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A protocol for transaction processing during partition failures is presented which guarantees mutual 
consistency between copies of data-items after repair is completed. The protocol is “optimistic” in 
that transactions are processed without restrictions during failure; conflicts are then detected at 
repair time using a precedence graph, and are resolved by backing out transactions according to some 
backout strategy. The resulting database state then corresponds to a serial execution of some subset 
of transactions run during the failure. Results from simulation and probabilistic modeling show that 
the optimistic protocol is a reasonable alternative in many cases. Conditions under which the protocol 
performs well are noted, and suggestions are made as to how performance can be improved. In 
particular, a backout strategy is presented which takes into account individual transaction costs and 
attempts to minimize total backout cost. Although the problem of choosing transactions to minimize 
total backout cost is, in general, NP-complete, the backout strategy is efficient and produces very 
good results. 

Categories and Subject Descriptors: H.2.2. [Database Management]: Physical Design-recouery 
and restart; H.2.4 [Database Management]: Systems-distributed systems, transaction processing 
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Additional Key Words and Phrases: Serializability, network partitioning, consistency 

1. INTRODUCTION: DESCRIPTION OF THE PROBLEM 

Partition failures are a major threat to the reliability of distributed database 
systems and to the availability of replicated data. A partition failure is said to 
occur when subsets of the database sites can no longer communicate due to a 
failure in the communication subsystem. However, in many systems (notably 
SDD-l), it is impossible to differentiate a failure in the communication subsystem 
from site failure. In such systems, partition failures are caused by either com- 
munication subsystem or site failures, and thus occur more frequently. Since 
there may be replicated data in distributed database systems, transaction proc- 
essing protocols must guarantee that mutual consistency is maintained between 
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copies of data-items. During partition failures, however, loss of communication 
between sites may allow copies of data-items to diverge, unless restrictions are 
imposed on the transaction processing protocol. Most of the protocols which 
have been suggested for transaction processing during partition failures assume 
that transactions cannot be backed out once they have been committed; for 
example, a transaction which hands out cash to a customer is irreversible. These 
protocols, therefore, avoid executing conflicting transactions, and guarantee 
mutual consistency throughout the partition failure by limiting the availability 
of replicated data. Rules are given which guarantee that each (replicated) data- 
item is accessible in at most one partition group; updates are simply forwarded 
at recovery. Examples of such protocols are voting [ll, 271, tokens [19], and 
primary site [2, 221. Such restrictions are quite severe, and there is no guarantee 
that every data-item is accessible in at least one partition group: a majority vote 
may not be obtainable in any partition group, tokens may get lost, and the 
primary site may crash without a backup. The reliability of the system is severely 
degraded in terms of users being able to run what jobs they need to get done, 
when they need to do them, and where they want to run them (see [5] for a 
survey of these and other partition failure protocols). 

The protocol advocated in this paper is “optimistic” in the sense that, during 
partition failures, no restrictions are imposed on the users of sites which are up. 
The system attempts to process all transactions, but must delay commitment 
until recovery is completed, at which point conflicting transactions are backed 
out to regain mutual consistency. Note that this assumes that transactions can 
be backed out. This protocol is used by default in many systems (e.g., SDD-1); 
that is, the system does not have a protocol for transaction processing during 
partition failures, so conflict detection and transaction backout are performed 
manually at recovery. Parker, et al. [22] have proposed an automatic conflict 
detection scheme for file systems, and have extended it to transactions which 
access more than one file [23]. However, resolving the inconsistencies is not 
straightforward and is essentially left up to the user. In this paper, a method for 
automatic conflict detection and transaction backout is proposed which can be 
used in a general distributed system with replicated data. A model of conflicts 
between transactions with partitioned data is developed, called a precedence 
graph. Conflicts are detected from cycles in the graph and are resolved by a 
transaction backout strategy which makes inconsistent databases consistent at 
repair time. Backed-out transactions can then be automatically rerun by the 
system, or referred back to the user. 

This approach is attractive since the brunt of the failure is felt more by the 
system than by the user. Availability has not been compromised. In some 
applications this is very important. For example, in military command and 
control applications, partitions may occur because of an enemy attack, and it is 
precisely at this time that we do not want transaction processing halted. In an 
airline reservation system it may be too expensive to have a high-connectivity 
network, and partitions may occur periodically. Many transactions are executed 
each second, and each transaction that is not processed may represent the loss 
of a customer. The airline may therefore be willing to take the risk of temporarily 
overbooking a flight, and allow later cancellations to rectify the situation. In 

ACM Transactions on Database Systems, Vol. 9, No. 3, September 1984. 



458 l S. 8. Davidson 

other situations, few conflicts may actually occur, either because conditions in 
the database minimize the probability of conflict or because semantic knowledge 
or a knowledge of data-reference patterns makes conflicts highly unlikely. For 
example, in a banking system where each site is a branch office containing 
account information for all customers, transactions on accounts probably will 
not conflict; it is very unlikely that a single customer will attempt to access his 
account at two different branches during a single partition failure. The personal 
nature of accounts and geographic restrictions of customers render conflict highly 
unlikely. To further minimize conflict, yet maintain customer satisfaction, rou- 
tine functions such as clearing checks and crediting deposits could be delayed by 
the bank until the failure is repaired. The protocol is also resilient in the face of 
multiple partition failures (see Section 5). The advantages of automating conflict 
detection and transaction backout are obvious: they can be performed very 
quickly, thus decreasing the temporary delay in transaction processing while the 
system recovers from the partition failure, and the cost of backing out transac- 
tions can be kept relatively low if a smart backout strategy is used. 

Section 2 describes automatic conflict detection and backout in detail. Per- 
formance results from simulation and probabilistic modeling are discussed in 
Section 3, and conditions under which the protocol performs well are noted. 
Results from the performance evaluation are then used in Section 4 to develop a 
backout strategy which, given individual transaction costs, attempts to minimize 
the total backout cost. The strategy is shown to be efficient and to produce good 
results. Finally, suggestions as to when and how this approach could be useful 
are made in Section 5, along with a discussion of extensions to the protocol and 
directions for future research. 

2. THE OPTIMISTIC PROTOCOL 

Conflicts and interactions between transactions in centralized and distributed 
systems are often modeled by graphs ([3,4,20]; see [l] for fundamental concepts 
of graph theory). A graph theoretic approach is useful for analyzing local or 
global histories in proving “correctness” (i.e., serializability). Typically, nodes 
represent transactions and conflicts are represented by cycles; acyclic graphs can 
be used to produce an equivalent serial history by a topological sort of the nodes. 
In this section, these graph techniques will be applied to partitioned distributed 
systems; when recovery occurs and two partition groups PI and Pz discover that 
they can communicate, a graph will be created from the global histories of PI 
and P2. Cycles in this graph will represent conflicts between transactions in PI 
and P2. By backing out certain transactions, we can make the graph acyclic, 
which means that the global histories of PI and P2 can be merged to form a 
single, serial global history for PI U P2, thus mutual consistency is regained. 

2.1 Assumptions and Basic Definitions 

A fully replicated distributed database is the context in which partition failures 
will be studied. This special case of a distributed database has been chosen 
because it is a simplified model and is the kernel of the partition problem; mutual 
consistency is threatened during a partition only when multiple copies exist. The 
database consists of a collection of data-items (dl, . . . , dMJ which is stored 
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at every site in the system. Data-items are operated on by transactions consist- 
ing of READ and WRITE actions, and local computation. The set of all 
data-items read (written) by a transaction T will be denoted READ- 
SET(T) ( WRITESET( T)). Transactions have the property that the value which 
is written for a data-item d functionally depends on the values read by that 
transaction and on the previous value of d. Note that this implies that WRITE- 
SET(T) C READSET( At some point in time (time used intuitively), accord- 
ing to some transaction protocol, transaction T is executed at a site in the system 
by performing the READ and WRITE actions and sending update messages to 
other sites in the system to inform them of the new values which have been 
written. It is assumed that every message sent is eventually delivered. 

A partition group is a maximal subset of sites in the system which can 
communicate. New partition groups are created when failure occurs, either node 
or communication subsystem failure, and also when recouery occurs (two previ- 
ously separate partition groups discover that they can communicate). A system 
is partitioned as long as there is more than one partition group present. Note 
that although we only discuss the case of merging two partition groups, recovery 
may not always be pairwise (this extension to the protocol is discussed in Section 
5). 

2.2 A Graph Theoretic Approach to Automatic Conflict Detection and Automatic 
Back Out: An Overview 

It is assumed that in each partition group there is exactly one site designated as 
coordinator, and that update messages are sent only to reachable sites. When a 
site in one partition group P1 discovers that it can communicate with a site in 
another partition group P2, the coordinators in P, and Pz are notified, and local 
processing in each group ceases. The coordinator in Pi then derives a total 
ordering of the transactions performed in its partition group during the failure, 
called the global history Hi [3,28], and the READSET and WRITESET of each 
transaction (for a discussion of how to derive this global history see [6]). Note 
that this assumes that the transaction protocol executing within each partition 
group produces a serializable global history for that group (i.e., that such an 
ordering can be obtained). Using the global histories of P1 and P2, H1 and H,, a 
precedence graph G (see Definition 2.2.1) is constructed. Conflicting transactions 
are detected from the cycles of G, and transactions are backed out until G is 
acyclic. We assume that any transaction can be backed out. Backing-out a 
transaction T involves setting the value of each data-item in WRITESET to 
the value it had when it was read by T. The databases of P, and Pz are then 
merged y sending update messages of nonbacked-out transactions in P1 to P2 
(and ‘ce versa), and a new coordinator is elected for the new partition group 
P, J;p P2 (see [9] for a discussion of elections in distributed systems, and [3,4,20] 
for a description of conflict graphs in unpartitioned systems). 

/.’ The precedence graph. We say that the global histories of the partition groups 
Hl and HZ are serializable if and only if there exists some H, a total ordering of 
the transactions in both H1 and Hz, to which they are equivalent. That is, given 
any set of initial values for the data-items in the database and any interpretation 
of the transactions in H, and Hz, if H were executed in P1 U P2 then each 
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transaction in H would read or write the same values as it read or wrote in the 
execution of HI in PI and HZ in P2. Executing history H in partition P involves 
(1) serially executing the transactions of H in the order defined by H, and (2) 
forwarding updates from one transaction to all sites in P before the next 
transaction is executed. To achieve mutual consistency with serializable H1 and 
Hz, all we need to do is to forward updates in Hz to P1 and in H1 to Pz (in the 
order that the updates were generated). When such an H exists, it will be called 
the merged history of H1 and Hz. 

Example. Let H1 = Tll, Tlz, T13 where 

READSET(T,,) = WRITESET(Tl1) = (dl, dz), 
READSET(Tlz) = {dz, d& WRITESET(Tlz) = (da), 
READSET(T,,) = ids, d4, dsj, WRITESET(Tl3) = {dd], 

and Hz = T2,, Tz2 where 

READSET(T,I) = WRITESET(T,I) = (db), 
READSET(T,,) = (dl, ds], WRITESET(T,,) = ( ). 

Clearly Tz2 must precede T,, since it reads dl, which forces the merged history 
to be H = T,, , Tp2, T12, Tla. But this is incorrect, since T13 then reads d6 after 
Tzl, which has altered the value for d5, Hence, there is a conflict between Tll, 
Tlz, T13 and Tzl, Tz2, and HI and Hz are not serializable. 

Definition 2.2.1. Given H, = Tll, . . . ,TINI and Hz = Tzl, . . . ,TtNz, the prece- 
dence graph G(HI, Hz) = (V, E) is the directed graph defined by 

(1) V = the set of all transactions in H1 and Hz, 
(T,,, . . . , TIN,) u iTa,. . . , TmJ 

(2) E = (Ripple Edges) U (Precedence Edges} U (Interference Edges} 
(.a) Ripple Edges-represent the fact that one transaction read a value 

produced by another transaction in the same partition. 
Tij --, Tik if and only if j < k and there exists some d such that d is in 
WRITESET(Tij) n READSET(Tik) and there is no 1, j < 1< k such that d is in 
WRITESET(Til). 

(b) Precedence Edges-represent the fact that a transaction read a value 
which was later changed by a second transaction in the same partition. 
Tij + Tik if and only if j < k, there is no Tij + Tik ripple edge; there exists some 
d such that d is in READSET(Tij) n WRITESET(Tik) and there is no 1, j < 1< 
k such that d is in WRITESET(Til). 

(c) Interference Edges-represent the fact that if a transaction in one parti- 
tion reads a data-item d, it must precede any transaction which writes a new 
value for d in the other partition. 
Tli + Tzj(Tzi + Tlj) if and only if there exists some d such that d is in 
READSET(T,i) n WRITESET(Tzj)(READSET(Tzi) n WRITESET(Tlj)). 

THEOREM 2.2.2. Given H1 and Hz, the precedence graph G(H,, Hz) is acyclic if 
and only if H1 and Hz are serializable (i.e., equivalent to some merged history H). 

PROOF. (+) Since G(H,, Hz) is acyclic, we can perform a topological sort of 
its nodes to produce a serial ordering of transactions H. The claim is that H1 and 
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H2 are equivalent to H. That is, given any initial state, the values in the final 
state after executing H in P, U Pz are the same as the values in the final state 
after executing HI followed by updates from Hz in P, , and H2 followed by updates 
from HI in Pa. Throughout this proof, G will be used for G(Hl, Hz). We will also 
assume that there is a fictitious first transaction in each history H, H,, and H2 
that reads and writes each data-item without changing its value. This avoids the 
problem of values being read from the initial state. 

Claim 1. Each transaction executed in H reads and writes the same values as 
it reads and writes in HI or Hz. 

(1) The values read by transactions are correct. 
Suppose not. Then there exists some transaction T and data-item d such that 

T reads value y in Hi for d and value x in H for d. Let T be the transaction that 
writes the value of d read by T in H. 

Case 1. (T and T* are in different partitions): An interference edge from T to 
T* forces T to precede TA in H. Contradiction. 

Case 2. (T and T* are in the same partition Hi, and TA follows T in Hi): A 
precedence edge from T to TA forces T to precede TA in H. Contradiction. 

Case 3. (T and T* are in the same partition Hi, and TA precedes T in Hi): 
There must be some transaction T* that writes X, the value of d read by Tin Hi. 
Therefore, the path of ripple edges, T + . . . + T* + T must occur in Hi. This 
forces the relative order of these transactions in H. So T* does not write the 
value of d read by Tin H. Contradiction. 

(2) The values that would be written by transactions in H are correct. This 
follows from the definition of functional dependence and by the fact that the 
values read are correct (for a given set of values read, any transaction will always 
write the same values). 

Claim 2. Each data-item is updated by transactions in at most one partition. 
Otherwise a cycle results. Contradiction. 

Claim 3. The final value for each data-item d in H is written by the same 
transaction as it was in HI and Hz. Since each data-item d is updated in at most 
one of HI and H,, there is at most one “last” transaction in HI and Hz to update 
d. His a topological sort of G, so the “write” ordering of transactions is preserved 
(by ripple edges). Hence, the last transaction to write d in HI and Hz is the last 
transaction to write d in H. 

So for each Hi, any data-item d updated within Pi has the same final value as 
in H since it is written by the same transaction T (Claim 3) in Hi as in H, T 
writes the same value in Hi as in H (Claim l), and the fact that updates from the 
other partition will not include a value for d (Claim 2). Any data-item d that is 
not updated in Pi, but is updated in the other partition, will receive the modified 
correct value when updates are exchanged. Finally, any item d not updated in 
any partition will not be modified by H either. So H is equivalent to HI and Hz, 
.and hence HI and Hz are serializable. 
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(+) Suppose not. Let H be a merged global history equivalent to H1 and Hz. 
If G contains a cycle, then there must be transactions T, and Tb such that T, 
precedes Tb in H, but there is an edge from Tb to T, in G. This implies that T, 
reads a different value in H than in HI (or Hz, depending on where T, was 
executed). Therefore, HI and Hz are not equivalent to H. Contradiction. Cl 

Example 

7’21 

f 

ripple edge: ti 

7’22 interference edge: -+ 

G(Hl, Hz) contains a cycle, and so HI and H2 are not serializable. 

Theorem 2.2.2 tells us that if G(Hl, Hz) is acyclic, then all sites in P, can be 
updated to reflect the transactions that occurred in P2, all sites in PB can be 
updated to reflect the transactions that occurred in PI, and mutual consistency 
is again achieved. If G(HI, Hz) is not acyclic, transactions must be backed-out to 
achieve mutual consistency. This amounts to finding some acyclic subgraph of 
G(H,, Hz). However, note that if transaction T is chosen to be backed-out, then 
every transaction to which there is a directed path of ripple edges from T must 
also be backed-out, since they functionally depend upon T. In the above example, 
if T,, is chosen to be backed-out, then T12 and T13 must also be chosen to be 
backed-out, due to the path of ripple edges T1, --, T12 + T13. Suppose then that 

(Al) Hi and Hi are subsequences of HI and Hz which represent the transac- 
tions that have not been chosen to be backed-out. 

(A2) There is no path of ripple edges from a transaction in Hi - H1 to a 
transaction in H1 (i.e., no transaction in HT functionally depends on a 
transaction which has been backed-out). 

(A3) The precedence graph G(H;, Hi) is acyclic. 

Then what we need to prove is that there exists a merged history which 
accurately models the behavior of the system during the failure and through 
recovery (i.e., that there exists an H which is equivalent to executing HI in PI 
and H2 in P2), backing-out the transactions in (HI - Hi) and (HZ - HZ), and 
forwarding updates from transactions in H; to P2 and H; to PI. Note that, for 
each data-item d modified by a transaction in Hi, we only need to forward the 
update generated by the last transaction in Hi that modifies d; that is, we only 
need the final value of d to merge the two partitions. Also note that transactions 
must be backed-out in reverse order; that is, for each data-item modified by a 
transaction in Hi - H1 we need the value read by the earliest transaction in 
Hi - H;.l 

’ Graph reduction techniques can also be used to substantially reduce the size of the precedence graph 
(see [29]). 
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THEOREM 2.2.3. Given HI, Hi and H,, H;, which follow the assumptions (Al), 
(A2), and (A3), then the following are serializable: 

(1) In PI: executing HI, followed by the backing-out of all transactions in (HI - 
H;), followed by all updates from transactions in Hi in the order in which they 
were generated; and 
(2) in Pz: executing Hz, followed by the backing-out of all transactions in (Hz - 
Hi), followed by all updates from transactions in Hi in the order in which they 
were generated. 

PROOF. Since G(H;, Hi) is acyclic (assumption (A3)), then Hi and Hi are 
serializable by Theorem 2.2.2, and are equivalent to the history produced by a 
topological sort of G(H;, Hi). It is enough to show that executing HC in Pi is 
equivalent to executing Hi in Pi, followed by the backing-out of all transactions 
in (Hi - HT). 

Claim 1. Each transaction in Hi would read (and hence write by the definition 
of functional dependence) the same values as in H;. This follows from the fact 
that the relative order of transactions is the same in Hi as in Hi (Hi is a 
subsequence of Hi, assumption (Al)), and that every transaction in H: function- 
ally depends on the same transactions as it did in Hi (assumption (A2)). 

Claim 2. Each data-item d has the same final value in Hi as it does after 
executing Hi, followed by the backing-out of transactions in Hi - HT . Since 
transactions read and write the same values in HZ as in Hi (Claim l), it is enough 
to show that the same transaction writes the final value for d in HZ, as in Hi. 

Case 1. d is not updated in Hi. Then it is not updated in H; , and the value of 
d is the initial value. 

Case 2. d is updated in both Hi and Ht. Consider the last transaction to update 
din Hi, Tdl. All subsequent transactions in Hi which update d have been backed- 
out by the definition of H1 (assumption (A2)). Let Td2 be the next transaction 
after Tdl to update d in Hi. By assumption (A2), Td2 is the earliest transaction 
in (Hi - Hi) to update d. So the value of d after backing-out (Hi - HT) is the 
value read by Td2 (i.e., the value written by Tdl). 

Case 3. d is updated in Hi but not in HT. Then the earliest transaction to 
update d in (Hi - Hi) is the earliest transaction to update d in Hi. The value 
read by this transaction is the initial value of d. Cl 

Example. If we choose to backout T12, then T13 must be backed-out, as it 
functionally depends on TIz. Then Hi = TII, HZ = Tzl, Tzz, 

G(H;,‘H;) = 2’1, 

G is acyclic and so Hi and Hi are serializable. Specifically, they are equivalent 
to the merged history H = TzI, Tz2, TI1, produced by a topological sort of the 
nodes of G. 
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Note that this procedure graph definition differs from that of augmented 
ancestor graphs and concurrency control graphs [4, 7, 261 in several respects. 
First, the precedence graph represents two execution sequences which must be 
merged. It is static; the transactions have already executed. Second, the edge 
semantics are different. Precedence and ripple edges represent a required ordering 
of transactions in the same partition, with ripple edges dictating the effect of 
backing-out a transaction. Interference edges represent potential conflicts be- 
tween transactions in different partitions, which may lead to violations of mutual 
consistency. Last of all, there is more freedom in choosing which transaction to 
back-out to break cycles. Concurrency control graphs are generated on the fly, 
and are used to prevent committing transactions, which would cause a violation 
of mutual consistency. With partitions, everything is static and transactions have 
already run to completion. Any transaction may be chosen to break cycles. The 
next section discusses this backout selection problem. 

2.3 Backout Selection Strategies 

Given the global histories of the partitions to be merged, it would be nice to 
minimize the number of transactions that are backed-out. Even better would be 
to assign a weight or backout cost to each transaction, and then minimize the 
total backout cost. Unfortunately, just minimizing the number of transactions 
backed-out (assigning each transaction a weight of one) is NP-complete, hence 
minimizing total backout cost (assigning transactions different weights) is also 
NP-complete. (For a discussion of the theory of NP-completeness, see [a].) 

Transaction backout minimization problem. Given the precedence graph G = 
(V, E), find a subset VA C V such that: (1) there are no nodes in (V - V’) 
reachable via ripple edges from nodes in VI, (2) the subgraph GL- of G induced by 
the nodes of VA is acyclic, and (3) 1 VA ] is minimized. 

The associated decision problem is the transaction backout problem. 

Transaction backout problem. Given the precedence graph G = (V, E) and 
integer K, is there a subset VI !Z V such that: (1) there are no nodes in (V - VA) 
reachable via ripple edges from nodes in VI, (2) the subgraph GA of G induced by 
the nodes of VA is acyclic, and (3) 1 VA 1 I K? 

Since the decision problem can be no harder than the associated minimization 
problem, it suffices to show that the transaction backout problem is NP-complete. 

THEOREM 2.3.1. The transaction backout problem with a fixed maximum num- 
ber of partitions N (N I 2) and an arbitrarily large number of data-items in the 
database is NP-complete. 

PROOF. (in NP) Guess a subset VA G V. Checking that ] VA ] I K, that VA is 
closed with respect to ripple edges, and that GA is acyclic can all be done in 
polynomial time. 

(NP-hard) Reduce the known NP-complete feedback vertex set problem (FVS) 
to the transaction backout problem (TB). The feedback vertex %et problem [15] 
is: given a graph G = (V, E) and integer K, is there a subset V G V such that 
VA contains at least one vertex from every directed cycle in G, I VA I 5 K? So, 
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given input G = (V, E), K for FVS, insert a new node uij into every edge vi + uj 
to create the precedence graph G1 = (VI, El). That is, VI consists of the old nodes 
from V together with the new nodes inserted in every edge; El consists of the 
edges vi + vii, Uij + Uj for every old edge Ui + uj. Label all edges as interference 
edges. Note that this corresponds to a valid precedence graph of two partitions, 
since: 

(1) Interference edges always connect nodes in different partitions; here, the 
new nodes represent one partition and the old nodes another partition. Each 
edge ek:Ui ---) Uj forces a READ(dk) in the transaction represented by node Ui and 
a WRITE(dk) in the transaction represented by node Uj, where dk is a data-item 
unique for the edge ek. 

(2) The subgraphs of new nodes and old nodes are acyclic since they contain 
no edges. Call this new graph G1 = (VI, El) and submit G1 and K as input to TB. 

Solution to FVS + Solution to TB. Suppose there is a subset VI G V, 1 VI 1 I 
K and VI contains at least one vertex from every directed cycle of G. Then the 
removal of VA from G would break all cycles, making this subgraph of G acyclic. 
Since V c V,, it follows that VI c V,. Removal of VA from VI would also break 
all cycles of G1 since, in the creation of El, the removal of e from E and 
replacement by el, e2 does not create any new cycles. Since there are no ripple 
edges in G1, VI is closed with respect to ripple edges. 

Solution to TB + Solution to FVS. Suppose there is a solution Vi to TB. 
Then ( VT 1 I K and the removal of Vi from VI breaks all cycles in G1. VI 
may contain nodes that are not in V, specifically some new nodes inserted into 
edges of E. Note that, by construction, each new node u has exactly one incoming 
and one outgoing edge: Ui + u + uj, where Ui, Uj E V. Let VFVS, the solution to 
FVS, be constructed from Vi as follows: each old node u in Vi (u E V) is added 
to VFvs. For each new node u (u E V), add to V,,S the node incident on the 
incoming edge vi. Since Ui E V, it follows that VFVS contains only nodes in V. 
Furthermore, I Vpvs I 5 I VI I I K, since at most one node is added to VFvs for 
each node in Vi. We now claim that removing VFvs breaks all cycles in the 
original graph G. Suppose not, Then there is a cycle in G none of whose nodes 
are in VFVS. Since the corresponding cycle in G1 was broken, one of the new 
nodes in the cycle in G1 was chosen. Then the (unique) old node incident on the 
incoming edge to u, vi, was put in V FvS, and therefore the cycle in G was broken. 
Contradiction. 0 

Although this result discourages attempts to minimize the total backout cost, 
there are well-known algorithms for enumerating all cycles in a directed graph, 
which can be used for a polynomial time (albeit nonoptimal) backout strategy 
(see, for example, [14, 241). However, since the total number of cycles in a 
precedence graph can be exponential in the number of nodes in the graph, a 
backout strategy should break cycles as they are detected rather than enumerating 
all cycles and then attempting to break them. The next section discusses per- 
formance results from simulations of the optimistic protocol using several differ- 
ent backout strategies; details can be found in Appendix 1. 
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3. PERFORMANCE EVALUATION 

Simulations were run which generated transactions for each partition group, 
computed the precedence graphs, and determined the percentage of transactions 
which had to be backed-out to make the graph acyclic, using a given backout 
strategy. They were used to measure the performance and feasibility of the 
optimistic protocol as a whole, as well as to study the effects of different backout 
strategies (see Appendix 1; [29] contains more extensive testing results). The 
results indicated conditions under which the optimistic protocol performs well 
and gave insight into how cycles should be detected, leading to an improved 
backout strategy, presented in the next section. 

The following input parameters and assumptions were used in the simulation: 

(1) there were M data-items in the (completely replicated) database; 
(2) N1 (N2) transactions were processed in P1 (P2); 
(3) references to data-items were uniformly distributed over the M data-items; 
(4) the number of items referenced by each transaction T( ] READSET I) 

was based on a truncated exponential distribution with mean I; 
(5) the mean percentage of read-only transactions in each partition was RO; 
(6) for the read-write transactions, the mean percentage of updated items was 

For each set of parameters N,, N,, RO, U, M, and I, 50 to 100 trials were made. 
In each of the graphs in Appendix 1, points correspond to the mean of these 
trials. 

The choice of backout strategy had a noticeable effect on the performance of 
the protocol. One that performed particularly well detected and broke two-cycles 
(cycles involving only two nodes, one from P1 and one from Pz) before looking 
for longer cycles: not only were fewer transactions backed out on the average, 
but the simulation ran much more quickly since two-cycles are easier to detect 
than longer cycles. In fact, it was observed that very few long cycles remained 
after all two-cycles were broken (see Figure 3.1). 

The simulation was also run changing the distribution of references to data- 
items. New parameters were A,p,, andp, :A of the M data-items were referenced 
with probability p1 and the remaining (M - A) data-items were referenced with 
probability p2, 

A*pl+(M-A)*pz=l. 

Input to the simulation was modified to specify (M - A) :A and p2 :pl. Figure 
3.2 compares results using a uniform distribution of reference to results using 
the 80-20 rule: 20 percent of the data-items were referenced 80 percent of the 
time. Performance deteriorated since the effective number of data-items de- 
creased; that is, most of the transactions referenced a very small portion of the 
database, creating a lot of conflicts. This argues that references should be 
uniformly distributed over a large number of data-items (assuming that references 
from different partitions intersect at all). 

In general, the protocol seems to perform best when 

(1) the total number of transactions is small, 
(2) there is a large percentage of read-only transactions, 
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Total number of 
transactions 

% times of Average number of 
long cycles long cycles 

10 100 5 1.0 
20 100 34 1.2 
10 500 0 0.0 
20 500 6 1.0 
30 500 10 1.0 
40 500 14 1.0 
60 500 30 1.3 
10 750 0 0.0 
20 750 0 0.0 
30 750 10 1.0 

40 750 6 1.0 
60 750 14 1.1 
80 750 40 1.4 
10 1000 0 0.0 
20 1000 0 0.0 
30 1000 3 1.0 
40 1000 4 1.0 
60 1000 6 1.0 

Fig. 3.1. Simulation results. Percentage of times long cycles re- 
main after breaking all two-cycles; and the average number of long 
cycles remaining when resulting graph is not acyclic. 
(I = 5, RO = 0.5, U = 0.5, Backout Strategy 2.) 

(3) the percentage of updated items within read-write transactions is small, 
(4) there is a large number of data-items in the database. 

Distributed database systems using this protocol during partition failures could 
encourage the above conditions by increasing the granularity of data-item refer- 
ence when failures occur, thus effectively increasing the number of items in the 
database. A warning message could also be given to users of the system, explaining 
that there is a partition failure and that transactions cannot be committed until 
recovery. It could also suggest that read-write transactions should only read the 
data-items relevant to the results written (that is, values in WRITESET 
should indeed be functionally dependent on values in READSET( and that 
nonurgent read-write transactions should be delayed until repair is completed. 
Users then have the freedom to use their knowledge of the system to temper 
their actions during failure: users who know that they will be the only ones 
assessing the portion of the database they are interested in could continue to run 
transactions freely. 

These performance results were verified by probabilistic analysis, and a formula 
for the expected number of transactions backed-out when a strategy which breaks 
two-cycles first is used was derived. These results can be found in [6]. 

The optimistic protocol can perform very poorly, and then it can perform very 
well. It is clearly not feasible in situations where a very large percentage of 
transactions (say 40 percent or more) are on the average backed-out; it would be 
better to temporarily disable all of the sites in one of the partitions, or adopt 
some other restrictive transaction protocol, than to have such a large backout 
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rate. Each application must decide what is an acceptable backout rate. A maximal 
backout rate of 5 or 10 percent may be quite acceptable to applications whose 
primary purpose is to keep users or customers happy. As in the example used in 
the Introduction, if branches of a bank represented the sites in a completely 
replicated distributed database system and a partition failure occurred, the bank 
would certainly lose a customer if it refused to process a withdrawal or deposit a 
transaction on the customer’s account. The bank should be willing to accept 
responsibility for the failure of its own system and automatically rerun backed- 
out transactions without inconveniencing the customer. Of course, the foxy 
customer who knows of (or causes) the partition failure could swindle the bank 
by withdrawing all the money from his account at two different branches during 
the failure. However, this requires quite an effort on the customer’s part; stores 
take a greater risk every day when they accept personal checks, and generally 
know less about the customer than the bank does. Banks may be willing to take 
such risks to maintain their clientele. 

4. MINIMAL BACKOUT OF TWO-CYCLES 

The problem of selecting the minimum number of transactions whose deletion 
breaks all cycles in the precedence graph is, in general, NP-complete. However, 
suppose we concentrate on breaking all two-cyles optimally, and forget about 
longer cycles. Since longer cycles in practice often do not exist after all two- 
cycles have been broken, there is a very good chance that this will break aZE cycles 
optimally. It turns out that this problem has a polynomial-time solution.2 That 
is, finding the minimum number of nodes to break all cycles in a precedence 
graph consisting only of two-cycles and ripple edges has a solution which is 
polynomial in the number of nodes in a partition. 

Strategy 4. Breaking two-cycles optimally. (Strategies 1, 2, and 3, in Appendix 
1) 

Step 1. Transform the directed precedence graph G = (V, E) to an (undirected) 
bipartite graph ([21]) Ga = (VI, V2, EB) as follows: 

(1) VI consists of all nodes in V corresponding to transactions in PI; Vz consists 
of all nodes in V corresponding to transactions in PO. 

(2) To compute Ee: Create the intermediate directed graph G’ = (VA, E*) where 
V = V and E^ consists of all ripple edges in E between nodes in PI, the 
reverse of all ripple edges in E betweeen nodes in Pz, and all interference 
edges from a node in Pz to a node in P, that are part of a two-cycle in G. 
Compute the transitive closure of GA; add to EB all (undirected) edges ui - Uj 
such that ni E V,, Uj E V,, and Ui + Uj is a (directed) edge in the transitive 
closure of G.- 

Step 2. Find the minimum cardinality covering all edges by nodes in GB. This 
is also the minimum cardinality set that breaks all two-cycles in G, taking ripple 

‘This does not extend to merging three or more partition groups; see [29] for the proof of its NP- 
completeness. 
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effects into account. For example, 

Precedence graph G Intermediate graph G A 
(directed) (directed) 

Bipartite graph GB 
(undirected) 

TlT-----+ T,, + T- 

f f 

11 

TI, T12 7’22 

i f 

T13 T13 

(h)Ripple edge (+ )Interference edge 

Minimal solution: ( T2,, T22) 

Precedence graph G 
(directed) 

Intermediate graph G * 
(directed) 

Bipartite graph GB 
(undirected) 

TAB-----TZI 
1 
Tl2 

f, \ 

7’22 

T13 T23 

Minimal solutions: (T,, , Tl2, 7’131, (T21, T22, T231 

THEOREM 4.1 Given a precedence graph G whose only cycles are two-cycles, 
Strategy 4 produces a minimum cardinality backout set. 

PROOF. Every minimal solution to GB is a solution to G. 
Suppose not. Then there is a minimal solution S to GB that is not a solution 

to G. 

Case 1. S does not break all cycles in G. By definition, S must cover every edge 
in the bipartite graph GB. But since edges in GB correspond exactly to cycles in 
G, deleting S in G must break all cycles in G. Contradiction. 

Case 2. S violates a ripple edge Ti * Tj in G. That is, Ti was chosen but Tj 
was not. But since Tj in GB has an arc to every Tk connected to Ti in Gs and S is 
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a solution to GA, then every such Tk must have been chosen. Then Ti need not 
have been chosen, and S is not minimal for Gs. 

Every solution to G is a solution to Gs. 
Suppose not. Then there is a solution S to G that is not a solution to GB. We 
know two facts about S: 

Fact 1. S breaks all two-cycles in G. 
Fact 2. Whenever Ti E S and there is a ripple edge Ti + Tj, then Tj E S. 

If S is not a solution to GB, it is because some arc (Ti, Tj) has neither Ti nor Tj 
in S. This arc could have been obtained from G in one of three ways: 

(1) An arc added in Step 2 due to a two-cycle involving Ti and Tj. But we noted 
in Fact 1 that S breaks all two-cyles, so one of Ti, Tj must have been chosen. 

(2) An arc added in Step 2 due to the following construct: 

But since we noted in Fact 1 that S breaks all cycles, one of T, and Ti must 
be chosen. Furthermore, if T, were chosen, then so would Tj be, by Fact 2. 

(3) An arc added in Step 2 due to the following construct: 

From Fact 1, either T, or TY has been chosen. From Fact 2, either Ti or Tj 
has been chosen. 

Every minimal solution to GB (G) is a minimal solution to G (Ge). 
Suppose not. Then there is some S which is a minimal solution to Gs, hence is 
a solution to G, but not minimal. Then there is a smaller solution S A to G which 
is also a solution to Ga. Therefore S cannot be minimal. (The other direction is 
similar.) Cl 

Analysis of running time. The transformation of G to Gs is boun{ed by the 
cost of computing the transitive closure of the intermediate graph G , which is 
equivalent to multiplying two Boolean matrices (see [l] for an O(N2.81) solution). 
The asymptotically fastest algorithm known for the bipartite matching problem 
is 0( ] V ] O.’ ] E ] ) [13]. Since the minimum cardinality covering of edges by nodes 
problem is the dual of the maximum cardinality matching problem in bipartite 
graphs, this bipartite matching algorithm can be used for an O(N*.“) algorithm 
solving the minimum cardinality covering problem. 

This backout policy was used in simulation runs with excellent results; in most 
cases all cycles were broken, and when there were longer cycles remaining, an 
optimal solution could often be obtained by deleting one or two extra nodes (see 
[5] for examples of successful and unsuccessful runs). 

If the transactions are given a positive integer backout cost that is less than 
or equal to some fixed upper bound C, then Strategy 4 can be used to minimize 
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the total backout cost of breaking all two-cycles (note that until this point, each 
transaction has essentially had a backout cost of 1). 

Strategy 5. Breaking two-cycles optimally with weighted transactions 
Transform GH = (V,, V,, ER) to bipartite graph GB = (Vi, Vi, Ei ) as follows. 
For each node Ti with cost ci in VI or VP, add ci nodes Ti1, Ti2, . . . , Tici to VT or 
Vi. For each arc (Ti, Tj) in E, add to E - the ci * cj edges forming the complete 
bipartite graph of nodes Tilt . . . , Tici and Tj,, . . . , Tjcj. Then finding a minimum 
cardinality covering of edges by nodes in Gi corresponds to finding a minimum 
cost covering of edges by nodes in GB. 

THEOREM 4.2. Given a precedence graph G with weighted nodes whose only 
cycles are two-cycles, Strategy 5 produces a minimum cost backout set. 

PROOF. The claim is that finding a minimum cardinality covering of edges by 
nodes in GR corresponds to finding a minimum cost covering of edges by nodes 
in GB. First note that any solution S^ to G;I either picks all of Til, . . . , Tici or 
none at all. This corresponds to choosing node Ti in GB. Suppose on the contrary 
that some of Ti,, . . . , Tici were chosen, but others were not. 

Case 1. Let 11 represent the subset of Til, . . . , Tic, that is in the solution S’, 
and ** represent the subset that is not in S . Consider the following edges in 
E’ representing the edge (Ti, Tj) in E. 

Ti nodes: Tj nodes: 

II ‘-.,,-’ 
/\ ” 

**’ ‘** 

Since S^ is a solution, all of the above edges must be covered by a node in S^. 
However, none of the edges marked by a solid line are covered, a contradiction. 

Case 2. Consider the following edges in EA. 

Ti nodes: Tj nodes: II x II ** II 
Since S is a solution, all of the above edges must be covered by a node in S 
and S^ must be minimal. All of the above edges are covered, but there is a smaller 
solution with none of the Ti nodes chosen. For otherwise there must be another 
group of nodes Tk with (Ti, Tk) in E and some of Tkl, . . . , Tkc, not in S^; that 
is, the chosen Ti nodes must be covering some edges in EA that would not 
otherwise be covered. But the (Ti, Tk) edges are an example of Case 1 which has 
been shown not to exist. So S* is not minimal, a contradiction. 

Given solution S’ to Gi with either all of Til, . . . , Tic, chosen or none chosen, 
the corresponding solution S to GB is also minimal. Otherwise, there is a smaller 
solution S, to GH, which implies a smaller solution to S; to GB ) a contradic- 
tion. 0 
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Analysis of running time. The transformation of Gs to GB involves a blowup 
of nodes in VI (V,) bounded by C * ] VI ] (C * ] V2 ] ) and a blowup of edges 
boundedbyP* IEl. 

This section has shown that when no long cycles remain after breaking all 
two-cycles optimally, both the problem of finding the smallest set of transactions 
to back-out to regain mutual consistency and of minimizing total backout cost 
have polynomial-time solutions. Thus, in practice, a minimal solution for the 
transaction backout problem can often be obtained using Strategies 4 and 5. In 
the cases where the precedence graph is not acyclic after using these algorithms, 
a “good” solution can usually be obtained by adding a few more nodes to the 
preliminary solution [6]. However, the results of Section 2.3 discourage attempts 
to find an algorithm to find the optimal solution when the algorithm of this 
section fails to break all cycles in the precedence graph. 

5. DISCUSSION AND CONCLUSIONS 

5.1 Extensions to the Procotol 

Transaction processing during recovery. Since high data-accessibility is one of 
the advantages of the optimistic protocol, it is desirable to minimize the time 
during which transactions are forbidden to access data-items during recovery. 
Initially, however, all transaction processing must be temporarily suspended 
since neither partition knows what data-items were updated by the other parti- 
tion. After the coordinator has received all the transactions, data-items which 
were updated in either partition group must be locked at all sites, but transactions 
accessing other data-items can safely execute. Additional locks may be released 
after the coordinator has determined BS (the set of transactions backed out) and 
KS (the set of transactions kept); data-item d must only be locked at sites in Pi 
if d E WRITESET where either 

(1) T was executed in Pi and T E BS, or 
(2) T was not executed in Pi and T E KS. 

That is, a data-item can safely be unlocked at a site when its value is known to 
be correct. Until then, the value must be assumed to be incorrect and the data- 
item must not be accessed. 

Multiple failures. The comment was made in Section 1 that the optimistic 
protocol is resilient in the face of multiple failures. Since in a reliable distributed 
database system, partitions should be the exception rather than the rule, this 
should not be a major concern. However, this protocol can be extended to handle 
various types of multiple failures. (For a discussion of detecting mutual inconsis- 
tency in the face of multiple failures in file systems, see [22].) 

(1) K-partitions. The communication subsystem could fail simultaneously in 
several places, creating more than two partition groups. If, when recovery 
occurred, K partition groups needed to be merged, they could either merge 
pairwise until a single partition group was formed, or the precedence graph 
definition could be extended. That is, G(H,, Hz, . . . , Hk) would model conflicts 
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between transactions in all the partitions. In both cases, the problem of mini- 
mizing total backout cost becomes more complex. 

(2) Failures and recovery are tree-structured. Suppose the system contains 
sites S,, S2, S3, and &, and that failure and recovery occur as follows: (&, Sp, 
83, &I - IS,, S,){S,, S4J ---, I’%, s,t(s3)(&] + b%, sPjis3, ‘%I -+ b% ‘92, ‘93, 

$1. When (S,] and (&) are merged, the precedence graph need only contain 
transactions processed since the failure that separated Ss and S4 occurred. When 
I&, &I and I&, &I are merged, the precedence graph need only contain 
transactions that remain from the merge of (Sg 1 and (S4 ); transactions backed- 
out in that merge can be ignored. 

(3) Nontree structured failure and recovery. Suppose again that the system 
contains sites S1, S2, S3, and &, but that recovery does not happen neatly as in 
the previous example. Thus (S,, SZ, S3, &) + (Si, &](S3, &J + (Si, S2](&](&) 
-+ I&, SP, S3l&) --+ ISI, SZ, SS, &I. When ISI, SZJ and &I merge, all 
transactions since the first failure must be contained in the precedence graph. 
Furthermore, the group (&, S2, S3) must remember which transactions were 
backed-out of (S,) from the time that S3 and Sq formed the partition group (S3, 
&I. When IS,, Sz, S3) and IS,) are merged, transactions backed-out from the 
first merge must be deleted from the global history of (&), and any transactions 
performed since. S3 and Sd split, which functionally depend on deleted transac- 
tions, must automatically be backed-out. The precedence graph can then be 
constructed from the remaining transactions in the global histories of (S1, S2, 
&I and b’bl. 

Nonreplicated data. The protocol can already handle nonreplicated data-items. 
There is obviously no way that data-items can be accessed if they are not present 
within the partition group; transactions attempting to read inaccessible data- 
items will not be able to execute until the failure is repaired. Write-write conflicts 
will not occur over nonreplicated data. However, transactions accessing only 
nonreplicated data-items may still be involved in cycles and must still be present 
in the precedence graph. Consider T1, in the following example. 

Example 5.1.1. Let d2 be a data-item accessible only in P1, whereas di and d3 
are accessible in both partitions. 

T,,: READ dl, dz t T21: READ dl, d3, WRITE d3 

i 

WRITE dl, d2 

T,2: READ d2 

i 

WRITE d2 

/ 
T13: READ dz, d3 

So, although transactions accessing only nonreplicated data-items cannot be 
simply ignored, they do not present any new problems in the precedence graph 
definition. 
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5.2 Directions for Future Research 

The author is currently studying how to use semantic information to minimize 
or resolve conflict. There are quite a few ways in which this can be done, for 
example: 

(1) Use semantic knowledge at failure to split shared data-items and create 
new data-items which are unique to each partition. These can then be automat- 
ically recombined at recovery. An example of this was given in [12]: 

An airline reservation system. Let SEATS represent the number of seats still 
available on a particular flight, and suppose a partition occurs. Based on local 
information, such as how many sites are in the partition, PI creates SEATS1 
containing 40 percent of the value of SEATS, and Pz creates SEATS2 containing 
60 percent of the value of SEATS. No conflicts would occur since neither partition 
would be selling seats belonging to the other partition. SEATS = SEATS1 + 
SEATS2 at recovery would restore SEATS to its actual value. 

(2) Use semantic knowledge to merge values of shared data-items at recovery 
(i.e., to resolve conflict). Suppose that the distributed database had incomplete 
information [17]. In such a system, the values of data-items can take on any 
subset of the domain for the data-item. For example, the age of John Doe may 
be recorded as “less than 30.” If, during a failure, the system continues to gather 
information about John Doe’s age and, at recovery, partition PI has his age as 
“between 20 and 30,” while partition P2 has his age as “between 15 and 25,” it 
would be reasonable to take the intersection of these values and conclude that 
his age is “between 20 and 25.” 

The preceding examples are interesting but not easy to generalize. Another 
approach is to work with the commutativity of transactions or classes of trans- 
actions [lo, 181 to minimize the number of edges in the precedence graph. 

Other areas deserving of further research are mechanisms for detecting parti- 
tion failures, and how to handle failures that occur while recovery is being 
performed. 

5.3 Conclusions 

Summarizing the results from Section 3, the optimistic protocol performs “well” 
when the number of write-write conflicts is small. This occurs when 

(1) there is a relatively small number of transactions. The protocol should be 
used when the partition failure can be repaired in a short period of time, or when 
updates are infrequent. The system could also decrease the number of transac- 
tions submitted during the partition failure by requesting users to delay nonur- 
gent transactions until repair is completed. 

(2) there is a relatively large number of data-items in the database. The system 
could effectively increase the number of data-items by increasing granularity 
when a partition failure occurs. The distribution of data-item reference should 
also be more or less uniform; better yet is if the overlap of reference between 
partitions is known to be small (as in the bank account example). 

(3) there is a large percentage of read-only transactions; within read-write 
transactions the percentage of updated items should be small. Transactions 
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should read only the data-items necessary to compute values for the updated 
items. 

(4) the size of transactions is small. Users should be encouraged to break their 
transactions into small, unrelated units whenever possible, and submit as separate 
transactions. 

The performance of the optimistic protocol can also be improved by using a 
backout strategy which breaks two-cycles intelligently, and then intelligently 
breaks longer cycles, if any remain. In Section 4 an algorithm was presented 
which optimally breaks two-cycles, minimizing total backout cost when no cycles 
remain. 

The optimistic protocol could prove worthwhile for many applications. If the 
expected failure rate is sufficiently small, the inconvenience of occasionally 
having to resubmit a transaction is offset by the increased reliability and 
availability of the system. Examples of such applications follow. 

Ban/&g system. This example has already been mentioned. The assumption 
that few, if any, customers will access their accounts at two different branches 
during a single partition failure minimizes the probability of write-write conflicts. 
Since customers would not be irritated by possibly being denied access to their 
accounts, the bank would benefit by using an unrestrictive protocol during 
partition failures. 

Airline reservation systems. The underlying database of flight information is 
fairly large, and references to flights are probably pretty evenly distributed. Many 
transactions are read-only: “Is there a flight connecting with flight #207 in 
Chicago?” “ Are there seats available on flight #309 to Los Angeles?” “Is flight 
#327 arriving at 3:09 in Newark on time ?” etc. People wishing to book seats 
could be told that their reservations were conditional; backed-out transactions 
could be automatically rerun and confirmed, unless the flight became overbooked, 
in which case the customer could be consulted. 

Periodic updating system. Consider a system whose primary application is to 
disseminate information (read-only transactions) and to periodically receive new 
information at the site closest to where the information is generated (read-write 
transactions). An example of this could be a weather predicting system, with 
sites located at major cities throughout the country. Information about weather 
conditions within each city would be received at that city, or at the nearest 
available site if the city site were unreachable or down. Information would then 
eventually be sent throughout the country. Weather predictions for each city are 
made based on the global information at each site. Should a partition failure 
occur, write-write conflicts would be very unlikely, since updates for the same 
data-item would occur at most a few times during a partition failure, and would 
probably be sent to the same site, hence be made within the same partition group. 
Predictions made during a partition failure could be labeled as “uncertain” if 
heavily based on old information (information available at the time of the failure 
that is being updated in the other partition group), or delayed until recovery. 
Since predictions are usually subject to error, “backing-out” a transaction would 
only amount to a “revised” forecast. 
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APPENDIX 1 

Backout Strategies and Simulation Results 

Examples of three “on-line” backout strategies follow. They were chosen for the 
ways in which they differ. Strategy 1 differs from Strategy 2 only in the cycle 
detection phase, and tends to find long cycles before short cycles since interfer- 
ence edges are considered last. Strategy 2 differs from Strategy 3 only in the 
cycle breaking phase, and tries to break cycles intelligently. 

Strategy 1 
(1) Detection. Cycles are detected from the remaining (nonbacked-out) nodes 

as follows (assuming the ordering r,, < T,, < . . . < Tl~, < T,, < . . . T,,): 

for LOW = T,, to TzN2 do 

Detect all cycles whose “smallest” node is LOW (unless LOW has already been deleted). 
In building the cycles, consider ripple, then precedence, then interference edges in sorted 
order. 
od 

(2) Cycle breaking. Each node is given a weight, defined as the number of 
nodes connected to it via ripple edges. This weight is static and does not change 
to reflect the number of existing nodes connected via ripple edges as nodes are 
deleted. Cycles are broken by deleting the node with lowest weight, together with 
its closure with respect to ripple edges. If at any point the total number of nodes 
deleted exceed N,, then all nodes in PI are chosen instead, and the algorithm 
terminates. 

Strategy 2 . 

(1) Detection. Two-cycles (cycles involving only two nodes, one from PI and 
one from P2) are detected from remaining nodes as follows: 

for T = T,, to TIN, do 
Detect all two-cycles involving T (unless T has already been deleted), considering 
interference edges in sorted order. 
od 

If the precedence graph of remaining nodes still contains cycles after this step, 
use the detection strategy in the first example to break remaining cycles. 

(2) Cycle breaking. Same as in Strategy 1. 

Strategy 3 

(1) Detection. Same as in Strategy 2. 

(2) Cycle breaking. Delete node from P, to break two-cycles. Longer cycles are 
broken by deleting the minimum weight node from P, . 
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Fig. 6.1. Simulation results. Percentage of transactions backed-out versus total number of transac- 
tions (using Backout Strategies 1 and 2). 
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Figure 6.1 compares Strategy 1 with Strategy 2, and indicates that Strategy 2 
performs better. Not only were fewer transactions backed-out on the average, 
but the simulation ran much more quickly since two-cycles (cycles involving only 
two nodes) are easier to detect than longer cycles. In fact, it was observed that 
very few long cycles occurred after all two-cycles were broken (see Figure 3.1). 

Figure 6.2 compares Strategy 2 with Strategy 3. When the backout rate 
(percentage of transactions backed out) is “small,” that is, less that about 25 
percent, Strategy 2 seems slightly preferable to Strategy 3. The two strategies 
differ only in how cycles are broken: Strategy 2 tries to be smart and choose the 
smallest number of nodes to break any cycle, while Strategy 3 settles for nodes 
in a given partition (PI). When the backout rate is “large,” Strategy 3 outperforms 
Strategy 2. This is reasonable, since, when a lot of nodes have been deleted, the 
static weights are more likely to be inaccurate, and Strategy 2 is not as smart in 
its node selection. Also, when more than N1 transactions are chosen in Strategy 
2, it gives up and deletes all nodes in PI, reducing to the cycle-breaking method 
of Strategy 2. 
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