
Optimism and Consistency In Partitioned
Distributed Database Systems

SUSAN B. DAVIDSON

University of Pennsylvania

A protocol for transaction processing during partition failures is presented which guarantees mutual
consistency between copies of data-items after repair is completed. The protocol is “optimistic” in
that transactions are processed without restrictions during failure; conflicts are then detected at
repair time using a precedence graph, and are resolved by backing out transactions according to some
backout strategy. The resulting database state then corresponds to a serial execution of some subset
of transactions run during the failure. Results from simulation and probabilistic modeling show that
the optimistic protocol is a reasonable alternative in many cases. Conditions under which the protocol
performs well are noted, and suggestions are made as to how performance can be improved. In
particular, a backout strategy is presented which takes into account individual transaction costs and
attempts to minimize total backout cost. Although the problem of choosing transactions to minimize
total backout cost is, in general, NP-complete, the backout strategy is efficient and produces very
good results.

Categories and Subject Descriptors: H.2.2. [Database Management]: Physical Design-recouery
and restart; H.2.4 [Database Management]: Systems-distributed systems, transaction processing

General Terms: Performance, Reliability

Additional Key Words and Phrases: Serializability, network partitioning, consistency

1. INTRODUCTION: DESCRIPTION OF THE PROBLEM

Partition failures are a major threat to the reliability of distributed database
systems and to the availability of replicated data. A partition failure is said to
occur when subsets of the database sites can no longer communicate due to a
failure in the communication subsystem. However, in many systems (notably
SDD-l), it is impossible to differentiate a failure in the communication subsystem
from site failure. In such systems, partition failures are caused by either com-
munication subsystem or site failures, and thus occur more frequently. Since
there may be replicated data in distributed database systems, transaction proc-
essing protocols must guarantee that mutual consistency is maintained between

This paper is based upon work supported in part by the National Science Foundation under grant
ECS-8019393, done at Princeton University.
Author’s address: Dept. of Computer and Information Science, University of Pennsylvania, Phila-
delphia, PA 19104.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1984 ACM 0362-5915/84/0900-0456 $00.75

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984, Pages 456-481.

Optimism and Consistency In Partitioned Distributed Database Systems l 457

copies of data-items. During partition failures, however, loss of communication
between sites may allow copies of data-items to diverge, unless restrictions are
imposed on the transaction processing protocol. Most of the protocols which
have been suggested for transaction processing during partition failures assume
that transactions cannot be backed out once they have been committed; for
example, a transaction which hands out cash to a customer is irreversible. These
protocols, therefore, avoid executing conflicting transactions, and guarantee
mutual consistency throughout the partition failure by limiting the availability
of replicated data. Rules are given which guarantee that each (replicated) data-
item is accessible in at most one partition group; updates are simply forwarded
at recovery. Examples of such protocols are voting [ll, 271, tokens [19], and
primary site [2, 221. Such restrictions are quite severe, and there is no guarantee
that every data-item is accessible in at least one partition group: a majority vote
may not be obtainable in any partition group, tokens may get lost, and the
primary site may crash without a backup. The reliability of the system is severely
degraded in terms of users being able to run what jobs they need to get done,
when they need to do them, and where they want to run them (see [5] for a
survey of these and other partition failure protocols).

The protocol advocated in this paper is “optimistic” in the sense that, during
partition failures, no restrictions are imposed on the users of sites which are up.
The system attempts to process all transactions, but must delay commitment
until recovery is completed, at which point conflicting transactions are backed
out to regain mutual consistency. Note that this assumes that transactions can
be backed out. This protocol is used by default in many systems (e.g., SDD-1);
that is, the system does not have a protocol for transaction processing during
partition failures, so conflict detection and transaction backout are performed
manually at recovery. Parker, et al. [22] have proposed an automatic conflict
detection scheme for file systems, and have extended it to transactions which
access more than one file [23]. However, resolving the inconsistencies is not
straightforward and is essentially left up to the user. In this paper, a method for
automatic conflict detection and transaction backout is proposed which can be
used in a general distributed system with replicated data. A model of conflicts
between transactions with partitioned data is developed, called a precedence
graph. Conflicts are detected from cycles in the graph and are resolved by a
transaction backout strategy which makes inconsistent databases consistent at
repair time. Backed-out transactions can then be automatically rerun by the
system, or referred back to the user.

This approach is attractive since the brunt of the failure is felt more by the
system than by the user. Availability has not been compromised. In some
applications this is very important. For example, in military command and
control applications, partitions may occur because of an enemy attack, and it is
precisely at this time that we do not want transaction processing halted. In an
airline reservation system it may be too expensive to have a high-connectivity
network, and partitions may occur periodically. Many transactions are executed
each second, and each transaction that is not processed may represent the loss
of a customer. The airline may therefore be willing to take the risk of temporarily
overbooking a flight, and allow later cancellations to rectify the situation. In

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

458 l S. 8. Davidson

other situations, few conflicts may actually occur, either because conditions in
the database minimize the probability of conflict or because semantic knowledge
or a knowledge of data-reference patterns makes conflicts highly unlikely. For
example, in a banking system where each site is a branch office containing
account information for all customers, transactions on accounts probably will
not conflict; it is very unlikely that a single customer will attempt to access his
account at two different branches during a single partition failure. The personal
nature of accounts and geographic restrictions of customers render conflict highly
unlikely. To further minimize conflict, yet maintain customer satisfaction, rou-
tine functions such as clearing checks and crediting deposits could be delayed by
the bank until the failure is repaired. The protocol is also resilient in the face of
multiple partition failures (see Section 5). The advantages of automating conflict
detection and transaction backout are obvious: they can be performed very
quickly, thus decreasing the temporary delay in transaction processing while the
system recovers from the partition failure, and the cost of backing out transac-
tions can be kept relatively low if a smart backout strategy is used.

Section 2 describes automatic conflict detection and backout in detail. Per-
formance results from simulation and probabilistic modeling are discussed in
Section 3, and conditions under which the protocol performs well are noted.
Results from the performance evaluation are then used in Section 4 to develop a
backout strategy which, given individual transaction costs, attempts to minimize
the total backout cost. The strategy is shown to be efficient and to produce good
results. Finally, suggestions as to when and how this approach could be useful
are made in Section 5, along with a discussion of extensions to the protocol and
directions for future research.

2. THE OPTIMISTIC PROTOCOL

Conflicts and interactions between transactions in centralized and distributed
systems are often modeled by graphs ([3,4,20]; see [l] for fundamental concepts
of graph theory). A graph theoretic approach is useful for analyzing local or
global histories in proving “correctness” (i.e., serializability). Typically, nodes
represent transactions and conflicts are represented by cycles; acyclic graphs can
be used to produce an equivalent serial history by a topological sort of the nodes.
In this section, these graph techniques will be applied to partitioned distributed
systems; when recovery occurs and two partition groups PI and Pz discover that
they can communicate, a graph will be created from the global histories of PI
and P2. Cycles in this graph will represent conflicts between transactions in PI
and P2. By backing out certain transactions, we can make the graph acyclic,
which means that the global histories of PI and P2 can be merged to form a
single, serial global history for PI U P2, thus mutual consistency is regained.

2.1 Assumptions and Basic Definitions

A fully replicated distributed database is the context in which partition failures
will be studied. This special case of a distributed database has been chosen
because it is a simplified model and is the kernel of the partition problem; mutual
consistency is threatened during a partition only when multiple copies exist. The
database consists of a collection of data-items (dl, . . . , dMJ which is stored
ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

Optimism and Consistency In Partitioned Distributed Database Systems l 459

at every site in the system. Data-items are operated on by transactions consist-
ing of READ and WRITE actions, and local computation. The set of all
data-items read (written) by a transaction T will be denoted READ-
SET(T) (WRITESET(T)). Transactions have the property that the value which
is written for a data-item d functionally depends on the values read by that
transaction and on the previous value of d. Note that this implies that WRITE-
SET(T) C READSET(At some point in time (time used intuitively), accord-
ing to some transaction protocol, transaction T is executed at a site in the system
by performing the READ and WRITE actions and sending update messages to
other sites in the system to inform them of the new values which have been
written. It is assumed that every message sent is eventually delivered.

A partition group is a maximal subset of sites in the system which can
communicate. New partition groups are created when failure occurs, either node
or communication subsystem failure, and also when recouery occurs (two previ-
ously separate partition groups discover that they can communicate). A system
is partitioned as long as there is more than one partition group present. Note
that although we only discuss the case of merging two partition groups, recovery
may not always be pairwise (this extension to the protocol is discussed in Section
5).

2.2 A Graph Theoretic Approach to Automatic Conflict Detection and Automatic
Back Out: An Overview

It is assumed that in each partition group there is exactly one site designated as
coordinator, and that update messages are sent only to reachable sites. When a
site in one partition group P1 discovers that it can communicate with a site in
another partition group P2, the coordinators in P, and Pz are notified, and local
processing in each group ceases. The coordinator in Pi then derives a total
ordering of the transactions performed in its partition group during the failure,
called the global history Hi [3,28], and the READSET and WRITESET of each
transaction (for a discussion of how to derive this global history see [6]). Note
that this assumes that the transaction protocol executing within each partition
group produces a serializable global history for that group (i.e., that such an
ordering can be obtained). Using the global histories of P1 and P2, H1 and H,, a
precedence graph G (see Definition 2.2.1) is constructed. Conflicting transactions
are detected from the cycles of G, and transactions are backed out until G is
acyclic. We assume that any transaction can be backed out. Backing-out a
transaction T involves setting the value of each data-item in WRITESET to
the value it had when it was read by T. The databases of P, and Pz are then
merged y sending update messages of nonbacked-out transactions in P1 to P2
(and ‘ce versa), and a new coordinator is elected for the new partition group
P, J;p P2 (see [9] for a discussion of elections in distributed systems, and [3,4,20]
for a description of conflict graphs in unpartitioned systems).

/.’ The precedence graph. We say that the global histories of the partition groups
Hl and HZ are serializable if and only if there exists some H, a total ordering of
the transactions in both H1 and Hz, to which they are equivalent. That is, given
any set of initial values for the data-items in the database and any interpretation
of the transactions in H, and Hz, if H were executed in P1 U P2 then each

ACM Transactions on Database Systems, Vol. 9, No. 3, September 19%

460 l S. B. Davidson

transaction in H would read or write the same values as it read or wrote in the
execution of HI in PI and HZ in P2. Executing history H in partition P involves
(1) serially executing the transactions of H in the order defined by H, and (2)
forwarding updates from one transaction to all sites in P before the next
transaction is executed. To achieve mutual consistency with serializable H1 and
Hz, all we need to do is to forward updates in Hz to P1 and in H1 to Pz (in the
order that the updates were generated). When such an H exists, it will be called
the merged history of H1 and Hz.

Example. Let H1 = Tll, Tlz, T13 where

READSET(T,,) = WRITESET(Tl1) = (dl, dz),
READSET(Tlz) = {dz, d& WRITESET(Tlz) = (da),
READSET(T,,) = ids, d4, dsj, WRITESET(Tl3) = {dd],

and Hz = T2,, Tz2 where

READSET(T,I) = WRITESET(T,I) = (db),
READSET(T,,) = (dl, ds], WRITESET(T,,) = ().

Clearly Tz2 must precede T,, since it reads dl, which forces the merged history
to be H = T,, , Tp2, T12, Tla. But this is incorrect, since T13 then reads d6 after
Tzl, which has altered the value for d5, Hence, there is a conflict between Tll,
Tlz, T13 and Tzl, Tz2, and HI and Hz are not serializable.

Definition 2.2.1. Given H, = Tll, . . . ,TINI and Hz = Tzl, . . . ,TtNz, the prece-
dence graph G(HI, Hz) = (V, E) is the directed graph defined by

(1) V = the set of all transactions in H1 and Hz,
(T,,, . . . , TIN,) u iTa,. . . , TmJ

(2) E = (Ripple Edges) U (Precedence Edges} U (Interference Edges}
(.a) Ripple Edges-represent the fact that one transaction read a value

produced by another transaction in the same partition.
Tij --, Tik if and only if j < k and there exists some d such that d is in
WRITESET(Tij) n READSET(Tik) and there is no 1, j < 1< k such that d is in
WRITESET(Til).

(b) Precedence Edges-represent the fact that a transaction read a value
which was later changed by a second transaction in the same partition.
Tij + Tik if and only if j < k, there is no Tij + Tik ripple edge; there exists some
d such that d is in READSET(Tij) n WRITESET(Tik) and there is no 1, j < 1<
k such that d is in WRITESET(Til).

(c) Interference Edges-represent the fact that if a transaction in one parti-
tion reads a data-item d, it must precede any transaction which writes a new
value for d in the other partition.
Tli + Tzj(Tzi + Tlj) if and only if there exists some d such that d is in
READSET(T,i) n WRITESET(Tzj)(READSET(Tzi) n WRITESET(Tlj)).

THEOREM 2.2.2. Given H1 and Hz, the precedence graph G(H,, Hz) is acyclic if
and only if H1 and Hz are serializable (i.e., equivalent to some merged history H).

PROOF. (+) Since G(H,, Hz) is acyclic, we can perform a topological sort of
its nodes to produce a serial ordering of transactions H. The claim is that H1 and
ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

Optimism and Consistency In Partitioned Distributed Database Systems l 461

H2 are equivalent to H. That is, given any initial state, the values in the final
state after executing H in P, U Pz are the same as the values in the final state
after executing HI followed by updates from Hz in P, , and H2 followed by updates
from HI in Pa. Throughout this proof, G will be used for G(Hl, Hz). We will also
assume that there is a fictitious first transaction in each history H, H,, and H2
that reads and writes each data-item without changing its value. This avoids the
problem of values being read from the initial state.

Claim 1. Each transaction executed in H reads and writes the same values as
it reads and writes in HI or Hz.

(1) The values read by transactions are correct.
Suppose not. Then there exists some transaction T and data-item d such that

T reads value y in Hi for d and value x in H for d. Let T be the transaction that
writes the value of d read by T in H.

Case 1. (T and T* are in different partitions): An interference edge from T to
T* forces T to precede TA in H. Contradiction.

Case 2. (T and T* are in the same partition Hi, and TA follows T in Hi): A
precedence edge from T to TA forces T to precede TA in H. Contradiction.

Case 3. (T and T* are in the same partition Hi, and TA precedes T in Hi):
There must be some transaction T* that writes X, the value of d read by Tin Hi.
Therefore, the path of ripple edges, T + . . . + T* + T must occur in Hi. This
forces the relative order of these transactions in H. So T* does not write the
value of d read by Tin H. Contradiction.

(2) The values that would be written by transactions in H are correct. This
follows from the definition of functional dependence and by the fact that the
values read are correct (for a given set of values read, any transaction will always
write the same values).

Claim 2. Each data-item is updated by transactions in at most one partition.
Otherwise a cycle results. Contradiction.

Claim 3. The final value for each data-item d in H is written by the same
transaction as it was in HI and Hz. Since each data-item d is updated in at most
one of HI and H,, there is at most one “last” transaction in HI and Hz to update
d. His a topological sort of G, so the “write” ordering of transactions is preserved
(by ripple edges). Hence, the last transaction to write d in HI and Hz is the last
transaction to write d in H.

So for each Hi, any data-item d updated within Pi has the same final value as
in H since it is written by the same transaction T (Claim 3) in Hi as in H, T
writes the same value in Hi as in H (Claim l), and the fact that updates from the
other partition will not include a value for d (Claim 2). Any data-item d that is
not updated in Pi, but is updated in the other partition, will receive the modified
correct value when updates are exchanged. Finally, any item d not updated in
any partition will not be modified by H either. So H is equivalent to HI and Hz,
.and hence HI and Hz are serializable.

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

462 9 S. 6. Davidson

(+) Suppose not. Let H be a merged global history equivalent to H1 and Hz.
If G contains a cycle, then there must be transactions T, and Tb such that T,
precedes Tb in H, but there is an edge from Tb to T, in G. This implies that T,
reads a different value in H than in HI (or Hz, depending on where T, was
executed). Therefore, HI and Hz are not equivalent to H. Contradiction. Cl

Example

7’21

f

ripple edge: ti

7’22 interference edge: -+

G(Hl, Hz) contains a cycle, and so HI and H2 are not serializable.

Theorem 2.2.2 tells us that if G(Hl, Hz) is acyclic, then all sites in P, can be
updated to reflect the transactions that occurred in P2, all sites in PB can be
updated to reflect the transactions that occurred in PI, and mutual consistency
is again achieved. If G(HI, Hz) is not acyclic, transactions must be backed-out to
achieve mutual consistency. This amounts to finding some acyclic subgraph of
G(H,, Hz). However, note that if transaction T is chosen to be backed-out, then
every transaction to which there is a directed path of ripple edges from T must
also be backed-out, since they functionally depend upon T. In the above example,
if T,, is chosen to be backed-out, then T12 and T13 must also be chosen to be
backed-out, due to the path of ripple edges T1, --, T12 + T13. Suppose then that

(Al) Hi and Hi are subsequences of HI and Hz which represent the transac-
tions that have not been chosen to be backed-out.

(A2) There is no path of ripple edges from a transaction in Hi - H1 to a
transaction in H1 (i.e., no transaction in HT functionally depends on a
transaction which has been backed-out).

(A3) The precedence graph G(H;, Hi) is acyclic.

Then what we need to prove is that there exists a merged history which
accurately models the behavior of the system during the failure and through
recovery (i.e., that there exists an H which is equivalent to executing HI in PI
and H2 in P2), backing-out the transactions in (HI - Hi) and (HZ - HZ), and
forwarding updates from transactions in H; to P2 and H; to PI. Note that, for
each data-item d modified by a transaction in Hi, we only need to forward the
update generated by the last transaction in Hi that modifies d; that is, we only
need the final value of d to merge the two partitions. Also note that transactions
must be backed-out in reverse order; that is, for each data-item modified by a
transaction in Hi - H1 we need the value read by the earliest transaction in
Hi - H;.l

’ Graph reduction techniques can also be used to substantially reduce the size of the precedence graph
(see [29]).

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

Optimism and Consistency In Partitioned Distributed Database Systems l 463

THEOREM 2.2.3. Given HI, Hi and H,, H;, which follow the assumptions (Al),
(A2), and (A3), then the following are serializable:

(1) In PI: executing HI, followed by the backing-out of all transactions in (HI -
H;), followed by all updates from transactions in Hi in the order in which they
were generated; and
(2) in Pz: executing Hz, followed by the backing-out of all transactions in (Hz -
Hi), followed by all updates from transactions in Hi in the order in which they
were generated.

PROOF. Since G(H;, Hi) is acyclic (assumption (A3)), then Hi and Hi are
serializable by Theorem 2.2.2, and are equivalent to the history produced by a
topological sort of G(H;, Hi). It is enough to show that executing HC in Pi is
equivalent to executing Hi in Pi, followed by the backing-out of all transactions
in (Hi - HT).

Claim 1. Each transaction in Hi would read (and hence write by the definition
of functional dependence) the same values as in H;. This follows from the fact
that the relative order of transactions is the same in Hi as in Hi (Hi is a
subsequence of Hi, assumption (Al)), and that every transaction in H: function-
ally depends on the same transactions as it did in Hi (assumption (A2)).

Claim 2. Each data-item d has the same final value in Hi as it does after
executing Hi, followed by the backing-out of transactions in Hi - HT . Since
transactions read and write the same values in HZ as in Hi (Claim l), it is enough
to show that the same transaction writes the final value for d in HZ, as in Hi.

Case 1. d is not updated in Hi. Then it is not updated in H; , and the value of
d is the initial value.

Case 2. d is updated in both Hi and Ht. Consider the last transaction to update
din Hi, Tdl. All subsequent transactions in Hi which update d have been backed-
out by the definition of H1 (assumption (A2)). Let Td2 be the next transaction
after Tdl to update d in Hi. By assumption (A2), Td2 is the earliest transaction
in (Hi - Hi) to update d. So the value of d after backing-out (Hi - HT) is the
value read by Td2 (i.e., the value written by Tdl).

Case 3. d is updated in Hi but not in HT. Then the earliest transaction to
update d in (Hi - Hi) is the earliest transaction to update d in Hi. The value
read by this transaction is the initial value of d. Cl

Example. If we choose to backout T12, then T13 must be backed-out, as it
functionally depends on TIz. Then Hi = TII, HZ = Tzl, Tzz,

G(H;,‘H;) = 2’1,

G is acyclic and so Hi and Hi are serializable. Specifically, they are equivalent
to the merged history H = TzI, Tz2, TI1, produced by a topological sort of the
nodes of G.

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

.

464 l S. B. Davidson

Note that this procedure graph definition differs from that of augmented
ancestor graphs and concurrency control graphs [4, 7, 261 in several respects.
First, the precedence graph represents two execution sequences which must be
merged. It is static; the transactions have already executed. Second, the edge
semantics are different. Precedence and ripple edges represent a required ordering
of transactions in the same partition, with ripple edges dictating the effect of
backing-out a transaction. Interference edges represent potential conflicts be-
tween transactions in different partitions, which may lead to violations of mutual
consistency. Last of all, there is more freedom in choosing which transaction to
back-out to break cycles. Concurrency control graphs are generated on the fly,
and are used to prevent committing transactions, which would cause a violation
of mutual consistency. With partitions, everything is static and transactions have
already run to completion. Any transaction may be chosen to break cycles. The
next section discusses this backout selection problem.

2.3 Backout Selection Strategies

Given the global histories of the partitions to be merged, it would be nice to
minimize the number of transactions that are backed-out. Even better would be
to assign a weight or backout cost to each transaction, and then minimize the
total backout cost. Unfortunately, just minimizing the number of transactions
backed-out (assigning each transaction a weight of one) is NP-complete, hence
minimizing total backout cost (assigning transactions different weights) is also
NP-complete. (For a discussion of the theory of NP-completeness, see [a].)

Transaction backout minimization problem. Given the precedence graph G =
(V, E), find a subset VA C V such that: (1) there are no nodes in (V - V’)
reachable via ripple edges from nodes in VI, (2) the subgraph GL- of G induced by
the nodes of VA is acyclic, and (3) 1 VA] is minimized.

The associated decision problem is the transaction backout problem.

Transaction backout problem. Given the precedence graph G = (V, E) and
integer K, is there a subset VI !Z V such that: (1) there are no nodes in (V - VA)
reachable via ripple edges from nodes in VI, (2) the subgraph GA of G induced by
the nodes of VA is acyclic, and (3) 1 VA 1 I K?

Since the decision problem can be no harder than the associated minimization
problem, it suffices to show that the transaction backout problem is NP-complete.

THEOREM 2.3.1. The transaction backout problem with a fixed maximum num-
ber of partitions N (N I 2) and an arbitrarily large number of data-items in the
database is NP-complete.

PROOF. (in NP) Guess a subset VA G V. Checking that] VA] I K, that VA is
closed with respect to ripple edges, and that GA is acyclic can all be done in
polynomial time.

(NP-hard) Reduce the known NP-complete feedback vertex set problem (FVS)
to the transaction backout problem (TB). The feedback vertex %et problem [15]
is: given a graph G = (V, E) and integer K, is there a subset V G V such that
VA contains at least one vertex from every directed cycle in G, I VA I 5 K? So,

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984

Optimism and Consistency In Partitioned Distributed Database Systems l 465

given input G = (V, E), K for FVS, insert a new node uij into every edge vi + uj
to create the precedence graph G1 = (VI, El). That is, VI consists of the old nodes
from V together with the new nodes inserted in every edge; El consists of the
edges vi + vii, Uij + Uj for every old edge Ui + uj. Label all edges as interference
edges. Note that this corresponds to a valid precedence graph of two partitions,
since:

(1) Interference edges always connect nodes in different partitions; here, the
new nodes represent one partition and the old nodes another partition. Each
edge ek:Ui ---) Uj forces a READ(dk) in the transaction represented by node Ui and
a WRITE(dk) in the transaction represented by node Uj, where dk is a data-item
unique for the edge ek.

(2) The subgraphs of new nodes and old nodes are acyclic since they contain
no edges. Call this new graph G1 = (VI, El) and submit G1 and K as input to TB.

Solution to FVS + Solution to TB. Suppose there is a subset VI G V, 1 VI 1 I
K and VI contains at least one vertex from every directed cycle of G. Then the
removal of VA from G would break all cycles, making this subgraph of G acyclic.
Since V c V,, it follows that VI c V,. Removal of VA from VI would also break
all cycles of G1 since, in the creation of El, the removal of e from E and
replacement by el, e2 does not create any new cycles. Since there are no ripple
edges in G1, VI is closed with respect to ripple edges.

Solution to TB + Solution to FVS. Suppose there is a solution Vi to TB.
Then (VT 1 I K and the removal of Vi from VI breaks all cycles in G1. VI
may contain nodes that are not in V, specifically some new nodes inserted into
edges of E. Note that, by construction, each new node u has exactly one incoming
and one outgoing edge: Ui + u + uj, where Ui, Uj E V. Let VFVS, the solution to
FVS, be constructed from Vi as follows: each old node u in Vi (u E V) is added
to VFvs. For each new node u (u E V), add to V,,S the node incident on the
incoming edge vi. Since Ui E V, it follows that VFVS contains only nodes in V.
Furthermore, I Vpvs I 5 I VI I I K, since at most one node is added to VFvs for
each node in Vi. We now claim that removing VFvs breaks all cycles in the
original graph G. Suppose not, Then there is a cycle in G none of whose nodes
are in VFVS. Since the corresponding cycle in G1 was broken, one of the new
nodes in the cycle in G1 was chosen. Then the (unique) old node incident on the
incoming edge to u, vi, was put in V FvS, and therefore the cycle in G was broken.
Contradiction. 0

Although this result discourages attempts to minimize the total backout cost,
there are well-known algorithms for enumerating all cycles in a directed graph,
which can be used for a polynomial time (albeit nonoptimal) backout strategy
(see, for example, [14, 241). However, since the total number of cycles in a
precedence graph can be exponential in the number of nodes in the graph, a
backout strategy should break cycles as they are detected rather than enumerating
all cycles and then attempting to break them. The next section discusses per-
formance results from simulations of the optimistic protocol using several differ-
ent backout strategies; details can be found in Appendix 1.

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

466 l S. 6. Davidson

3. PERFORMANCE EVALUATION

Simulations were run which generated transactions for each partition group,
computed the precedence graphs, and determined the percentage of transactions
which had to be backed-out to make the graph acyclic, using a given backout
strategy. They were used to measure the performance and feasibility of the
optimistic protocol as a whole, as well as to study the effects of different backout
strategies (see Appendix 1; [29] contains more extensive testing results). The
results indicated conditions under which the optimistic protocol performs well
and gave insight into how cycles should be detected, leading to an improved
backout strategy, presented in the next section.

The following input parameters and assumptions were used in the simulation:

(1) there were M data-items in the (completely replicated) database;
(2) N1 (N2) transactions were processed in P1 (P2);
(3) references to data-items were uniformly distributed over the M data-items;
(4) the number of items referenced by each transaction T(] READSET I)

was based on a truncated exponential distribution with mean I;
(5) the mean percentage of read-only transactions in each partition was RO;
(6) for the read-write transactions, the mean percentage of updated items was

For each set of parameters N,, N,, RO, U, M, and I, 50 to 100 trials were made.
In each of the graphs in Appendix 1, points correspond to the mean of these
trials.

The choice of backout strategy had a noticeable effect on the performance of
the protocol. One that performed particularly well detected and broke two-cycles
(cycles involving only two nodes, one from P1 and one from Pz) before looking
for longer cycles: not only were fewer transactions backed out on the average,
but the simulation ran much more quickly since two-cycles are easier to detect
than longer cycles. In fact, it was observed that very few long cycles remained
after all two-cycles were broken (see Figure 3.1).

The simulation was also run changing the distribution of references to data-
items. New parameters were A,p,, andp, :A of the M data-items were referenced
with probability p1 and the remaining (M - A) data-items were referenced with
probability p2,

A*pl+(M-A)*pz=l.

Input to the simulation was modified to specify (M - A) :A and p2 :pl. Figure
3.2 compares results using a uniform distribution of reference to results using
the 80-20 rule: 20 percent of the data-items were referenced 80 percent of the
time. Performance deteriorated since the effective number of data-items de-
creased; that is, most of the transactions referenced a very small portion of the
database, creating a lot of conflicts. This argues that references should be
uniformly distributed over a large number of data-items (assuming that references
from different partitions intersect at all).

In general, the protocol seems to perform best when

(1) the total number of transactions is small,
(2) there is a large percentage of read-only transactions,
ACM Transactions on Database Systems, Vol. 9, No. 3, September 1934.

Optimism and Consistency In Partitioned Distributed Database Systems l 467

Total number of
transactions

% times of Average number of
long cycles long cycles

10 100 5 1.0
20 100 34 1.2
10 500 0 0.0
20 500 6 1.0
30 500 10 1.0
40 500 14 1.0
60 500 30 1.3
10 750 0 0.0
20 750 0 0.0
30 750 10 1.0

40 750 6 1.0
60 750 14 1.1
80 750 40 1.4
10 1000 0 0.0
20 1000 0 0.0
30 1000 3 1.0
40 1000 4 1.0
60 1000 6 1.0

Fig. 3.1. Simulation results. Percentage of times long cycles re-
main after breaking all two-cycles; and the average number of long
cycles remaining when resulting graph is not acyclic.
(I = 5, RO = 0.5, U = 0.5, Backout Strategy 2.)

(3) the percentage of updated items within read-write transactions is small,
(4) there is a large number of data-items in the database.

Distributed database systems using this protocol during partition failures could
encourage the above conditions by increasing the granularity of data-item refer-
ence when failures occur, thus effectively increasing the number of items in the
database. A warning message could also be given to users of the system, explaining
that there is a partition failure and that transactions cannot be committed until
recovery. It could also suggest that read-write transactions should only read the
data-items relevant to the results written (that is, values in WRITESET
should indeed be functionally dependent on values in READSET(and that
nonurgent read-write transactions should be delayed until repair is completed.
Users then have the freedom to use their knowledge of the system to temper
their actions during failure: users who know that they will be the only ones
assessing the portion of the database they are interested in could continue to run
transactions freely.

These performance results were verified by probabilistic analysis, and a formula
for the expected number of transactions backed-out when a strategy which breaks
two-cycles first is used was derived. These results can be found in [6].

The optimistic protocol can perform very poorly, and then it can perform very
well. It is clearly not feasible in situations where a very large percentage of
transactions (say 40 percent or more) are on the average backed-out; it would be
better to temporarily disable all of the sites in one of the partitions, or adopt
some other restrictive transaction protocol, than to have such a large backout

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

50

40

6
a
3 30
P
q

a
2
5
2 5 20

t=
E

10

I= 5, R@= 0.5, U= 05. NI:N2=l:l (using Bac’aout Strategy 2)
P,/F’1=0.06Z5. A/(M-A)=4 -

P&=1. A/@-A)=1

I= 5, RO= 0.5, U= 05. NI:N2=l:l (using Bac’aout Strategy 2)
P,/F’1=0.06Z5. A/(M-A)=4 -

P&=1. A/@-A)=1

M= 7.50

0 10 20 30 40 M 60 70 80 90 100 200

Total Number of Transactions
(N,+b)

I= 5, RO= 03, U= 05, N,:NI=I:I (using Backout Strategy 2)

P,/p1=0.062S. A/(M-A)=4 -

P,/p;=l. A/(M-A)=1 _----

0 10 20 30 40 50 60 70 80 90 100 200

Total Number of Transactions
(N,+N,)

Fig. 3.2. Simulation results. Percentage of transactions backed-out versus total number of transac-
tions (using Backout Strategy 2).

M- 1000

M= 1000

Optimism and Consistency In Partitioned Distributed Database Systems l 469

rate. Each application must decide what is an acceptable backout rate. A maximal
backout rate of 5 or 10 percent may be quite acceptable to applications whose
primary purpose is to keep users or customers happy. As in the example used in
the Introduction, if branches of a bank represented the sites in a completely
replicated distributed database system and a partition failure occurred, the bank
would certainly lose a customer if it refused to process a withdrawal or deposit a
transaction on the customer’s account. The bank should be willing to accept
responsibility for the failure of its own system and automatically rerun backed-
out transactions without inconveniencing the customer. Of course, the foxy
customer who knows of (or causes) the partition failure could swindle the bank
by withdrawing all the money from his account at two different branches during
the failure. However, this requires quite an effort on the customer’s part; stores
take a greater risk every day when they accept personal checks, and generally
know less about the customer than the bank does. Banks may be willing to take
such risks to maintain their clientele.

4. MINIMAL BACKOUT OF TWO-CYCLES

The problem of selecting the minimum number of transactions whose deletion
breaks all cycles in the precedence graph is, in general, NP-complete. However,
suppose we concentrate on breaking all two-cyles optimally, and forget about
longer cycles. Since longer cycles in practice often do not exist after all two-
cycles have been broken, there is a very good chance that this will break aZE cycles
optimally. It turns out that this problem has a polynomial-time solution.2 That
is, finding the minimum number of nodes to break all cycles in a precedence
graph consisting only of two-cycles and ripple edges has a solution which is
polynomial in the number of nodes in a partition.

Strategy 4. Breaking two-cycles optimally. (Strategies 1, 2, and 3, in Appendix
1)

Step 1. Transform the directed precedence graph G = (V, E) to an (undirected)
bipartite graph ([21]) Ga = (VI, V2, EB) as follows:

(1) VI consists of all nodes in V corresponding to transactions in PI; Vz consists
of all nodes in V corresponding to transactions in PO.

(2) To compute Ee: Create the intermediate directed graph G’ = (VA, E*) where
V = V and E^ consists of all ripple edges in E between nodes in PI, the
reverse of all ripple edges in E betweeen nodes in Pz, and all interference
edges from a node in Pz to a node in P, that are part of a two-cycle in G.
Compute the transitive closure of GA; add to EB all (undirected) edges ui - Uj
such that ni E V,, Uj E V,, and Ui + Uj is a (directed) edge in the transitive
closure of G.-

Step 2. Find the minimum cardinality covering all edges by nodes in GB. This
is also the minimum cardinality set that breaks all two-cycles in G, taking ripple

‘This does not extend to merging three or more partition groups; see [29] for the proof of its NP-
completeness.

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

470 l S. B. Davidson

effects into account. For example,

Precedence graph G Intermediate graph G A
(directed) (directed)

Bipartite graph GB
(undirected)

TlT-----+ T,, + T-

f f

11

TI, T12 7’22

i f

T13 T13

(h)Ripple edge (+)Interference edge

Minimal solution: (T2,, T22)

Precedence graph G
(directed)

Intermediate graph G *
(directed)

Bipartite graph GB
(undirected)

TAB-----TZI
1
Tl2

f, \

7’22

T13 T23

Minimal solutions: (T,, , Tl2, 7’131, (T21, T22, T231

THEOREM 4.1 Given a precedence graph G whose only cycles are two-cycles,
Strategy 4 produces a minimum cardinality backout set.

PROOF. Every minimal solution to GB is a solution to G.
Suppose not. Then there is a minimal solution S to GB that is not a solution

to G.

Case 1. S does not break all cycles in G. By definition, S must cover every edge
in the bipartite graph GB. But since edges in GB correspond exactly to cycles in
G, deleting S in G must break all cycles in G. Contradiction.

Case 2. S violates a ripple edge Ti * Tj in G. That is, Ti was chosen but Tj
was not. But since Tj in GB has an arc to every Tk connected to Ti in Gs and S is
ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

Optimism and Consistency In Partitioned Distributed Database Systems 471

a solution to GA, then every such Tk must have been chosen. Then Ti need not
have been chosen, and S is not minimal for Gs.

Every solution to G is a solution to Gs.
Suppose not. Then there is a solution S to G that is not a solution to GB. We
know two facts about S:

Fact 1. S breaks all two-cycles in G.
Fact 2. Whenever Ti E S and there is a ripple edge Ti + Tj, then Tj E S.

If S is not a solution to GB, it is because some arc (Ti, Tj) has neither Ti nor Tj
in S. This arc could have been obtained from G in one of three ways:

(1) An arc added in Step 2 due to a two-cycle involving Ti and Tj. But we noted
in Fact 1 that S breaks all two-cyles, so one of Ti, Tj must have been chosen.

(2) An arc added in Step 2 due to the following construct:

But since we noted in Fact 1 that S breaks all cycles, one of T, and Ti must
be chosen. Furthermore, if T, were chosen, then so would Tj be, by Fact 2.

(3) An arc added in Step 2 due to the following construct:

From Fact 1, either T, or TY has been chosen. From Fact 2, either Ti or Tj
has been chosen.

Every minimal solution to GB (G) is a minimal solution to G (Ge).
Suppose not. Then there is some S which is a minimal solution to Gs, hence is
a solution to G, but not minimal. Then there is a smaller solution S A to G which
is also a solution to Ga. Therefore S cannot be minimal. (The other direction is
similar.) Cl

Analysis of running time. The transformation of G to Gs is boun{ed by the
cost of computing the transitive closure of the intermediate graph G , which is
equivalent to multiplying two Boolean matrices (see [l] for an O(N2.81) solution).
The asymptotically fastest algorithm known for the bipartite matching problem
is 0(] V] O.’] E]) [13]. Since the minimum cardinality covering of edges by nodes
problem is the dual of the maximum cardinality matching problem in bipartite
graphs, this bipartite matching algorithm can be used for an O(N*.“) algorithm
solving the minimum cardinality covering problem.

This backout policy was used in simulation runs with excellent results; in most
cases all cycles were broken, and when there were longer cycles remaining, an
optimal solution could often be obtained by deleting one or two extra nodes (see
[5] for examples of successful and unsuccessful runs).

If the transactions are given a positive integer backout cost that is less than
or equal to some fixed upper bound C, then Strategy 4 can be used to minimize

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

472 l S. 6. Davidson

the total backout cost of breaking all two-cycles (note that until this point, each
transaction has essentially had a backout cost of 1).

Strategy 5. Breaking two-cycles optimally with weighted transactions
Transform GH = (V,, V,, ER) to bipartite graph GB = (Vi, Vi, Ei) as follows.
For each node Ti with cost ci in VI or VP, add ci nodes Ti1, Ti2, . . . , Tici to VT or
Vi. For each arc (Ti, Tj) in E, add to E - the ci * cj edges forming the complete
bipartite graph of nodes Tilt . . . , Tici and Tj,, . . . , Tjcj. Then finding a minimum
cardinality covering of edges by nodes in Gi corresponds to finding a minimum
cost covering of edges by nodes in GB.

THEOREM 4.2. Given a precedence graph G with weighted nodes whose only
cycles are two-cycles, Strategy 5 produces a minimum cost backout set.

PROOF. The claim is that finding a minimum cardinality covering of edges by
nodes in GR corresponds to finding a minimum cost covering of edges by nodes
in GB. First note that any solution S^ to G;I either picks all of Til, . . . , Tici or
none at all. This corresponds to choosing node Ti in GB. Suppose on the contrary
that some of Ti,, . . . , Tici were chosen, but others were not.

Case 1. Let 11 represent the subset of Til, . . . , Tic, that is in the solution S’,
and ** represent the subset that is not in S . Consider the following edges in
E’ representing the edge (Ti, Tj) in E.

Ti nodes: Tj nodes:

II ‘-.,,-’
/\ ”

’ ‘

Since S^ is a solution, all of the above edges must be covered by a node in S^.
However, none of the edges marked by a solid line are covered, a contradiction.

Case 2. Consider the following edges in EA.

Ti nodes: Tj nodes: II x II ** II
Since S is a solution, all of the above edges must be covered by a node in S
and S^ must be minimal. All of the above edges are covered, but there is a smaller
solution with none of the Ti nodes chosen. For otherwise there must be another
group of nodes Tk with (Ti, Tk) in E and some of Tkl, . . . , Tkc, not in S^; that
is, the chosen Ti nodes must be covering some edges in EA that would not
otherwise be covered. But the (Ti, Tk) edges are an example of Case 1 which has
been shown not to exist. So S* is not minimal, a contradiction.

Given solution S’ to Gi with either all of Til, . . . , Tic, chosen or none chosen,
the corresponding solution S to GB is also minimal. Otherwise, there is a smaller
solution S, to GH, which implies a smaller solution to S; to GB) a contradic-
tion. 0
ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

Optimism and Consistency In Partitioned Distributed Database Systems l 473

Analysis of running time. The transformation of Gs to GB involves a blowup
of nodes in VI (V,) bounded by C *] VI] (C *] V2]) and a blowup of edges
boundedbyP* IEl.

This section has shown that when no long cycles remain after breaking all
two-cycles optimally, both the problem of finding the smallest set of transactions
to back-out to regain mutual consistency and of minimizing total backout cost
have polynomial-time solutions. Thus, in practice, a minimal solution for the
transaction backout problem can often be obtained using Strategies 4 and 5. In
the cases where the precedence graph is not acyclic after using these algorithms,
a “good” solution can usually be obtained by adding a few more nodes to the
preliminary solution [6]. However, the results of Section 2.3 discourage attempts
to find an algorithm to find the optimal solution when the algorithm of this
section fails to break all cycles in the precedence graph.

5. DISCUSSION AND CONCLUSIONS

5.1 Extensions to the Procotol

Transaction processing during recovery. Since high data-accessibility is one of
the advantages of the optimistic protocol, it is desirable to minimize the time
during which transactions are forbidden to access data-items during recovery.
Initially, however, all transaction processing must be temporarily suspended
since neither partition knows what data-items were updated by the other parti-
tion. After the coordinator has received all the transactions, data-items which
were updated in either partition group must be locked at all sites, but transactions
accessing other data-items can safely execute. Additional locks may be released
after the coordinator has determined BS (the set of transactions backed out) and
KS (the set of transactions kept); data-item d must only be locked at sites in Pi
if d E WRITESET where either

(1) T was executed in Pi and T E BS, or
(2) T was not executed in Pi and T E KS.

That is, a data-item can safely be unlocked at a site when its value is known to
be correct. Until then, the value must be assumed to be incorrect and the data-
item must not be accessed.

Multiple failures. The comment was made in Section 1 that the optimistic
protocol is resilient in the face of multiple failures. Since in a reliable distributed
database system, partitions should be the exception rather than the rule, this
should not be a major concern. However, this protocol can be extended to handle
various types of multiple failures. (For a discussion of detecting mutual inconsis-
tency in the face of multiple failures in file systems, see [22].)

(1) K-partitions. The communication subsystem could fail simultaneously in
several places, creating more than two partition groups. If, when recovery
occurred, K partition groups needed to be merged, they could either merge
pairwise until a single partition group was formed, or the precedence graph
definition could be extended. That is, G(H,, Hz, . . . , Hk) would model conflicts

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

474 ’ S. B. Davidson

between transactions in all the partitions. In both cases, the problem of mini-
mizing total backout cost becomes more complex.

(2) Failures and recovery are tree-structured. Suppose the system contains
sites S,, S2, S3, and &, and that failure and recovery occur as follows: (&, Sp,
83, &I - IS,, S,){S,, S4J ---, I’%, s,t(s3)(&] + b%, sPjis3, ‘%I -+ b% ‘92, ‘93,

$1. When (S,] and (&) are merged, the precedence graph need only contain
transactions processed since the failure that separated Ss and S4 occurred. When
I&, &I and I&, &I are merged, the precedence graph need only contain
transactions that remain from the merge of (Sg 1 and (S4); transactions backed-
out in that merge can be ignored.

(3) Nontree structured failure and recovery. Suppose again that the system
contains sites S1, S2, S3, and &, but that recovery does not happen neatly as in
the previous example. Thus (S,, SZ, S3, &) + (Si, &](S3, &J + (Si, S2](&](&)
-+ I&, SP, S3l&) --+ ISI, SZ, SS, &I. When ISI, SZJ and &I merge, all
transactions since the first failure must be contained in the precedence graph.
Furthermore, the group (&, S2, S3) must remember which transactions were
backed-out of (S,) from the time that S3 and Sq formed the partition group (S3,
&I. When IS,, Sz, S3) and IS,) are merged, transactions backed-out from the
first merge must be deleted from the global history of (&), and any transactions
performed since. S3 and Sd split, which functionally depend on deleted transac-
tions, must automatically be backed-out. The precedence graph can then be
constructed from the remaining transactions in the global histories of (S1, S2,
&I and b’bl.

Nonreplicated data. The protocol can already handle nonreplicated data-items.
There is obviously no way that data-items can be accessed if they are not present
within the partition group; transactions attempting to read inaccessible data-
items will not be able to execute until the failure is repaired. Write-write conflicts
will not occur over nonreplicated data. However, transactions accessing only
nonreplicated data-items may still be involved in cycles and must still be present
in the precedence graph. Consider T1, in the following example.

Example 5.1.1. Let d2 be a data-item accessible only in P1, whereas di and d3
are accessible in both partitions.

T,,: READ dl, dz t T21: READ dl, d3, WRITE d3

i

WRITE dl, d2

T,2: READ d2

i

WRITE d2

/
T13: READ dz, d3

So, although transactions accessing only nonreplicated data-items cannot be
simply ignored, they do not present any new problems in the precedence graph
definition.
ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

Optimism and Consistency In Partitioned Distributed Database Systems 475

5.2 Directions for Future Research

The author is currently studying how to use semantic information to minimize
or resolve conflict. There are quite a few ways in which this can be done, for
example:

(1) Use semantic knowledge at failure to split shared data-items and create
new data-items which are unique to each partition. These can then be automat-
ically recombined at recovery. An example of this was given in [12]:

An airline reservation system. Let SEATS represent the number of seats still
available on a particular flight, and suppose a partition occurs. Based on local
information, such as how many sites are in the partition, PI creates SEATS1
containing 40 percent of the value of SEATS, and Pz creates SEATS2 containing
60 percent of the value of SEATS. No conflicts would occur since neither partition
would be selling seats belonging to the other partition. SEATS = SEATS1 +
SEATS2 at recovery would restore SEATS to its actual value.

(2) Use semantic knowledge to merge values of shared data-items at recovery
(i.e., to resolve conflict). Suppose that the distributed database had incomplete
information [17]. In such a system, the values of data-items can take on any
subset of the domain for the data-item. For example, the age of John Doe may
be recorded as “less than 30.” If, during a failure, the system continues to gather
information about John Doe’s age and, at recovery, partition PI has his age as
“between 20 and 30,” while partition P2 has his age as “between 15 and 25,” it
would be reasonable to take the intersection of these values and conclude that
his age is “between 20 and 25.”

The preceding examples are interesting but not easy to generalize. Another
approach is to work with the commutativity of transactions or classes of trans-
actions [lo, 181 to minimize the number of edges in the precedence graph.

Other areas deserving of further research are mechanisms for detecting parti-
tion failures, and how to handle failures that occur while recovery is being
performed.

5.3 Conclusions

Summarizing the results from Section 3, the optimistic protocol performs “well”
when the number of write-write conflicts is small. This occurs when

(1) there is a relatively small number of transactions. The protocol should be
used when the partition failure can be repaired in a short period of time, or when
updates are infrequent. The system could also decrease the number of transac-
tions submitted during the partition failure by requesting users to delay nonur-
gent transactions until repair is completed.

(2) there is a relatively large number of data-items in the database. The system
could effectively increase the number of data-items by increasing granularity
when a partition failure occurs. The distribution of data-item reference should
also be more or less uniform; better yet is if the overlap of reference between
partitions is known to be small (as in the bank account example).

(3) there is a large percentage of read-only transactions; within read-write
transactions the percentage of updated items should be small. Transactions

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

476 . S. B. Davidson

should read only the data-items necessary to compute values for the updated
items.

(4) the size of transactions is small. Users should be encouraged to break their
transactions into small, unrelated units whenever possible, and submit as separate
transactions.

The performance of the optimistic protocol can also be improved by using a
backout strategy which breaks two-cycles intelligently, and then intelligently
breaks longer cycles, if any remain. In Section 4 an algorithm was presented
which optimally breaks two-cycles, minimizing total backout cost when no cycles
remain.

The optimistic protocol could prove worthwhile for many applications. If the
expected failure rate is sufficiently small, the inconvenience of occasionally
having to resubmit a transaction is offset by the increased reliability and
availability of the system. Examples of such applications follow.

Ban/&g system. This example has already been mentioned. The assumption
that few, if any, customers will access their accounts at two different branches
during a single partition failure minimizes the probability of write-write conflicts.
Since customers would not be irritated by possibly being denied access to their
accounts, the bank would benefit by using an unrestrictive protocol during
partition failures.

Airline reservation systems. The underlying database of flight information is
fairly large, and references to flights are probably pretty evenly distributed. Many
transactions are read-only: “Is there a flight connecting with flight #207 in
Chicago?” “ Are there seats available on flight #309 to Los Angeles?” “Is flight
#327 arriving at 3:09 in Newark on time ?” etc. People wishing to book seats
could be told that their reservations were conditional; backed-out transactions
could be automatically rerun and confirmed, unless the flight became overbooked,
in which case the customer could be consulted.

Periodic updating system. Consider a system whose primary application is to
disseminate information (read-only transactions) and to periodically receive new
information at the site closest to where the information is generated (read-write
transactions). An example of this could be a weather predicting system, with
sites located at major cities throughout the country. Information about weather
conditions within each city would be received at that city, or at the nearest
available site if the city site were unreachable or down. Information would then
eventually be sent throughout the country. Weather predictions for each city are
made based on the global information at each site. Should a partition failure
occur, write-write conflicts would be very unlikely, since updates for the same
data-item would occur at most a few times during a partition failure, and would
probably be sent to the same site, hence be made within the same partition group.
Predictions made during a partition failure could be labeled as “uncertain” if
heavily based on old information (information available at the time of the failure
that is being updated in the other partition group), or delayed until recovery.
Since predictions are usually subject to error, “backing-out” a transaction would
only amount to a “revised” forecast.
ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

Optimism and Consistency In Partitioned Distributed Database Systems l 477

ACKNOWLEDGMENTS

The author is grateful to IBM for their support of this research; to the referees
for their suggestions; and to Hector Garcia-Molina for his corrections, insights,
and improvements at all stages of this paper.

APPENDIX 1

Backout Strategies and Simulation Results

Examples of three “on-line” backout strategies follow. They were chosen for the
ways in which they differ. Strategy 1 differs from Strategy 2 only in the cycle
detection phase, and tends to find long cycles before short cycles since interfer-
ence edges are considered last. Strategy 2 differs from Strategy 3 only in the
cycle breaking phase, and tries to break cycles intelligently.

Strategy 1
(1) Detection. Cycles are detected from the remaining (nonbacked-out) nodes

as follows (assuming the ordering r,, < T,, < . . . < Tl~, < T,, < . . . T,,):

for LOW = T,, to TzN2 do

Detect all cycles whose “smallest” node is LOW (unless LOW has already been deleted).
In building the cycles, consider ripple, then precedence, then interference edges in sorted
order.
od

(2) Cycle breaking. Each node is given a weight, defined as the number of
nodes connected to it via ripple edges. This weight is static and does not change
to reflect the number of existing nodes connected via ripple edges as nodes are
deleted. Cycles are broken by deleting the node with lowest weight, together with
its closure with respect to ripple edges. If at any point the total number of nodes
deleted exceed N,, then all nodes in PI are chosen instead, and the algorithm
terminates.

Strategy 2 .

(1) Detection. Two-cycles (cycles involving only two nodes, one from PI and
one from P2) are detected from remaining nodes as follows:

for T = T,, to TIN, do
Detect all two-cycles involving T (unless T has already been deleted), considering
interference edges in sorted order.
od

If the precedence graph of remaining nodes still contains cycles after this step,
use the detection strategy in the first example to break remaining cycles.

(2) Cycle breaking. Same as in Strategy 1.

Strategy 3

(1) Detection. Same as in Strategy 2.

(2) Cycle breaking. Delete node from P, to break two-cycles. Longer cycles are
broken by deleting the minimum weight node from P, .

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

I= 5. RO= OS, V= OS, N,Ni,=l:l

Backout Strategy 1 -----

Backout Strategy 2

U 10 20 30 40 50 60 70 80 SO 100
200

Total Number of Transactions
h+N,)

I= 5. RO= 05, V= 055. N&=1:1

Backout Stratca 1 -- - - -

M= MO

40 - /’
/

/
/ 5 / /

/ 3 / At xl- /
0 /
al
2
.o
5
; 20 -
2
k.
s

10 -

0
0 10 20 30 40 50 60 70 80 90 100

200

Total Number of Transaclions
(N,+N,)

Fig. 6.1. Simulation results. Percentage of transactions backed-out versus total number of transac-
tions (using Backout Strategies 1 and 2).

M

40

30

20

10

0

I= 5, RO= 05. U= 05, N,&=l:l

Backout Stratqy 2

Backout Strategy 3 B-m-_

I I , , , , 0 10 20 30 40
50 60 70

1
80 90 100 200

Total Number of Transactions
(WN,)

I= 5, RO= 05, IJ= 05. N,P$-1:l

Backout Strategy 2

"1
Backout Strategy3 -----

‘Total Number of Transactions
h+N,)

Fig. 6.2. Simulation results. Percentage of transactions backed-out versus total number of transac-
tions (using Strategies 2 and 3).

480 l S. B. Davidson

Figure 6.1 compares Strategy 1 with Strategy 2, and indicates that Strategy 2
performs better. Not only were fewer transactions backed-out on the average,
but the simulation ran much more quickly since two-cycles (cycles involving only
two nodes) are easier to detect than longer cycles. In fact, it was observed that
very few long cycles occurred after all two-cycles were broken (see Figure 3.1).

Figure 6.2 compares Strategy 2 with Strategy 3. When the backout rate
(percentage of transactions backed out) is “small,” that is, less that about 25
percent, Strategy 2 seems slightly preferable to Strategy 3. The two strategies
differ only in how cycles are broken: Strategy 2 tries to be smart and choose the
smallest number of nodes to break any cycle, while Strategy 3 settles for nodes
in a given partition (PI). When the backout rate is “large,” Strategy 3 outperforms
Strategy 2. This is reasonable, since, when a lot of nodes have been deleted, the
static weights are more likely to be inaccurate, and Strategy 2 is not as smart in
its node selection. Also, when more than N1 transactions are chosen in Strategy
2, it gives up and deletes all nodes in PI, reducing to the cycle-breaking method
of Strategy 2.

REFERENCES

1. AHO, A.V., HOPCROFT, J.E., AND ULLMAN, J.D. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, Mass., 1974.

2. ALSBERG, P.A., AND DAY, J.D. A principle for resilient sharing of distributed resources. In
Proceedings 2nd International Conference on Software Engineering (Oct. 13-15, 1976), 562-570.

3. BERNSTEIN, P.A., ROTHNIE, J.B., GOODMAN, N., AND PAPADIMITRIOU, C.A. The concurrency
control mechanism of SDD-1: A system for distributed databases (the fully redundant case).
IEEE Trans. Softw. Eng. 4,3 (May 1978), 154-167.

4. BERNSTEIN, P.A., SHIPMAN, D.W., AND WONG, W.S. Formal aspects of serializability in
database concurrency control. IEEE Trans. Softw. Eng. 5,3 (May 1979), 203-216.

5. DAVIDSON, S.B., GARCIA-M• LINA, H., AND SKEEN, D. Consistency in the face of partition
failures: A survey. Tech. Rep. TR#84-4, Dept. of Computer and Information Sciences, Univ. of
Pennsylvania, Feb. 1984.

6. DAVIDSON, S.B. An optimistic protocol for partitioned distributed database systems. Ph.D.
dissertation, Dept. of Electrical Engineering and Computer Science, Princeton Univ. Princeton,
N.J., Oct. 1982.

7. ESWARAN, K.P., GARY, J.N., LORIE, R.A., AND TRAIGER, I.L. The notions of consistency and
predicate locks in a database system. Commun. ACM 19, 11 (Nov. 1976), 624-633.

8. GAREY, M.R., AND JOHNSON, D.S. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co., San Francisco, 1979.

9. GARCIA-M• LINA, H. Elections in a distributed computing system. IEEE Trans. Comput. C-31,
1 (Jan. 1982), 48-59.

10. GARCIA-M• LINA, H. Using semantic knowledge for transaction processing in a distributed
database. ACM Trans. Database Syst. 8, 2 (June 1983), 186-213.

11. GIFFORD, D.K. Weighted voting for replicated data. In Proceedings 7th Symposium on Operating
System Principles (Pacific Grove, Calif., Dec. 10-12, 1979), ACM, New York, 150-162.

12. HAMMER, M.M., AND SHIPMAN, D.W. The reliability mechanisms of SDD-1: A system for
distributed databases. ACM Trans. Database Syst. 5, 4 (Dec. 1980), 431-466.

13. HOPCROFT, J.E., AND KARP, R.M. An nz5 algorithm for maximum matching in bipartite graphs.
J. SIAM Comput 2 (1973), 225-231.

14. JOHNSON, D.B. Finding all the elementary circuits of a directed graph. SIAM J. Cornput. 4
(1975), 77-84.

15. KARP, R.M. Reducibility among combinatorial problems. In Complexity of Computer Compu-
tations, R.E. Miller and J.W. Thatcher, Eds., Plenum Press, New York, 85-103.

16. LAWLER, E.L. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Win-
ston, New York, 1976.

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

Optimism and Consistency In Partitioned Distributed Database Systems l 481

17. LIPSKI, W. On semantic issues connected with incomplete information databases. ACM Trans.
Database Syst. 4, 3 (Sept. 1979), 262-296.

18. LYNCH, N.A. Multilevel atomicity-a new correctness criterion for distributed databases. ACM
Trans. Database Syst. 84 (Dec. 1983), 484-502.

19. MINOURA, T., AND WEIDERHOLD, G. Resilient extended true-copy token scheme for a distrib-
uted database system. IEEE Trans. Softw. Eng. SE8,3 (May 1982), 173-189.

20. PAPADIMITRIOU, C.H. The serializability of concurrent database updates. J. ACM 26, 4 (Oct.
1979), 631-653.

21. PAPADIMITRIOU, C.H., AND STEIGLITZ, K. Combinatorial Optimization: Algorithms and Com-
plexity. Prentice Hall, Englewood Cliffs, N.J., 1982.

22. PARKER, D.S., POPEK, G.J., RUDISIN, G., STOUGHTON, A., WALKER, B., WALTON, E., CHOW,
J., EDWARDS, D., KISER, S., AND KLINE, C. Detection of mutual inconsistency in distributed
systems. In Proceedings 5th Berkeley Workshop on Distributed Data Management and Computer
Networks (Feb. 1981), 172-183.

23. PARKER, D.S., AND RAMOS, R.A. A distributed file system architecture supporting high avail-
ability. In Proceedings 6th Berkeley Workshop on Distributed Data Management and Computer
Networks (1982), 161-183.

24. REINGOLD, E.M., NEIVERGELT, J., AND DEO, N. Combinatorial Algorithms: Theoty and Practice.
Prentice-Hall, Englewood Cliffs, N.J., 1977, 348-352.

25. ROTHNIE, J.B., AND GOODMAN, N. A survey of research and development in distributed
database management. In Proceedings 3rd International Conference on Very Large Databases
(Tokyo, Oct. 1977), 48-61.

26. STEARNS, R.E., LEWIS, P.M., II, AND ROSENKRANTZ, D.J. Concurrency control for database
systems. In Foundations of Computer Science (1976), 19-32.

27. THOMAS, R.H. A solution to the concurrency control problem for multiple copy databases. In
IEEE Compcon (Spring 1978), 56-62.

28. TRAIGER, I.L., GRAY, J.N., GALTIERI, CA., AND LINDSAY, B.G. Transactions and consistency
in distributed database systems. IBM Res. Rep. RI2555 33155, June 5, 1979.

29. WRIGHT, D.D. Merging partitioned databases. Ph.D. dissertation, TR83-575, Dept. of Computer
Science, Cornell Univ., Ithaca, N.Y., Sept. 1983.

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984.

