immediately pending message for i is a READ with a P3
read condition (TSi, {j}) and the immediately pending message for j is a READ
ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases

Table I. Concurrency Table

- 45

Class

Timestamp of Timestamp of
most recently most recently

processed processed Pointer to pending
WRITE NULLWRITE message queue

i 425179 425221

with read condition (TSj, {i}) where TSi < TSj. Furthermore, suppose no
WRITE or NULLWRITE message from i timestamped later than TSj has been
received and that none from j timestamped later than TSi has been received-
that is, neither read condition is satisfied. If j has no more WRITE messages to
send with timestamp earlier than TSj, then the concurrency monitor is dead-
locked, waiting for nonexistent WRITE messages from each of the classes.

To avoid this type of deadlock, we need one more scheduling rule: If the
immediately pending message with smallest priority is a READ whose lowest
priority unsatisfied read condition is (TS, (j}), and if j’s immediately pending
message is a READ, then a SENDNULL message must be sent to j’s TM,
requesting a NULLWRITE with timestamp greater than TS. If j’s TM does not
respond with a NULLWRITE, then a WRITE with the appropriate timestamp
must be on the way (eventually). When it arrives, it must be processed ahead of
j’s pending READ to break the deadlock. Note that this cannot violate class
pipelining because the WRITE message’s timestamp is earlier than that of j’s
pending READ.

Given this deadlock prevention rule, we can now show the lowest-priority-first
scheduler to be deadlock free. Let M be the message with lowest priority. If M is
a NULLWRITE, it can be processed immediately. If M is a WRITE, then it will
be held up only if there is an immediately pending READ with a read condition
that has a timestamp smaller than M’s. But then the READ would have a lower
priority than M, contradicting the choice of M. So the WRITE can be immediately
processed. Suppose that M is a READ. If all its read conditions are satisfied, it
can be immediately processed and we are done. So assume not and that (TSR,
{j, . . .}) is its unsatisfied read condition with smallest timestamp. Let M’ be the
immediately pending message on j ‘s queue. If the queue is empty, then a WRITE
or NULLWRITE message with timestamp greater than TSR wiIl eventually
appear on j’s queue, since there are only a finite number of timestamps smaller
than TSR. If M’ is a WRITE, then M’ must have a timestamp greater than TSR
(by choice of M); and since j obeys WRITE pipelining, the READ condition is
already satisfied, which is a contradiction. Similarly, M’ cannot be a NULL-
WRITE. If M’ is a READ, then the deadlock prevention rule is invoked, and M
will eventualIy be processed. Finally, since there are only a finite number of
timestamps less than any priority, this also argues for proper termination, since
every message will eventually be the one with the lowest priority.

It may not be wise to follow this priority rule strictly, since a lowest priority
READ may wait a considerable period of time for all the necessary WRITES to
arrive. This would unnecessarily create a large backlog of other unprocessed

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

46 - P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

messages. However, the above argument demonstrates feasibility; of course, any
more efficient variation which never indefinitely postpones is also acceptable.

14. RELIABILITY CONSIDERATIONS7

14.1 Overview

The reliability mechanisms of SDD-1 provide two kinds of protection. First, the
system must continue to operate correctly in the face of site and communication
failures. That is, the serializability guarantee must be maintained. Second, the
procedures by which this is done must not force protocols to wait for failed sites
to recover before they can safely proceed. Otherwise, transactions at nonfailed
sites could experience arbitrarily long delays before being allowed to continue.

Details of the reliability mechanism are described in a separate companion
paper [12]. That paper centers around the description of an extended communi-
cations facility called the reliability network or RelNet. In that paper we show
how the concurrency control mechanisms described here are made robust by use
of the RelNet’s capabilities.

For our present purposes, the RelNet can be modeled as a virtual machine
with the following properties:

(1) The RelNet never fails8
(2) Between any sender-receiver pair, messages are received in the order that

they are sent.
(3) Messages may be buffered within the RelNet. This implies that delivery is

guaranteed as soon as the message is accepted by the RelNet; the message
need not arrive at its final destination for delivery to be assured. In particular,
messages may be sent to a failed site and will be delivered upon its recovery.

(4) WRITE messages are not processed by a DM until a COMMIT message is
received. Alternatively, uncommitted WRITES may be canceled by an
ABORT message. For each transaction a single COMMIT command is issued
to the RelNet, which then guarantees that all of the DMs participating in the
transaction will receive COMMIT messages from the RelNet. When a TM
crashes, the RelNet sends an ABORT message to those DMs participating in
its uncommitted transactions.

(5) The RelNet maintains the clock used in assigning timestamps for concurrency
control. The system behaves as if there were a single global clock accessible
to all sites.

(6) The RelNet monitors site status. In addition to reporting status as up/down,
the RelNet indicates a global clock time for which that status is valid.

(7) The RelNet may be queried as to whether all messages sent from a given site
prior to a given time have been received. This may be used, for example, to
ensure that all messages sent from a failed site prior to its failure have been
received.

’ The mechanisms reported in this section were developed by M. M. Hammer and D. W. Shipman.
s Of course, since 100 percent reliability is impossible to achieve, the actual ReNet may in fact fail.
We consider this to be a “catastrophe” for which manual procedures may be required to repair any
damage done.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 47

A more detailed specification of the RelNet interface, as well as a description
of its internal design, is given in [12]. Since the most difficult design issues have
been relegated to the RelNet, what is required here is to describe the ways these
facilities are used in providing reliable and timely protocol implementations.

We are principally concerned with failures affecting the read phase’ of a
transaction. During the execute phase, the status of participating DMs is moni-
tored by the TM, which will abort the transaction on a DM failure. Failures of
the controlling TM during the execute phase result in transaction abortion by
the RelNet. During the write phase, if the controlling TM fails before all WRITE
messages have been sent and the transaction committed, then the RelNet aborts
the transaction. If the controlling TM fails after the transaction is committed,
then all WRITES are guaranteed safe delivery to their destinations and committed
by the RelNet.

We need to consider three issues arising in the read phase:

(1) The possibility that some data item in the read-set is not available.
(2) The possibility that the concurrency monitor, in order to validate a read

condition, must wait for additional WRITE or NULLWRITE messages from
a failed site. Since the site may take arbitrarily long to recover, the concur-
rency monitor must be able to proceed in resolving the read condition without
waiting for additional messages from that site.

(3) The possibility that an ACCEPT/REJECT response to a P4-ALERT mes-
sage is required from a failed TM. Here again it is unacceptable to wait for
the failed site to recover in order for it to make the ACCEPT/REJECT
decision.

The next three subsections deal with these issues.

14.2 Data Item Not Available

If all physical copies of a data item are unavailable because the DMs at which
they are stored have failed,” then the transaction cannot proceed. It is aborted
and the user is informed.

It may happen that the originally chosen physical copy of the data item is
unavailable, but that another copy of a data item is available at a different DM.
In this case the other copy is used for reading instead. It should be noted that the
choice of physical copy to be read does not affect the protocols which must be
run. This is because the protocol requirements are expressed solely in terms of
logical data item conflicts.

14.3 Read Conditions

When the timestamp on a read condition against a class is greater than the
timestamp on any WRITE or NULLWRITE message which has been received
from that class, it is necessary to wait for the arrival of a WRITE or NULLWRITE

’ Recall that the three phases of a transaction’s execution are called read, execute, and write (cf.
Section 3).
I0 If all physical copies are unavailable because of communication failures, then a RelNet catastrophe
has occurred. Approaches for dealing with such catastrophes are discussed in [12].

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

48 - P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

message from that class which has a greater timestamp than that of the read
condition. When the class in question runs at a TM which has failed, it might
appear that the concurrency monitor would have to wait for that TM to recover
in order to receive the needed message.

The problem is easily solved assuming the existence of a global clock facility.
Upon encountering a read condition which requires waiting for messages from a
failed site, the concurrency monitor, after processing all WRITES which the site
had sent prior to its failure, simply accepts the read condition. This is sound for
the following reason, Upon recovery, all new transactions at the TM in question
will have a timestamp greater than that of the read condition. This follows from
the fact that the read condition timestamp is less than or equal to the timestamp
of the transaction which issued it, that all transaction timestamps are obtained
from the global clock, and that the global clock will have necessarily advanced
past the timestamp of the reading transaction by the time the failed site recovers.
Therefore, it is not possible for a WRITE message to arrive after the failed site’s
recovery, such that the WRITE message has a timestamp less than that specified
in the read condition; it is thus safe to accept the read condition immediately.

14.4 Protocol P4

Protocol P4 calls for issuing a set of P4-ALERT messages to a number of TMs
and awaiting ACCEPT/REJECT responses. If a TM is down, of course, it cannot
respond and the P4 transaction might appear to have to wait until the failed TM
recovers.

Again, our solution to this problem is based on the global clock facility. An
ACCEPT response is assumed from any TM which was down at the time of the
P4 transaction. Upon recovery and before starting any new transactions, the
recovering TM reads all P4-ALERT messages which were sent to it while it was
down (these have been buffered in the RelNet). These P4-ALERTS are accepted.
This is because no transactions will have been processed at the recovering TM
with timestamp greater than that of the P4 transaction (the TM was down at the
time of the P4), and all new transactions after the receipt of the P4-ALERT have
a timestamp greater than that of the P4 transaction. These are exactly the
conditions necessary for accepting a P4-ALERT.

15. ADVANTAGES OF THE SDD-1 CONCURRENCY CONTROL MECHANISM

The SDD-1 approach to concurrency control is in many ways quite different from
other proposed mechanisms. We see many strengths in the approach. Unfortu-
nately, there are few analytic methods for verifying these strengths, say by
comparing the relative performance of our mechanism to other database concur-
rency controls. Furthermore, most of the proposed mechanisms are not yet
implemented, so empirical comparisons are not possible either. Hence, the anal-
ysis of our mechanism must necessarily be more intuitive than analytical or
empirical. And comparisons to other specific mechanisms are avoided for lack of
objective evidence. The specific criteria on which we base our performance
include the amount of communication required to synchronize transactions, the
average delay incurred by a transaction due to concurrency control, the amount
of concurrency among transactions allowed by the concurrency control, and the

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 49

overhead involved in making the mechanism resilient to communications and
node failures.

At the architectural level the SDD-1 concurrency control mechanism has two
important properties. First, the architecture makes a strong separation between
concurrency control issues and those of query processing and reliability. From a
project management standpoint, this separation has allowed us to attack the
concurrency control problem independently from and in parallel with query
processing and reliability problems. From a software engineering standpoint, this
division of labor has led naturally to a division of function in software components.
The concurrency control mechanisms are isolated in a small number of modules,
making them easily modifiable and tunable.

Second, the architecture fully distributes the concurrency control. While each
transaction is controlled from a single site, different sites are concurrently
supervising the synchronization of many different transactions. No one site is in
charge of any system-wide activity. The main advantage of this full distribution
is enhanced reliability. A site failure only affects those transactions executing
and/or using data at that site.

However, it is in the specific synchronization mechanisms that the most
important advantages lie: conflict graph analysis and the timestamp-based pro-
tocols. We believe the technique of conflict graph analysis to be our most
important contribution. By preanalysis of transaction conflicts, the number of
transactions that need to be synchronized is drastically reduced. This has a
beneficial effect on all aspects of concurrency control performance. It allows more
concurrency among transactions; and for those transactions that require little or
no synchronization, it cuts delay, communications overhead, and costs associated
with resiliency mechanisms. As shown in [6], the technique is quite general and
can be used with a variety of synchronization protocols, including conventional
locking. In principle, every proposed concurrency control mechanism could be
improved by adding conflict graph analysis as a preprocessing step to eliminate
run-time synchronization for some transactions.

The timestamp-based protocols {Pl, P2, P3, P4) also offer important advan-
tages over other proposed concurrency controls. First, all of the protocols are
deadlock-free. This avoids the communication overhead of distributed deadlock
detection, which is required by many locking systems (e.g., [23]). Second, the
protocols synchronize transactions, only against named transaction classes. Even
if two transaction classes must be synchronized relative to certain data, other
classes can concurrently access those data; in fact, other classes can independently
be synchronized against those very same data without affecting the first two
classes at all. This is in contrast to locking protocols, which set blanket locks that
apply to all transactions that access the shared data. Third, SDD-1 offers a range
of synchronization protocols. Protocol P2 is a fast synchronization protocol for
read-only transactions that can afford to read an old, but consistent copy of the
database. While with a locking strategy read-only transactions’ could choose not
to lock the data they read, the unlocked data may be inconsistent. Protocol P4
allows infrequently executed transactions to take a larger share of the synchro-
nization burden. By running such transactions under P4, other frequently exe-
cuted transactions can run Pl with less delay and more concurrency than they

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

50 * P. A. Bernstein, D. W. Shipman, and J. B. Rothnie

would obtain if they ran P2 or P3 as otherwise required. The P4 capability is
currently unique to the SDD-1 mechanism.

Quantitative comparisons among reliability mechanisms are not yet within the
state of the art. However, as indicated in the previous section, SDD-1 has
incorporated recovery mechanisms that insulate it from the effects of network
and node failure. The mechanisms are an example of a general approach to
resiliency discussed in [12].

REFERENCES
1. ALSBERG, P.A., AND DAY, J.D. A principle for resilient sharing of distributed resources. Proc.

2nd Int. Conf. on Software Engineering, IEEE, N.Y., 1976, pp. 562-570.
2. ALSBERG, P.A., ET AL. Synchronization and deadlock. CAC Dot. 185, CCTC-WAD Dot. 6503,

Center for Advanced Computation, U. of Illinois, Urbana, III., 1975.
3. BERNSTEIN, P.A., AND GOODMAN, N. Approaches to concurrency control in distributed database

systems. Proc. AFIPS 1979 NCC, Vol. 48, AFIPS Press, Arlington, Va., pp. 813-820.
4. BERNSTEIN, P.A., AND SHIPMAN, D.W. The correctness of concurrency control mechanisms in

a system for distributed databases (SDD-1). ACM Trans. Database Syst. 5, 1 (March 1980), 52-
68.

5. BERNSTEIN, P.A., ROTHNIE, J.B., GOODMAN, N., AND PAPADIMITRIOU, C.H. The concurrency
control mechanism of SDD-1: A system for distributed databases (the fully redundant case).
IEEE Trans. Software Eng. SE-4,3 (May 1978), 154-168.

6. BERNSTEIN, P.A., SHIPMAN, D.W., AND WONG, W.S. Formal aspects of serializability in database
concurrency control mechanisms. IEEE Trans. Software Eng. SE-& 3 (May 1979), 203-215.

7. CHAMBERLIN, D.D., BOYCE, R.F., AND TRAIGER, I.L. A deadlock-free scheme for resource
locking in a database environment. Information Processing 74, North-Holland Pub. Co., Amster-
dam, 1974, pp. 340-343.

8. COMPUTER CORPORATION OF AMERICA. Datacomputer Version 5 User Manual, Cambridge,
Mass., July 1978.

9. ESWARAN, K.P., GRAY, J.N., LORIE, R.A., AND TRAIGER, I.L. The notions of consistency and
predicate locks in a database system. Comm. ACM 19, 11 (Nov. 1976), 624-633.

10. GOODMAN, N., BERNSTEIN, P.A., REEVE, C., ROTHNIE, J.B., AND WONG, E. Query processing in
SDD-1: A system for distributed databases. Submitted for publication.

11. GRAY, J.N., LORIE, R.A., AND PUTZOLU, G.R. Granularity of locks and degrees of consistency in
a shared database. Proc. Int. Conf. on Very Large Databases, ACM, N.Y., Sept. 1975, pp. 428-451.

12. HAMMER, M.M., AND SHIPMAN, D.W. The reliability mechanisms in SDD-1: A system for
distributed databases. Submitted for publication.

13. KING, P.F., AND COLLMEYER, A.J. Database sharing-an efficient method for supporting con-
current processes. Proc. AFIPS 1973 NCC, Vol. 42, AFIPS Press, Arlington, Va., pp. 271-275.

14. LAMPORT, L. Time, clocks and ordering of events in a distributed system. Comm. ACM 21, 7
(July 1978), 558-565.

15. MENASCE, D.A., POPEK, G.J., AND MUNTZ, R.R. A locking protocol for resource coordination in
distributed databases. To appear in ACM Trans. Database Syst. 5,2 (June 1980).

16. PAPADIMITRIOU, C.H., BERNSTEIN, P.A., AND ROTHNIE, J.B. Some computational problems
related to database concurrency control. Proc. Conf. on Theoretical Computer Science, U. of
Waterloo, Waterloo, Ont., Canada, Aug. 1977, pp. 275-282.

17. REED, D.P. Naming and synchronization in a decentralized computer system. Ph.D. Th., Rep.
MIT/LCS/TR-205, Massachusetts Institute of Technology, Cambridge, Mass., Sept. 1978.

18. RIES, D.R., AND STONEBRAKER, M. Effects of locking granularity in a database management
system. ACM Trans. Database Syst. 2, 3 (Sept. 1977), 233-246.

19. ROSENKRANTZ, D.J., STEARNS, R.D., AND LEWIS, P.M. System level concurrency control for
distributed database systems. ACM Trans. Database Syst. 3,2 (June 1978), 178-198.

20. ROTHNIE, J.B., AND GOODMAN, N. An overview of the preliminary design of SDD-1: A system
for distributed databases. Proc. 1977 Berkeley Workshop on Distributed Data Management and
Computer Networks, Lawrence Berkeley Lab., U. of California, Berkeley Calif,, May 1977, pp. 39-
57.

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

Concurrency Control in a System for Distributed Databases 51

21. ROTHNIE, J.B. JR., ET AL. Introduction to a system for distributed databases (SDD-1). ACM
Trans. Database Syst. 5, 1 (March 1980), 1-17.

22. STEARNS, R.E., LEWIS, P.M., II, AND ROSENKRANTZ, D.J. Concurrency controls for database
systems. Proc. 17th Ann. Symp. on Foundations of Computer Science, IEEE, N.Y., 1976, pp. 19-
32.

23. STONEBRAKER, M. Concurrency control and consistency of multiple copies of data in distributed
INGRES. IEEE Trans. Software Eng. SE-5, 3 (May 1979), 203-215.

24. THOMAS, R.H. A majority consensus approach to concurrency control for multiple copy data-
bases. ACM Trans. Database Syst. 4,2 (June 1979), 180-209.

25. WONG, E. Retrieving dispersed data from SDD-1: A system for distributed databases. Proc. 1977
Berkeley Workshop on Distributed Data Management and Computer Networks, Lawrence
Berkeley Lab., U. of California, Berkeley Calif., May 1977, pp. 217-235.

Received December 1978; revised August 1979

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980.

