Purdue University
Fall 2016
CS 448: Introduction to Relational Database Systems

Project 2: SQL via MapReduce

/**********

* Qverview

**********/

This project will demonstrate how to convert a SQL query into a sequence of
MapReduce jobs which can be run on files stored in HDFS.

/******‘k‘k*‘k

* Environment

**********/

We will use Purdue's OpenStack cluster for this assignment. The master node for
this cluster is openstack-vm-11-251.rcac.purdue.edu. You can SSH into the
master node with credentials username: [PurduelID] ostack,

password: [PurduelID] ostackpwd. (By PurduelID, we mean the name that you use to
login to MyPurdue, Blackboard, etc.) If you are connecting from off campus, you
will need to set up a VPN connection first. Instructions for setting up a VPN

to Purdue's network are here: https://www.itap.purdue.edu/connections/vpn

Be sure to change your password after you log in.

$ passwd

To see a list of all the nodes in the cluster, run

S cat /etc/hosts

CAUTION: This cluster is temporary. It will be wiped after the project is
graded. If you have any code or results that you wish to save, move them to

permanent storage on another system.

NOTE: This cluster does not mount the CS Department's NFS shared file system,

so your CS home directory is not available.

We are running the Cloudera Cluster Manager on the cluster. You can access the

Cluster Manager web UI at http://openstack-vm—11-251.rcac.purdue.edu:7180 . Log

in with username:student, password:studentpwd. Again, if you are off campus,

you must set up a VPN for this to work. You can use the web UI to explore HDFS,

https://www.itap.purdue.edu/connections/vpn/
http://openstack-vm-11-251.rcac.purdue.edu:7180/

check on the status of jobs, check the cluster workload, etc. Note that you
will not need to access the web UI to complete the project: The UI is available

simply for you to explore.

/**********

* Basic commands for HDFS and MapReduce

**********/

Before you begin the project, you should know how to:
* Move files from the cluster master node to HDFS and back.

* Compile and run a MapReduce job.

If you have used Hadoop before, you may be familiar with these concepts. If you

have not, follow the steps in this section. This section will not be graded.

After logging on to the cluster master node with SSH, populate a simple text
file:

$ printf "aaa\nbbb\nccc\nddd\naaa\nbbb\nccc\nddd\n" > tmp.txt

$ cat tmp.txt

Create a directory in your personal HDFS directory to store the file:

$ hdfs dfs -mkdir /user/[PurdueID] ostack/in

Copy the text file from the master node to the new directory:

$ hdfs dfs -put ./tmp.txt /user/[PurduelID] ostack/in

List the directory contents:

$ hdfs dfs -1s /user/[PurduelD] ostack/in

Now that we have loaded a file into HDFS, we would like to run a MapReduce job
over it. Copy the file Select.java from your personal machine to the cluster
master node. On the master node, navigate to the directory which holds

Select.java and run the following commands:

mkdir select

CP=$ (hadoop classpath)

javac -classpath $CP -d select/ Select.java

jar -cvf select.jar -C select

hadoop jar select.jar org.myorg.Select /user/[PurdueID] ostack/in

S
S
S
S
S
/

user/[PurduelID] ostack/out

Notice the last two arguments to the final command. Our MapReduce job will take
these arguments to be the source directory (which already exists) and the
destination directory (which will be created by our MapReduce job).

Finally, check the output:
$ hdfs dfs -1s /user/[PurdueID] ostack/out
$ hdfs dfs -cat /user/[PurdueID] ostack/out/*

Move the output from HDFS back to your directory on the master node:
$ hdfs dfs -getmerge /user/[PurdueID] ostack/out ./output.txt
$ cat output.txt

Finally, remove the output directory so that you can run your Jjob again.
(Hadoop will complain if you try to write to an HDFS directory that already
exists.)

$ hdfs dfs -rm -r /user/[PurdueID] ostack/out

/**********

* Dataset
**********/

Movie Lens 1M dataset, taken from GroupLens Research:
http://grouplens.org/datasets/movielens

Tables:
users.dat (UserID::Gender::Age::0ccupation::Zipcode)
movies.dat (MovieID::Title::Genres)
ratings.dat (UserID::MovieID::Rating::Timestamp)

CAUTION: There are several datasets listed on the Movie Lens webpage. Be sure
you get the 1M dataset.

NOTE: Some of the titles in movies.dat contain characters that are not UTF-8.
These characters may compromise your results. So, as is often the case in the
real world, we must put our data through a "cleaning" phase before we query it.
Use the following bash command to remove all non-UTF-8 characters from the
movies.dat file before you load it into HDFS:

$ iconv -f utf-8 -t utf-8 -c movies.dat > movies utf8.dat

/**********

* Example

**********/

We will provide you with the code to complete an example query on MapReduce.
Below we show the query and a single line from the final output.

http://grouplens.org/datasets/movielens/

Example Query (Query 1):
SELECT DISTINCT m.title
FROM Movies m,
WHERE
m.MovieID =
AND r.UserID =
AND u.Occupation =
AND r.Rating >= 3

Ratings r, Users u
r.MovieID

u.UserID

12 --(programmer)

*/
[tab]

/* example output:

Vertigo (1958) MoviesUsersRatingsTable
We will perform this query in six stages.
MapReduce job. However, some jobs will not have a reduce

simply output the results of the map phase.

1. Perform a selection operation on the Users table:
to output only those pairs where Occupation equals 12.

2. Perform a selection operation on the Ratings table:
output only those pairs where Rating >= 3. "Bring along"
3. Take the outputs from Step 1 and Step 2 and join them
find a match, output the MovieID from the Ratings table.
4. Perform a selection operation on the Movies table: we
rows, but this step will transform the Movies table into

easier to use in a join.

5. Take the outputs from Step 3 and Step 4 and join them
movie titles.

Each stage will consist of one

phase, so they will

we will use a map function

use a map function to

MovielID.

on UserID. Whenever we

will not eliminate any
a format that is

on UserID. Output the

6. Take the output from Step 5 and output only the unique movie titles.

Here we show the six jobs written in another way.

For each job,

we show the

format of the input file and the format of the output file.

Jobl (select):

Input --> Key Value
[UserID]::[M/F]::[Age]::[Occup]l::[Zip] [UserID] UsersTable

Job2 (select):

Input --> Key Value
[UserID]::[MovieID]::[Rating]::[Time] [UserID] RatingsTable: : [MovielD]
Job3 (join):

Input --> Key Value

[UserID] UsersTable [MovieID] UsersRatingsTable
[UserID] RatingsTable:: [MovielD]

Job4d (select):

Input --> Key Value

[MovieID]::[Title] :: [Genre] [MovieID] MoviesTable::[Title]
Job5 (join):

Input --> Key Value

[MovieID] UsersRatingsTable [Title] MoviesUsersRatingsTable

[MovieID] MoviesTable::[Title]

Job6 (distinct):
Input --> Key Value
[Title] MoviesUsersRatingsTable [Title] MoviesUsersRatingsTable

Lastly, we show some made-up example input and output below:
(Note that dates have been removed from the movie titles for brevity.)

Job Mapper Input Reducer Input Output
Jobl | Users [no reduce phase] Outl
44::M::20::12::47906 44 UsersTable
45::F::22::10::47906 46 UsersTable
46::M::19::12::47906
47::F::25::18::47906
Job2 | Ratings [no reduce phase] Out2
44::101::4::[time] 44 RatingsTable::101
44::103::5::[time] 44 RatingsTable::103
44::107::2::[time] 45 RatingsTable::108
45::108::5:: [time] 46 RatingsTable::115
46::115::3::[time]
Job3 | Qutl + OQut2 [reduce () 1] Out3
44 UsersTable 44 UsersTable 101 UsersRatingsTable
46 UsersTable 44 RatingsTable::101 103 UsersRatingsTable
44 RatingsTable::101 44 RatingsTable::103 115 UsersRatingsTable
44 RatingsTable::103
45 RatingsTable::108 [reduce () 2]
46 RatingsTable::115 45 RatingsTable::108
[reduce () 3]
46 UsersTable
46 RatingsTable::115
Job4 Movies [no reduce phase] Out4
101::Taken::Action 101 MoviesTable: :Taken
102::Heat::Action 102 MoviesTable: :Heat
103::Matrix::Action 103 MoviesTable::Matrix
Jobb Qut3 + Out4d [reduce () 1] outbS
101 UsersRatingsTable 101 UsersRatingsTable Taken Movies...Table
103 UsersRatingsTable 101 MoviesTable: :Taken Matrix Movies...Table
115 UsersRatingsTable
101 MoviesTable::Taken [reduce () 2]
102 MoviesTable: :Heat 102 MoviesTable: :Heat
103 MoviesTable::Matrix
[reduce () 3]
103 UsersRatingsTable
103 MoviesTable::Matrix
Job6 Oout5 [reduce () 1] Out6
Taken Movies...Table Taken Movies...Table Taken Movies...Table
Matrix Movies...Table Taken Movies...Table Matrix Movies...Table
Taken Movies...Table
Matrix Movies...Table [reduce () 2]
Matrix Movies...Table
Matrix Movies...Table

/**********

* Notes

**********/

The following discussion will be easier to understand if you first execute the
example code and observe the output at each stage.

Let us consider how to do the join in Job 3. Taking a closer look at this join
will help us to see why we have formatted the output of Jobs 1 and 2 as we
have.

Recall how to do a standard nested loops join. We require an outer table and an
inner table. Let us take Users to be the outer table and Ratings to be the
inner table. For each row of the outer table, we loop over each row of the
inner table and check whether the join key of the outer row (Users.UserID)
matches the join key of the inner row (Ratings.UserID). For each match, we
produce an output row.

In MapReduce, the data is distributed and very large, so we cannot execute
nested loops using two tables on a single machine. What we can do instead is
identify a subset of rows from Users and subset of rows from Ratings that match
on the join column and collect these two subsets on a single machine to join.
Of course, we should carry out this process for every unique join column Kkey.

Recall that the shuffle phase of MapReduce groups key-value pairs by key. Since
we want rows from Users to end up with rows from Ratings that have the same
UserID, we will choose UserID to be our key, and any remaining information to
be the wvalue.

When the shuffle phase completes and the reduce phase begins, each reduce ()

call will have access to a set of matching key-value pairs from both tables.
All of the key-value pairs that are fed into a single reduce() will match on
UserID, so to perform a nested loop join we only need to separate the input

rows into their respective tables and then loop over them.

Notice that the Users-Ratings relationship is one-to-many. That is, a single
user can give multiple ratings, but a single rating never belongs to more than
one user. This means that when we process matching rows from both tables in a
reduce () call, reduce() will only see one row from table Users. In the code, we
still use double nested loops to preserve generality.

/**********

* Task

**********/

We ask that you implement the following three queries as sequences of Hadoop
jobs. For each query, we demonstrate what a single line of output from your
final job should look like. After completing each query, use $ hdfs dfs
-getmerge to consolidate the results of your last job into a single file on the
cluster master node. You should turn in your code and results for the example
query above and the three queries below.

/* Query 2: */
SELECT DISTINCT zip
FROM users u
WHERE
u.occupation = 15
OR u.occupation = 17
/* example output: */
01453 [tab] UsersTable

/* Query 3: */
SELECT DISTINCT r.movieid
FROM ratings r, users u
WHERE
r.userid = u.userid
AND r.rating = 5
AND u.occupation = 6
/* example output: */
1014 [tab] UsersRatingsTable

/* Query 4: */
SELECT m.title, ROUND (AVG(r.rating), 1)
FROM users u, ratings r, movies m
WHERE
u.userid = r.userid
AND r.movieid = m.movieid
AND u.age = 35
GROUP BY r.movieid
/* example output: */
Extreme Measures (1996)::2.9 [tab] MoviesUsersRatingsTable

NOTE: Query 4 involves taking averages. Depending on how you compute the
averages, there may be slight (plus or minus 0.1) discrepancies between your
results and our results. No points will be taken off for these rounding
differences.

NOTE: When you collect your results with -getmerge, the rows of your output may
not be in order. This is not a problem.

/**********

* Deliverables

**********/

Please follow these instructions exactly. Take care to name your files as
indicated.

Create a directory with your PurdueID as the directory name. In this directory,
create four subdirectories, one for each query. Within each query directory,
place the code for your MapReduce jobs as well as a single file with your
merged query results (retrieved from HDFS).

[PurduelID]/

ql/
MR1.java
MR6.java
gl results.txt
q2/

MR1.java
éé;results.txt
Navigate to the parent directory of your [username] directory and run this
command :
S tar -cvf [PurduelID].tar [PurduelD]
Submit the file [PurduelID].tar using turnin:

$ turnin -c cs448 -p proj2 [PurduelD].tar

