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Abstract

We propose a new architecture for on-demand media streaming centered around the peer-to-peer (P2P) paradigm.

The key idea of the architecture is that peers share some of their resources with the system. As peers contribute re-

sources to the system, the overall system capacity increases and more clients can be served. The proposed architecture

employs several novel techniques to: (1) use the often-underutilized peers� resources, which makes the proposed

architecture both deployable and cost-effective, (2) aggregate contributions from multiple peers to serve a requesting

peer so that supplying peers are not overloaded, (3) make a good use of peer heterogeneity by assigning relatively more

work to the powerful peers, and (4) organize peers in a network-aware fashion, such that nearby peers are grouped into

a logical entity called a cluster. The network-aware peer organization is validated by statistics collected and analyzed

from real Internet data. The main benefit of the network-aware peer organization is that it allows to develop efficient

searching (to locate nearby suppliers) and dispersion (to disseminate new files into the system) algorithms. We present

network-aware searching and dispersion algorithms that result in: (i) fast dissemination of new media files, (ii) reduction

of the load on the underlying network, and (iii) better streaming service.

We demonstrate the potential of the proposed architecture for a large-scale on-demand media streaming service

through an extensive simulation study on large, Internet-like, topologies. Starting with a limited streaming capacity

(hence, low cost), the simulation shows that the capacity rapidly increases and many clients can be served. This occurs

for all studied arrival patterns, including constant rate arrivals, flash crowd arrivals, and Poisson arrivals. Furthermore,

the simulation shows that a reasonable client-side initial buffering of 10–20 s is sufficient to ensure full quality playback

even in the presence of peer failures.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Media streaming; Peer-to-peer systems; Multimedia systems; Peer clustering; Dispersion algorithms
* Corresponding author.

E-mail addresses: mhefeeda@cs.purdue.edu (M.M. Hefe-

eda), bb@cs.purdue.edu (B.K. Bhargava), yau@cs.purdue.edu

(D.K.Y. Yau).

1389-1286/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/j.comnet.2003.10.002
1. Introduction

Streaming multimedia files to a large number of

customers imposes a high load on the underlying
network and the streaming server. The voluminous

nature of the multimedia traffic along with its

timing constraints make deploying a large-scale
ed.

mail to: mhefeeda@cs.purdue.edu


354 M.M. Hefeeda et al. / Computer Networks 44 (2004) 353–382
and cost-effective media streaming architecture

over the current Internet a challenge. In this paper,

we target on-demand streaming environments

such as the one shown in Fig. 1. Examples of this

environment include a university distance learning

service and an enterprise streaming service. In this
kind of environment, the media contents are

streamed to many clients distributed over several

campuses or branches in the Internet.

Before we proceed, we clarify the differences

between a P2P file-sharing system and a P2P media

streaming system [41]. In file-sharing systems such

as Gnutella [26] and Kazaa [27], a client first

downloads the entire file before using it. The
shared files are typically small (a few Mbytes) and

take a relatively short time to download. A file is

stored entirely by one peer and hence, a requesting

peer needs to establish only one connection to

download the file. There are no timing constraints

on downloading the fragments of the file. Rather,

the total download time is more important. This

means that the system can tolerate inter-packet
delays. In media streaming systems, a client over-

laps downloading with the consumption of the file.

It uses one part while downloading another to be

used in the immediate future. The files are large

(on the order of Gbytes) and take a long time to

stream. A large media file is expected to be stored

by several peers, which requires the requesting peer

to manage several connections concurrently. Fi-
Client
Media Server

Fig. 1. The target environment for the proposed streaming

architecture. Examples include a university distance learning

service and a corporate streaming service.
nally, timing constraints are crucial to the

streaming service, since a packet arriving after its

scheduled playback time is useless.

There are several approaches that can be used

to stream media to the clients in the target envi-

ronment. We start by briefly describing the current
approaches in the literature. The objective is to

highlight the key ideas and limitations of each

approach and to position our proposed approach

in the appropriate context within the global pic-

ture. We can roughly categorize the current ap-

proaches into two categories: unicast-based and

multicast-based.

1.1. Unicast-based approaches

In these approaches a unicast stream is estab-

lished for every client. Roughly, there are three

approaches that use unicast for on-demand

streaming: centralized, proxy, and content distri-

bution networks (CDN).

Centralized. The straightforward centralized
approach (Fig. 1) is to deploy a powerful server

with a high-bandwidth connection to the Internet.

This approach is easy to deploy and manage.

However, the scalability and reliability concerns

are obvious. The reliability concern arises from

the fact that only one entity is feeding all clients;

i.e., there is a single point of failure. The scala-

bility of these approaches is not on a par with
the requirements of a media distribution service

that spans large-scale potential users, since adding

more users requires adding a commensurate

amount of resources to the supplying server. There

are two other critical, but less obvious, disadvan-

tages of the centralized approach: high cost and

load on the backbone network. To appreciate the

cost issue, consider, for instance, a streaming ser-
ver connected to the Internet through a T3 link

(�45 Mb/s), which is a decent and expensive link.

This server would be able to support up to 45

concurrent users requesting media files recorded at

1 Mb/s, assuming that the CPU and I/O support

that. Since all clients have to go to the server for all

requests, much traffic will have to travel through

the wide-area network. This adds to the cost of
streaming and increases the load on the backbone

network. In addition, when the traffic travels
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through many network hops, it will be susceptible

to higher delay variations and packet losses due to

possible congestion in the Internet.

Proxy. In the proxy approach [13,17,36,39],

proxy servers are deployed near the client domains

(Fig. 2). Since movies are large in size, the proxy
may be able to cache a few movies in their entirety.

A number of caching techniques have been pro-

posed to enable the proxy to cache a fraction of

each movie, and therefore more movies can be

cached. In prefix caching [36], the proxy stores the

first few frames of the movie allowing for short

startup delays. In staging caching [39], the proxy

stores the bursty portions of the frames and leaves
the smoother parts on the central server. This

alleviates the stringent bandwidth requirements on

the WAN links. A non-contiguous selection of

intermediate frames can also be cached [17], which

facilitates control functions such as fast forward

and rewind. The proxy approach and its variations

save WAN bandwidth and is expected to yield

short startup delay and small jitter. On the negative
side, this approach requires deploying and man-

aging proxies at many locations. While deploying

proxies increases the overall system capacity, it

multiplies the cost. The capacity is still limited by

the aggregate resources of the proxies. This shifts

the bottleneck from one central point to a ‘‘few’’

distributed points, but does not eliminate it.
Client

Proxy Server

Media Server

Fig. 2. Proxy-based architecture for distributing media.
Content distribution network. The third unicast

approach employs a third-party for delivering the

contents to the clients. This third party is known as

a content delivery network (CDN). Content

delivery networks, such as Akamai and Digital

Island, deploy thousands of servers at the edge of
the Internet (see Fig. 3). Akamai, for instance,

deploys more than 10,000 servers [1]. These servers

(also called caches) are installed at many POPs

(point of presence) of major ISPs such as AT&T

and Sprint. The idea is to keep the contents close

to the clients, and hence traffic traverses fewer

network hops. This reduces the load on the

backbone network and results in a better service in
terms of shorter delay and smaller loss rate. The

CDN caches the contents at many servers and

redirects a client to the most suitable server. Pro-

prietary protocols are used to distribute contents

over servers, monitor the current traffic situation

over the Internet, and direct clients to servers.

Cost-effectiveness is a major concern in this ap-

proach, especially for distributing large files such
as movies: the CDN operator charges the content

provider for every megabyte served. This delivery

cost might be acceptable for relatively small files

such as web pages with some images. However, it

would render a costly streaming service for the

targeted environment because media files are typi-

cally large.
CDN Overlay

ClientMedia Server

Fig. 3. The CDN approach for distributing media.
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1.2. Multicast-based approaches

The multicast approaches achieve better re-

source utilization by serving multiple clients using

the same stream. The basic idea is to establish a
multicast session to which clients subscribe. This is

done by creating multicast distribution trees.

Multicast approaches are more natural to live

streaming in which clients are synchronized: all

clients receive the same portions of the stream at

the same time. To cope with the asynchronous

nature of the on-demand service, several tech-

niques have been proposed. One of the key ideas in
adapting multicast to on-demand service is patch-

ing and its variations [12,35]. A good comparison

is given in [16]. In patching (also known as tap-

ping), a new client arriving within a threshold is

allowed to join an on-going multicast session. In

addition, the client establishes a unicast connec-

tion with the server to ‘‘patch’’ or get the missed

part of the file. The two streams run at the full
play rate. The patch stream terminates when

the client gets the missed part. Patching tech-

niques may require the client to tune in to

multiple streams during the patching period.

This means that the client has to have an

inbound bandwidth of at least double the

streaming rate. This is quite a stringent require-

ment for the limited-capacity peers in the target
environment.
Media Server Client

Fig. 4. Network-level multicast for distributing media.
Multicast distribution trees are either created at

the network level (Fig. 4) or at the application level

(Fig. 5). The network-level multicast establishes a

tree over the internal routers with the clients as the

leaves of the tree. While network-level multicast is

efficient, it is not widely deployed. For the target
environment (e.g., distance learning), some of the

intermediate network domains may not support

multicast. Therefore, currently, network-level

multicast is not a feasible solution for delivering

contents to all the clients.

Application-level multicast techniques, such as

NICE [2], Narada [7], Zigzag [38], among others,

construct the distribution trees over the end sys-
tems. The algorithms used to construct the distri-

bution tree (or mesh in the case of Narada) differ

from one technique to another. Building the tree

over the end systems achieves deployability in the

current Internet. However, it introduces another

problem: it may overload some end systems beyond

their capacities. An end system in the tree may

become a parent of several other end systems. For
example, in Fig. 5, peer P1 is the parent of peers P2

and P3. Hence, P1 should be able to provide the

stream to both of them. This assumes that P1 can

(and is willing to) support multiple folds of the

streaming rate. In the target environment, nodes

typically have limited capacity, especially of the

upstream bandwidth. In many cases, nodes cannot

even provide the full stream rate to another node.
Media Server Client
P3

P2

P1

Fig. 5. Application-level multicast for distributing media.
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1.3. The proposed architecture

We propose a new peer-to-peer (P2P) media

distribution architecture that can support a large

number of clients at a low overall system cost. The
key idea of the architecture is that end systems

(called peers hereafter) share some of their re-

sources with the system. As peers contribute re-

sources to the system, the overall system capacity

increases and more clients can be served. As shown

in Fig. 6, most of the requesting peers will be

served using resources contributed by other peers.

The proposed architecture employs several novel
techniques to avoid the limitations of the current

approaches. Specifically, it has techniques to:

(i) Use the often-underutilized peer resources,

which makes the proposed architecture both

deployable and cost-effective. It is deployable

because it does not need any support from

the underlying network: all work is done at
the peers. Since the architecture neither needs

new hardware to be deployed nor requires

powerful servers, it is highly cost-effective.

(ii) Aggregate contributions from multiple peers

to serve a requesting peer. This indicates that

a single supplying peer may only serve a frac-

tion of the full request. Moreover, the request-

ing peer is not required to have an extra
inbound bandwidth to get full-quality stream-

ing.
Super PeerPeerSeed Peer

Fig. 6. The proposed hybrid architecture for distributing

media.
(iii) Organize peers in a network-aware fashion, in

which nearby peers are grouped into a logical

entity called a cluster. This organization of

peers is validated by statistics collected and

analyzed from real Internet data. The main
benefit of the network-aware peer organiza-

tion is that it allows for developing efficient

searching (to locate nearby suppliers) and dis-

persion (to disseminate new files into the sys-

tem) algorithms. Network-aware searching

and dispersion result in two desirable effects:

(1) reduction of the load on the underlying

network, since the traffic traverses a fewer
number of hops, and (2) better streaming ser-

vice because the delay is shorter and less var-

iable.

(iv) Make good use of peer heterogeneity [34]. The

architecture assigns relatively more work to

the powerful peers. Specifically, powerful

peers help in the searching and the dispersion

algorithms. This special assignment makes the
proposed architecture not purely P2P. There-

fore, in the rest of the paper we will call it the

hybrid architecture.

The P2P architecture has the potential to pro-

vide the desired large-scale media distribution

service, especially for the environments consid-

ered in this paper (Fig. 1). These environments
assume that peers can be asked/configured to share

resources. For example, a university distance

learning service may configure peers at remote

campuses to share storage and bandwidth. This is

not a concern, since these peers are owned by the

university. The architecture may also be extended

to provide a commercial service. However, in this

case peer rationality or self-interest should be
considered, since peers may not voluntarily con-

tribute resources to the system. This requires

developing economic incentive mechanisms to

properly motivate peers. One such mechanism is

the revenue sharing proposed in [11]. In the reve-

nue-sharing mechanism, the provider shares part

of the revenue from serving clients with the peers

who helped in serving those clients.
The rest of this paper is organized as follows.

Section 2 provides an overview of the proposed

architecture. The network-aware organization of



358 M.M. Hefeeda et al. / Computer Networks 44 (2004) 353–382
peers is detailed in Section 3. The searching and

the dispersion algorithms are presented in Section

4. The simulation study is presented in Section 5.

Section 6 summarizes related research effort. Sec-

tion 7 concludes and proposes future extensions

for this research.
2. The hybrid architecture for media streaming

This section provides an overview of the pro-

posed architecture. It first identifies all entities in

the system. Then, it explains how the streaming

sessions are established and the effect of peer fail-
ures on the quality of playback.

2.1. System entities and their roles

In the following, we define the entities partici-

pating in our architecture, their roles, and how

they interact with each other.

• Peers. This is a set of nodes currently participat-

ing in the system. Typically, these are machines

of the clients who are interested in some of the

media files offered by the streaming center. Let

P ¼ fP1; P2; . . . ; PNg be the set of all peers in

the system. Peers in P2P systems have been

shown to be quite heterogeneous [34]. We mod-

el this heterogeneity as follows. Every peer Pi,
16 i6N, specifies three parameters: (1) Ri (in

Kb/s), the maximum bandwidth peer Pi is will-
ing to share with others; (2) Gi (in bytes), the

maximum storage space the peer is willing to

allocate to store segments of media files; and

(3) Ci, the maximum number of concurrent con-

nections that can be opened to serve requesting

peers. By using these three parameters, a peer
has the ability to control its level of cooperation

with other peers in the system.

• Seed Peers. One of the peers or a subset of them

that seed new media files in the system. We

choose the name seeding peers to indicate that

their main functionality is to initiate the stream-

ing service and not to serve all clients at all

times. Any node (peer) in the system can intro-
duce new media files, i.e., become a seed peer

for a specific period. However, in the case of a
media center distributing contents, the seed

peers can be dedicated machines with reason-

able capacity.

• Super Peers. These are nodes selected to aid in

locating the requested objects and disseminat-
ing the newly published ones. Super peers main-

tain information about the current peers in the

system and the contents stored at each of them.

Each super peer is responsible for a small frac-

tion of the peers in the system. The choice and

management of super peers are detailed in Sec-

tion 3.

• Stream. A stream is a time-ordered sequence of
packets belonging to a specific media file. This

sequence of packets is not necessarily down-

loaded from the same serving node. The packets

should be downloaded before their scheduled

display time to guarantee non-disruptive play-

back of the media.

• Media files. The set of movies currently available

in the system or offered by the media center. Let
M ¼ fM1;M2; . . . ;Mmg be the set of all available
media files in the system. Every file has a size in

bytes and is recorded at a specific bit rate R (in

kb/s). We assume that R represents a constant

bit rate (CBR). A media file is divided into N
segments. A segment is the minimum unit which

a peer can cache. A supplying peer may provide

the cached copy of the segment at a rate lower
than the required rate R. In general, one segment

can be streamed to the requesting peer from

multiple peers at the same time. According to

our protocol (see Section 2.2), every peer will

supply a different piece of the segment propor-

tional to its streaming rate.

2.2. System operation

To start a streaming session, a requesting peer

runs a protocol composed of three phases: avail-

ability check, streaming, and caching. In phase I,

the requesting peer checks for the availability of

the desired media file in the system. This is done by

sending a lookup request to the super peer to

which the requesting peer is attached. The super
peer applies a cluster-based searching algorithms

(Section 4) and returns a list of candidate supply-

ing peers. The list is arranged into a two-dimen-
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sional table. Each row j of the table contains

information about peers that are currently caching

segment sj of the requested file. Peers in each row

are divided into two groups: main suppliers and

backup suppliers. The main suppliers can collec-

tively stream the segment at the full rate. The
backup suppliers are used to replace the main

suppliers in case of failure or degradation.

The streaming phase (phase II) of the protocol

starts only if phase I successfully finds all seg-

ments. Phase II streams segment by segment. It

overlaps the streaming of one segment with the

consumption of the previous segment. The play-

back of the media file starts after an initial buf-

fering period, as discussed in Section 2.3. For every

segment sj, the protocol concurrently connects to

the main suppliers that are scheduled to provide

that segment. The connections remain alive for

time d, which is the time to stream the whole

segment. Different non-overlapping pieces of the

segment are brought from different peers and put

together after they all arrive. The size of each piece
is proportional to the rate of its supplying peer.

Let us define Pj as the set of peers supplying seg-

ment j. If a peer Px 2 Pj has a rate Rx 6R, it will
provide jsjjðRx=RÞ bytes starting at wherever peer

Px	1 ends. Since every peer supplies a different

piece of the segment and
PjPjj

x¼1 jsjjðRx=RÞP jsjj, all
pieces of the segment will be downloaded by the

end of the d period. To illustrate, Fig. 7 shows
three peers P1, P2, P3 with rates R=4, R=2, R=4,
respectively. The three peers are simultaneously

serving different pieces of the same segment (of size

1024 bytes) to peer P4.
Fig. 7. Peers P1, P2, and P3 serving different pieces of the same

segment to peer P4 with different rates.
Finally, in the caching phase (phase III), the

peer may cache some segments in order to dis-

seminate the file into its cluster. Which segments a

peer should cache is determined by the peer�s level
of cooperation and the dispersion algorithm (Sec-

tion 4).

2.3. Peer reliability and client buffering

Peers are not reliable machines: they may fail,

go off-line, or stop streaming at any time. To

maintain full playback quality throughout the

streaming session, a quality maintenance mecha-

nism is needed. The quality maintenance mecha-
nism has two parts: quality degradation detection

and recovery. The degradation in quality could be

due to peer failures or network congestion. In ei-

ther case, the aggregate rate received by the client

will be smaller than the required rate R. To detect

degradation, the client monitors the incoming rate

from each supplier. If the incoming rate is

decreasing, peer switching or replacement is nee-
ded: a peer from the backup suppliers is chosen to

replace the degraded peer. The backup peer is

notified by a control packet, which specifies the

data to be sent and at what rate.

During the switching process, the aggregate

received rate is less than the required playback rate

and the client may experience buffer underflow.

This is due to the time needed to detect quality
degradation and to trigger one of the backup

suppliers. We call this time the switching time. To

hide the effect of switching, client initial buffering is

introduced. In Section 5.2, we use simulation to

study the effect of switching on the quality of

playback. We also estimate the size of the initial

buffering that completely offsets this effect.
3. Organization of peers

Most of the current P2P file-sharing systems do

not consider network locality in their protocols.

For example, in Gnutella [26], a joining peer

connects itself to a few of the currently active peers

in the network. These active peers are obtained
from one of the known Gnutella hosts such as

gnutellahosts.com. The joining peer and its
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three fields relevant to the discussion are shown.
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neighbors can be many network hops away from

one another. As another example, in Kazaa [27], a

joining peer is assigned a randomly chosen super

node. In both systems, peers providing a requested

object could be far away (in terms of network

hops) from the requesting peer, even though there
could be other nearby peers who have that object.

This means that the traffic may unnecessarily tra-

vel through many network hops and burden the

backbone links. This is more of a concern in a P2P

media streaming system, where objects are typi-

cally very large and consume more bandwidth to

stream. Furthermore, large variability in the delay

(i.e., delay jitter) yields poor quality of playback.
Unlike current P2P systems, peers in our system

are organized in a way that facilitates keeping the

traffic as local as possible. Peers are divided into

clusters. A cluster is a logical grouping of peers

that are topologically close to each other.

Clustering of the web clients has been studied

before in [4,3,14]. The main objective of web client

clustering is to position proxy caches or server
replicas close to the clients. Web clients clustering

techniques are not directly applicable to our P2P

streaming system, because they are either too

coarse-grained [3] or too fine-grained [4,14]. The

technique in [3] aggregates many autonomous

systems (ASes) into one group. Thus a group

would have too many peers and one super peer

would not be able to handle all the traffic from
them. On the other hand, the fine-grained tech-

niques group together peers that either share the

same network prefix [14] or use the same local

DNS server [4]. Both techniques result in a large

number of clusters, each likely having only 10s of

peers. The problem then becomes managing the

large number of small clusters.

We propose a new two-level clustering tech-
nique suitable for P2P systems, in which a cluster

will have a moderate size that can be managed by a

peer with reasonable resources. The applicability

of the two-level clustering to P2P systems is vali-

dated by Internet statistics that we have gathered

and analyzed. In the next section, we summarize

the experiments performed and the findings that

support the use of the two-level peer clustering.
Then, in the remaining sections, we detail our

clustering technique.
3.1. Internet statistics

The Internet is composed of numerous Auto-

nomous Systems (ASes) interconnected together.

Each AS has a 16-bit unique identifier, and is
managed by a single administrative authority.

Packets sent from a source to a destination across

the Internet may travel through several ASes.

Inter-domain routing protocols such as Border

Gateway Protocol (BGP) [8] are used to construct

the AS path that packets should take to reach the

destination network. An AS is a collection of

physical networks. Each network has a unique
address. In TCP/IP networks with CIDR address-

ing [8], the network address (or network prefix) has

two parts: an IP address and a length (or mask).

For example, 128.10.0.0/16 is a network with up to

(roughly) 2ð32–16Þ hosts. All hosts on this network

have IP addresses with the same network prefix

(128.10), i.e., the same leftmost 16 bits.

In this section, we try to gain insights on how
peers are distributed over the Internet. Specifically,

we would like to know how many peers will likely

be on the same network and within the same AS.

This will guide the organization of the peers in our

proposed system. In the following sections, we

explain the experiments that we have conducted on

real Internet data and our findings.

3.1.1. Methodology of collecting statistics

First, we notice that the BGP routing tables

provide a wealth of information that can provide

the required statistics. A snapshot of a BGP

routing table is shown in Fig. 8. Only three fields

are shown: network prefix (the destination net-

work), next hop (next router on the path to the

destination network), and AS path (ASes on the
path to the destination: the last one is the desti-
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nation AS itself). We conduct the following steps

to collect and analyze the data:

• BGP data collection. Routing tables from doz-

ens of core BGP routers are collected. Each

routing table provides a snapshot of the Inter-
net from a different angle. Merging these rout-

ing tables together give a somewhat complete

picture of the networks and the ASes in the In-

ternet. We have collected this BGP data from

the RouteViews Project [21]. The data we use

is a dump of the BGP tables on May 1st, 2003.

• BGP data processing. The BGP data is in MRT

(binary and compressed) format. We convert it
to ASCII format using route_btoa com-

mand, which is a part of the MRT package

[28]. Since the data is a merge of many BGP ta-

bles, it has a lot of redundancy. We have built

scripts to extract the required fields (network

prefix, length, AS number), remove the redun-

dant data, and compute the required statistics.

The cleaned data has 117,027 unique network
prefixes in 14,950 different ASes.

• Peer data collection. IP addresses of some of the

peers in one of the largest P2P systems (Gnu-

tella) are collected. 1 The data file has 216,226

unique IP addresses.

• Peer data processing. We identify the network

to which a peer is attached by a process similar

to the IP lookup operation performed by IP
routers. We have implemented a fast data struc-

ture called level-compressed trie [19,33] for this

process. More details on this data structure are

given in Section 3.2.4. For each IP address, we

identify the network and the AS to which it be-

longs.

3.1.2. Observations

We summarize our observations in the follow-

ing.

• Network size. Fig. 9 shows the distribution of

the network size. The size is the maximum num-

ber of IP addresses a network can have, which is
1 We would like to thank Stefan Saroiu and authors of [34]

for sharing this data with us.
given by the network prefix length. For instance,

a network with prefix length 24 (a traditional

class C network) can have up to 2ð32–24Þ ¼ 256 ad-
dresses. The figure indicates that the current In-

ternet has numerous small-size networks. These

small networks have separate entries in the BGP

tables.

• Number of peers per network. The total number

of peers we have is 216,226. Those peers are dis-

tributed over 5,766 networks located in 2,013

ASes. Fig. 10 shows the cumulative distribution
of the number of peers in each network. We no-

tice that most of the networks have a small

number of peers: 90% of the networks have less

than 40 peers each, and the majority of them

have up to 200 peers. This result matches the re-

sult in Fig. 9, which says that most of the net-

works are of small size.

• Number of networks per AS. Fig. 11 addresses
the issue of how large an AS is. We count the

number of unique networks in each AS and rank

the ASes based on that number: the higher the

number of networks in an AS, the lower its rank

is. Fig. 11 shows that we have a very few ASes

that have 500 or more networks each. The

majority of ASes have less than 100 networks.

• Number of peers per AS. The cumulative distri-
bution of the number of peers in each AS is

shown in Fig. 12. The figure indicates that most

of the ASes have less than 1000 peers each.



Fig. 11. Number of networks in each autonomous system (AS).

The rank of an AS is based on the number networks it has: rank

1 means the AS that has the highest number of networks. The

majority of ASes have less than 100 networks each. The average

is 7.83.
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Fig. 12. Distribution of number of peers in each autonomous

system (AS). Most of the ASes have less than 1000 peers each.
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Fig. 10. Distribution of number of peers in each network.

Ninety percent of the networks have less than 40 peers and

almost all have less than 200 peers.
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3.1.3. Conclusion

Although these results do not cover all possible

cases of peer distribution in the Internet, they give

an idea on how this distribution might look like

and therefore how peers can be grouped into

clusters. When we organize peers into clusters we

need to consider two issues: managing peers within

each cluster and managing the clusters themselves.
To manage peers within a cluster, a powerful en-

ough peer should be selected. This peer is called a
super peer. The capacity of the super peer should

be proportional to the number of peers expected to

join the cluster. For the system to function prop-

erly, clusters should be interconnected. Further-

more, an entity in the system should keep track of
the current super peer of each cluster to direct a

new peer to the correct cluster. There is a clear

tradeoff: using few clusters with many peers each

imposes less overhead in managing the clusters,

but requires more powerful super peers to manage

each cluster. Specifically, if we cluster peers based

on their network attachment, we may end up with

too many clusters, each with a small number of
peers (10s of peers). This may impose significant

overhead on the system. On the other hand, if we

group all peers within an AS into one large cluster,

we may not find a powerful enough super peer to

manage the cluster. To strike a balance between

the overhead imposed on managing clusters and

the capacity needed to manage each cluster, we

propose a two-level peer clustering approach.

3.2. Two-level peer clustering

We use two levels of aggregation to divide peers

into clusters. Fig. 13 depicts the two-level peer

clustering technique. In the first level, peers at-

tached to the same network are grouped into the

same network-level cluster, which we call a net-

work cluster for short. The second level aggregates
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Fig. 13. Two-level clustering of peers.
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all networks within the same AS into a larger

cluster, called an AS cluster. Each cluster has a

super peer, which performs special functions based

on the cluster level. Notice that the responsibilities
of a network cluster super peer (NCSP) are dif-

ferent from those of an AS-cluster super peer

(ACSP). The super peer in a cluster is the most

powerful peer willing to assume this role in that

cluster. For robustness, a number of backup super

peers are chosen. Details of maintaining the system

in case of failures are given in later sections. In

addition to the two levels, we assume that there is a
set of bootstrap peers that are publicly known. A

joining peer contacts one of the bootstrap peers,

which will direct the joining peer to the appropri-

ate cluster.

3.2.1. Peer interconnections

Two types of connections may exist among

peers: data connection and control connection.
The data connection is established between a

supplying peer and a receiving peer. This connec-

tion carries the streaming data and uses the UDP

transport protocol. The data connection is closed

once the streaming session is over. The control

connection is used to: (1) send control messages

such as join, leave, and search, (2) transfer control

information such as tables and indexes, and (3)
exchange heartbeats to detect failures and main-

tain the system. The control connections use the

reliable TCP protocol. The data connections are

established on-demand, while the control connec-
tions exist as long as the peer is in the system. Fig.

13 shows the control connections among peers.

Within a network cluster, each peer is connected to

the super peer of that network cluster. All net-

work-cluster super peers in an AS are connected to

the ACSP of that AS. All ACSPs are connected to

the bootstrap peers. Finally, control connections

exist between an ACSP and some of its neighbor
ACSPs.

3.2.2. Network cluster

Peers are grouped into network clusters based

on their IP addresses and data gathered from a

number of BGP routers. Peers with IP addresses

that have the same longest prefix with one of the

routing table entries are assigned the same net-
work cluster. To illustrate the idea, consider five

peers P1, P2, P3, P4, and P5, with IP addresses

128.10.3.60, 128.10.3.100, 128.10.7.22, 128.2.10.1

and 128.2.11.43, respectively. Suppose that among

many entries in the routing tables, we have the

following two entries: 128.10.0.0/16 and 128.2.0.0/

16. The first three peers (all within Purdue Uni-

versity) share the same prefix of length 16 with the
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entry 128.10.0.0/16 (Purdue domain) and a prefix

of length 12 with the entry 128.2.0.0/16 (CMU

domain). Therefore, peers P1, P2, and P3 will be

grouped together in one cluster with ID 128.10.0.0/

16. Similarly, peers P4 and P5 will be grouped to-

gether in another cluster with ID 128.2.0.0/16. This
level of clustering is similar to the web clients

clustering technique proposed in [14].

Each network cluster has a network-cluster

super peer (NCSP). The NCSP maintains an index

of the files available in its network cluster and their

locations. The index is a small database with a

limited query-processing facility. The index is kept

current through the maintenance procedure dis-
cussed in Section 3.4.

3.2.3. AS cluster

In the second level of clustering, we group all

networks located in the same AS into one AS

cluster. Networks sharing the same AS number are

typically under the same administrative authority

and in many cases they are topologically close to
each other. For example, all networks on a uni-

versity campus will belong to the same AS. The

objective of this AS clustering is to increase the

number of peers that belong to the same logical

cluster and therefore, reduce the total number of

clusters in the system. Increasing the number

of peers per cluster will increase the probability of

locating the requested object within the cluster.
The AS number of a network is identified using the

AS Path field in the BGP routing table: the last AS

on the path is the AS of the destination net-

work. For example, in Fig. 8, the AS for the net-

work 6.9.0.0/20 is 1455, and the AS for the

network 128.10.0.0/16 is 17.

The AS-cluster super peer (ACSP) does not

maintain an index to files in the AS, since this
would impose a high load on it. Rather, it helps in

two functions: identifying the network cluster of a

new joining peer (see Section 3.3), and forwarding

search queries to NCSPs within the same AS and

to other ACSPs (see Section 4.1). To perform these

functions, the ACSP maintains the data structure

shown in Fig. 14. Since the number of network

clusters per AS is not too large (on the order of
10s), a simple table is sufficient. The table contains

for each network cluster a primary NCSP, a set of
backups, and a timer. The timer is reset upon

receiving a heart beat from the primary NCSP. If

the timer expires, the first backup will become the

primary NCSP.

3.2.4. Bootstrap peers and initialization

The bootstrap peers direct new peers joining the
system to the appropriate AS clusters. To do so,

each bootstrap peer maintains the data structure

shown in Fig. 15. The data structure has two parts:

a trie and an AS table. Each entry in the AS table

represents an AS cluster. It has the AS number, the

primary and backup ACSPs for that cluster, and a

timer. The trie is used to perform an operation

similar to the IP lookup operation performed by
IP routers. The IP lookup operation returns the

entry in the routing table that shares the longest

prefix with the input IP address. This longest prefix

match operation is performed efficiently (in a few

number of steps) using tries. In our system, we

construct a level-compressed trie [33] from data

gathered from dozens of BGP routing tables
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publicly available at [21]. A leaf node in the trie

has two attributes: the network prefix, and the

associated AS number. To find the corresponding

AS cluster of a peer, the trie is used to find the leaf

node whose network prefix attribute shares the

longest prefix with the IP address of that peer. The
AS attribute of the best matching node has a

pointer to the corresponding entry in the AS table.

The construction of the trie is done only once at

each bootstrap peer.

Note that the dynamic nature of the BGP

routing tables does not affect the clustering tech-

nique, because the clustering technique uses only

the network prefix and the AS number entries.
Although the path to a network may change, the

network address and the AS number do not. Even

if a network prefix entry is dropped from one BGP

table, it is unlikely that this prefix will be dropped

from all BGP routing tables used in the construc-

tion at the same time. We need, however, to up-

date the trie when a new AS is created, which

happens on a much larger time scale than changes
in BGP routes. Therefore, the bootstrap peers may

need to update the trie on the scale of days or even

weeks. This update is not expensive. It involves

downloading the current BGP routing tables

(about 2 MB) from [21] and checking for newly

added networks and ASes.

At the very beginning (no peers yet), the AS

table is empty and the trie is constructed a priori.
When the first peer joins, the bootstrap peer

determines its AS cluster using the trie. This peer

becomes the ACSP for this cluster and its data

structure is initialized with the network prefixes

that fall within this AS cluster. The bootstrap

peers can easily compute all network prefixes that

have the same AS number using the trie. If another

peer joins with the same AS number, the most
powerful of the two will become the ACSP. If it

falls within another AS, it will become the ACSP

of the new AS cluster. More details on peer joining

and leaving are given in Section 3.3.

3.3. Peer join and leave

Peer join. To join the system, a peer contacts
one of the bootstrap peers. The bootstrap peer

identifies the AS cluster of the joining peer and
replies with a short message. The message contains

the primary ACSP and its backups of the cluster.

The joining peer sends a join request to the pri-

mary ACSP. The ACSP determines the network

cluster of the joining peer and returns a list of

NCSPs (primary and backups). The joining peer
establishes a control connection with the primary

NCSP. Over this control connection, the joining

peer sends information about the locally cached

files and its level of cooperation with the system.

The level of cooperation is specified in terms of

three resources: bandwidth, CPU, and storage.

For example, a peer specifies the bandwidth as:

‘‘Ethernet, 10 Mb/s, 30%’’. This means that
the peer is connected to the Internet through a

10 Mb/s Ethernet and is willing to share up to 30%

of this bandwidth with the system. The primary

NCSP updates its index with the new peer and its

data. Note that the backup ACSPs (NCSPs) are

included in the messages to shorten the joining

time in case the primary ACSP (NCSP) has failed

and the bootstrap peer has not detected the failure
yet. In this case, if the joining peer gets no response

from the primary ACSP (NCSP), it tries the first

backup ACSP (NCSP), then the second, and so

on.

A joining peer may be promoted to a super peer

(NCSP, ACSP, or a backup for either of them), if

it offers more resources than the current super

peer. After the joining process finishes, the pro-
motion process starts from bottom up. The NCSP

responsible for the new peer compares the new

peer�s resources versus its own and each of the

backups� resources. Although all resources (band-

width, CPU, and storage) can be used in the

comparison, we use the most important one: of-

fered outbound bandwidth. This is because fast

CPUs and large disks are abundant nowadays, and
unlikely to become the bottleneck resources in the

super peer. A threshold is used in the comparison

to prevent frequent change of super peers. For

example, if the new peer�s bandwidth exceeds the

current super peer�s bandwidth by at least 25%,

the new peer will replace the current super peer.

If the new peer becomes the primary NCSP, it gets

the index from the replaced NCSP and informs the
parent ACSP, all backup NCSPs and peers in the

network cluster. The parent ACSP performs a
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similar comparison to determine whether the new

peer can become an ACSP. If the comparison

succeeds, the new peer is promoted to an ACSP,

and it informs the bootstrap peers, the backup

ACSPs, and other ACSPs that have connections

with the replaced ACSP.
Graceful peer leave. Graceful means that the

peer leaves the system through the normal way:

closing the P2P software agent, which triggers

sending leave messages to the appropriate peers.

Peer failure is presented in the next section. Three

different cases need to be considered: regular peer

leave, NCSP leave, and ACSP leave. When a regu-

lar peer leaves the system, it sends a leave message
to its NCSP, which updates the index to reflect this

leave. No further actions are needed. Before leav-

ing the system, an NCSP first selects a new pri-

mary NCSP from the backup list, informs it, and

updates its index. Then, it sends a leave message to

its parent ACSP and to the active peers in the

network cluster. The leave message contains the IP

address of the new NCSP. The new NCSP estab-
lishes a control connection with its parent ACSP.

The active peers close the connection with the old

NCSP and open new ones with the new NCSP. In

a similar way, when an ACSP leaves, it selects a

new one, and informs the bootstrap peers and all

NCSPs within the AS cluster.

3.4. Peer failures and reliability

This section describes how the system detects

and recovers from peer failures. By failure we

mean that a peer leaves the system suddenly

without any notification. We consider only fail-

stop failure model, in which a peer stops sending

and receiving messages once it fails. Other failure

models (e.g., Byzantine) are outside the scope of
this paper.

Heartbeats. Periodic ‘‘I am alive’’ control mes-

sages (heartbeats) are exchanged among peers over

the control connection in the following manner:

each peer sends heartbeats to its parent and to its

backups, if there is any. Specifically, peers in a

network cluster send heartbeats to the NCSP of

the cluster. These heartbeat messages are tiny
messages with only four bytes of data to identify

the message. Each NCSP within an AS cluster
sends heartbeats to its parent, which is the ACSP

of the cluster. Moreover, the NCSP sends heart-

beats to its backups. Similarly, an ACSP sends

heartbeat messages to its parent (the bootstrap

peers) and its backups. The heartbeat messages

sent by ACSPs and NCSPs are a bit longer: they
contain the IP addresses of the backups sorted

based on their capabilities. That is, the first IP in

the list is the most powerful backup, and therefore

will be the first candidate to replace the super peer

in case of failure.

Failure detection. Since heartbeats are short

messages and sent reliably over the control con-

nection, losing one or two of them indicates sender
failure. In our system, if two successive heartbeats

are not received, the sender is assumed to have

failed. The reaction to the failure depends on the

type of the failed peer. If it is a regular peer (i.e.,

neither ACSP nor NCSP), its record in the NCSP

index is removed. On the other hand, if the failed

peer is an NCSP, the first peer in the backup list

becomes the new NCSP. Note that, since all
backups and the parent ACSP were receiving the

same heartbeats from the failed NCSP, they will

all agree on the same new NCSP. The new NCSP

establishes a control connection with its parent

ACSP. The new NCSP notifies the active peers in

the network cluster about the failure. The active

peers are those listed in the index table maintained

by the NCSP and replicated at the backups. The
index table at the backups is frequently updated by

the primary NCSP. The active peers then open

new connections with the new NCSP. Similar steps

are taken in case of ACSP failures.

Overhead. Heartbeats are short messages sent

over relatively long periods (30–90 s). We estimate

the overhead on an NCSP as follows. Assume

there are 200 peers in the network cluster and the
heartbeat period is 60 s. The message carrying the

heartbeat from a regular peer to the NCSP has a

size of 44 bytes (20 bytes for IP header + 20 bytes

for TCP header + 4 bytes for data). Therefore, the

inbound traffic overhead due to receiving heart-

beats is: (200 · 44 · 8)/60¼ 1.17 Kb/s. Every

incoming heartbeat is acknowledged (since it is

TCP) using a message of size 40 bytes (no data,
just the ACK bit is set in the TCP header).

Moreover, the NCSP sends out heartbeats to its
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backups and its parent. These heartbeats contain

the IP addresses of the backups. Assume we have

two backups. Then, the message size is 52 bytes.

Therefore, the outbound traffic overhead is:

(200 · 40 · 8)/60+ (3 · 52 · 8)/60¼ 1.09 Kb/s. From

this simple calculation, we see that the overhead is
a very small fraction of the super peer bandwidth.

It is less than 0.12% for a super peer connected to

10 Mb/s Ethernet.
4. Cluster-based searching and dispersion

4.1. Searching

As discussed in Section 3, peers in the system

are organized in a network-aware fashion. This

organization enables the searching algorithm to

locate nearby peers who have segments of the re-

quested media file. The proposed cluster-based

searching algorithm can be summarized in the

following steps (consider Fig. 13):

1. The requesting peer sends a lookup request to

its own network-cluster super peer (NCSP).

The NCSP has an index of the files available

in the network cluster and their locations. The

NCSP checks whether there are enough suppli-

ers to serve the new request. If there are enough

suppliers, the result is returned to the requesting
peer in the form: hj;PðmainÞ;PðbackupÞi, where j is
the segment number, PðmainÞ is the set of main

suppliers, and PðbackupÞ is the set of backup sup-

pliers. Each element in the supplier sets has two

fields: the IP address of the peer and the offered

rate by that peer.

2. If there are no sufficient suppliers in the net-

work cluster, the NCSP forwards the remaining

part of the request to its own AS-cluster super

peer (ACSP). The ACSP does not maintain an

index of files, but it does have pointers to other

NCSPs in the same AS cluster. The ACSP sends

the request to the NCSPs one at a time until suf-

ficient suppliers are accumulated. The result is

then returned to the requesting peer through

its NCSP.
3. If there are no sufficient suppliers in the AS

cluster, the ACSP forwards the remaining part
of the request to one of its neighbor ACSPs,

which in turn sends the request to NCSPs in

its cluster. The results are accumulated and re-

turned to the requesting ACSP then to the

NCSP and finally to the requesting peer.

Comments. In the first step, enough suppliers

means that the main suppliers can provide all

segments at the full rate. To maintain the full

quality in case of peer failures, the system chooses

a number of backup suppliers. In the second and

third steps, the remaining part of the request refers

to the segments that were not found with the full
rate in the previous step. To reduce the delay that

might result in the second and third steps, the re-

quest can be sent to multiple super peers simulta-

neously. After choosing the suppliers, the indexes

of the involved NCSPs are updated by marking the

entries of the corresponding suppliers as busy for

the duration that these suppliers are scheduled to

stream. Note also that the index is updated when a
peer fails, joins, or leaves as discussed in Sections

3.3 and 3.4. Finally, if the system does not have

sufficient peers to satisfy the request, an empty

supplier list is sent to the client. The client then

backs off and tries after an exponentially increased

waiting time.

4.2. Dispersion

Caching the right segments of the media file at

the right places is crucial to the incremental

expansion of the system�s capacity. The objective

of the dispersion algorithm is to store enough

copies of the media files in each cluster to serve all

expected client requests from that cluster. The

dispersion algorithm works in the following set-
ting. At a specific instant of time, the system can

serve a certain number of requests concurrently. A

client Py sends a request to the system to get the

media file. The client also declares its willingness to

cache up to Ny segments to serve them to other

clients with rate Ry in the future. The dispersion

algorithm decides whether or not this peer should

cache, and if so, which specific segments it should
cache. Two dispersion algorithms are proposed: a

simple random dispersion algorithm, and a cluster-

based dispersion algorithm. We describe the two
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algorithms in this section and evaluate them in

Section 5.3.

4.2.1. Random dispersion

The simplest way for a peer Py to cache Ny

segments is to randomly choose them. This is

simple in the sense that no communication is

needed with the super peers. However, it does not

ensure that, on the average, the same number of

copies of each segment is cached. Given that all
segments are equally important for streaming the

entire file, this is a critical issue. To clarify, con-

sider a file with only two segments. Keeping 90

copies of segment 1 and 10 copies of segment 2

means that we have effectively 10 copies of the

media file available. In contrast, keeping 50 copies

of each segment would result in 50 copies of the

media file.

4.2.2. Cluster-based dispersion

The cluster-based dispersion dynamically ad-

justs the available capacity within each cluster
according to the average number of client requests

from that cluster. The ClusterDisperse algo-

rithm, shown in Fig. 16, is to be run by the net-

work-cluster super peers (NCSPs). Consider one
Fig. 16. Pseudo-code for the cluste
media file with N segments, rate R Kb/s, and

duration T hours. The algorithm requires main-

taining three types of information: per-peer

information, per-cluster information, and per-sys-

tem (or global) information. Table 1 summarizes

the symbols used in the algorithm and their
meaning.

For every peer Px, the NCSP maintains: (1) Nx,

the number of segments which are currently

cached by Px; (2) Rx, the rate at which Px is will-

ing to stream the cached segments; and (3) ux,
06 ux 6 1, the fraction of time Px is online. Recall

that the peer is not available all the time. For every

network cluster c, the NCSP maintains the fol-
lowing: (1) Ls, 16Ls 6N , the next segment to

cache; (2) qc, the average request rate (per hour)

the media file is being requested by clients from c.

qc represents the required capacity in the cluster c

per hour; (3) ac, the average number of copies of

the movie cached by peers in cluster c. c is com-

puted from the following equation:

ac ¼
X

Pxinc

Rx

R
Nx

N
ux: ð1Þ

The summation in Eq. (1) computes the effective

number of copies available in the cluster. It takes
r-based dispersion algorithm.



Table 1

Symbols used in the ClusterDisperse algorithm

Scope Symbol Description

System A Average number of copies of the movie cached by all peers in the system

Variables Q Average movie request rate in the system

Cluster Lc Next segment to cache in cluster c

Variables ac Average number of copies of the movie cached by peers in cluster c

qc Movie request rate in cluster c

Peer Nx Number of segments cached by peer Px
Variables Rx Rate at which peer Px streams

ux Fraction of time peer Px is online

Movie N Number of segments of the movie

Variables T Duration of the movie (in hours)

R Rate at which the movie is recorded (CBR)

2 Computing these quantities is not necessarily performed for

every request, especially if the request arrival rate is high.

Rather, they can be updated periodically to reduce the

computational overhead. Also, these quantities are smoothed

averages, not instantaneous values.
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into consideration the limited capacity and hetero-

geneity of peers, since peers do not offer server-like

behavior as shown in [34]. The equation accounts

for two facts. First, peers are not always online

through the term ux, which is the fraction of time

peer Px is available. Second, peers do not cache all

segments at the full rate through the term

RxNx=RN . Dividing ac by T results in the number
of requests that can be satisfied per hour, since

every request takes T hours to stream. Hence,

ð1=T Þac represents the available capacity in the

cluster c per hour.

Two global variables are maintained: (1)

A ¼
P

c
ac, the average number of copies of the

movie cached by all peers in the system. (2)

Q ¼
P

c
qc, the average movie request rate in the

system. Q and ð1=T ÞA represent the global re-

quired capacity and the global available capacity

in the system, respectively. The computation of

these global variables are propagated from NCSPs

to bootstrap peers and aggregated at ACSPs, as

follows. Every NCSP of a network cluster c perio-

dically (on order of minutes) reports its ac and qc
to its own AS cluster super peer (ACSP). The
ACSP aggregates these values from all network

clusters in the AS and reports periodically (on the

order of 10s of minutes) to the bootstrap peer.

Computing and exchanging these variables impose

a little overhead on the peers because: (1) the

computation is a simple sum and done infre-

quently, and (2) the communication is a short

control packet which could be a part of the
heartbeats exchanged between peers (Section 3.4).
After the up to date values of A and Q are com-

puted, they are sent to all ACSPs.

The algorithm proceeds as follows. Upon get-

ting a request from peer Py to cache Ny segments,

the NCSP computes ac, qc
2 and gets A, Q from its

ACSP. The algorithm decides whether Py caches

based on the available and the required capacities

in the cluster. If the demand is larger than the
available capacity in the cluster, Py is allowed to

cache Ny segments in a cluster-wide round robin

fashion. To clarify, suppose we have a 10-segment

file. Ls is initially set to 1. If peer P1 sends a request

to cache 4 segments, it will cache segments 1, 2, 3,

and 4. Ls, the next segment to cache, is now set to 5.

Then, peer P2 sends a request to cache 7 segments.

P2 will cache segments 5, 6, 7, 8, 9, 10, and 1. Ls is
updated to 2, and so on. This ensures that we do

not over cache some segments and ignore others.

Furthermore, the ClusterDisperse algorithm

accounts for the case in which some clusters receive

low request rates while others receive very high

request rates in a short period. In this case, the

global required capacity Q is likely to be much

higher than the global available capacity ð1=T ÞA,
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i.e., Q � ð1=T ÞA. Therefore, even if the intra-

cluster capacity is sufficient to serve all requests

within the cluster, the peer is allowed to cache if

Q � ð1=T ÞA in order to reduce the global shortage

in the capacity. The operator � used in compari-

son is relative and can be tuned experimentally.
5. Evaluation

We evaluate the performance of the proposed

architecture through extensive simulation experi-

ments. We use the Network Simulator ns-2 [20] in

the simulation. Three sets of experiments are pre-
sented. The first set of experiments (Section 5.1)

addresses the system-wide performance parame-

ters such as capacity and waiting time as well as

how peers� levels of cooperation affect these

parameters. The second set of experiments (Sec-

tion 5.2) focuses on the client-side performance

parameters such as the buffer size and the effect of

peer unreliability on the quality of playback. The
third set of experiments (Section 5.3) evaluates the

proposed cluster-based dispersion algorithm and

compares it with the random dispersion algorithm.

In all of the experiments, we use large hierar-

chical, Internet-like, topologies. Fig. 17 shows a

part of the topology used in the simulation.

Approximately resembling the Internet, the

topology has three levels. The highest level is
composed of transit domains, which represent

large Internet Service Providers (ISPs). Stub do-

mains, which represent small ISPs, campus net-
Transit domain

hosts hosts

dialupLAN

Stub domain

Fig. 17. Part of the topology
works, moderate-size enterprise networks, and

similar networks; are attached to the transit do-

mains at the second level. Some links may exist

among stub domains. At the lowest level, the end

hosts (peers) are connected to the Internet through

stub routers. The first two levels are generated
using the GT-ITM tool [5]. We then probabilisti-

cally add dial-up (e.g., DSL and Cable modem)

and LAN hosts to routers in the stub domains.

The details of the topology (e.g., number of rou-

ters, number of peers, and number of domains)

may differ from an experiment set to another in

order to emphasize the performance parameters

being studied in that set. However, all topologies
have the structure shown in Fig. 17.

The results presented in the following sections

are averages over many runs each with a different

seed for the pseudo-number generator used in ns-2.

5.1. System-wide performance

We study the performance of the system under
various situations, e.g., different client arrival

patterns and different levels of cooperation offered

by the peers. We are interested in the following

performance measures as the system evolves over

time and the level of cooperation changes:

1. the overall system capacity, defined as the aver-

age number of clients that can be served concur-

rently per hour;

2. the average waiting time for a requesting peer

before it starts getting the media file;
used in the simulation.
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3. the average number of satisfied (or rejected) re-

quests; and

4. the load on the seeding peer.

The topology used in this set of experiments
consists of 20 transit domains, 200 stub domains,

2100 routers, and a total of 11,052 hosts distrib-

uted uniformly at random.

5.1.1. Simulation parameters and scenario

We have the following fixed parameters:

1. A media file of 20 min duration recorded at a
CBR rate of 100 Kb/s and divided into 20

one-minute segments.

2. The dial-up peers are connected to the network

through links with 1 Mb/s bandwidth and 10 ms

propagation delay.

3. The LAN peers have 10 Mb/s Ethernet connec-

tivity with a 1 ms propagation delay.

4. The backbone links have a bandwidth of 155
Mb/s with variable delays, depending on

whether a link is between two routers in the

same stub domain, the same transit domain,

or across domains.

5. The seeding peer has a T1 link with a band-

width of 1.5 Mb/s, which means that it can sup-

port up to 15 concurrent clients.

6. The requesting peer can open up to four con-
nections with other peers to get a segment at

the desired rate of 100 Kb/s and

7. The maximum waiting time for a requesting cli-

ent is 2 min.

We vary the caching percentage from 0% to

50% and study the system under various client

arrival patterns. 0% caching means that the
requesting peer does not store any segment of the

media file; whereas with 50% caching, it stores half

of the file. The results are summarized in the fol-

lowing sections.

We simulate the following scenario. A seeding

peer with a limited capacity introduces a media file

into the system. According to the simulated arrival

pattern, a peer joins the system and requests the
media file. Then, the protocol described in Section

2.2 is applied. If the request can be satisfied, i.e.,

there is a sufficient capacity in the system, con-
nections are established between the supplying

peers and the requesting peer. Then, a streaming

session begins. The connections are over UDP and

carries CBR traffic. If the requesting peer does not

find all the segments with the full rate, it backs off

and tries again after an exponentially increased
waiting time. If the waiting time reaches a specific

threshold, the request is considered ‘‘rejected’’ and

the peer does not try again. When the streaming

session is over, the requesting peer caches some of

the segments depending on the level of coopera-

tion, called the caching percentage. For instance, if

the caching percentage is 10% and the media file

has 20 segments, the peer stores two randomly
chosen segments. The peer also selects a rate at

which it wants to stream the cached segments to

other peers.

5.1.2. Results for constant rate arrivals

Fig. 18 shows the behavior of the P2P archi-

tecture when the constant rate arrival pattern

shown in Fig. 18a is applied to the system. Fig. 18c
shows how the system�s capacity evolves over time.

The average service rate, increases with the time,

because as time passes more peers join the system

and contribute some of their resources to serve

other requesting peers. The capacity is rapidly

amplified, especially with a high caching percent-

age (i.e., higher level of cooperation from peers).

For instance, with 50% caching, the system is able
to satisfy all the requests submitted at 5 requests/

min after about 250 min (about 4.2 h) from the

starting point. We can use Fig. 18c to answer the

following two questions. Given a target client ar-

rival rate, what should be the appropriate caching

percentage? How long will it take for the system

to reach the steady state (in which all clients

are served)? To illustrate, suppose that the target
service rate is 2 requests/min. Then, 30% cach-

ing will be sufficient and the steady state will

be achieved within less than 5 h. The average

waiting time, shown in Fig. 18b, is decreasing over

time, even though the system has more concur-

rent clients, as shown in Fig. 18d. This is due to

the rapid amplification of the capacity. Fig.

18d complements Fig. 18c by showing that
the average rejection rate is decreasing over the

time.
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Finally, Fig. 18e and f verify the diminishing

role of the seeding peer. Although the number of

simultaneous clients increases until it reaches the

maximum (limited by the arrival rate), the pro-
portion of these clients that are served by the

seeding peer decreases over the time, especially

with high caching percentages. For instance, with

50% caching and after about 5 h, we have 100
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concurrent clients, i.e., 6.7 times the original

capacity, and none of them is served by the seeding

peer. Reducing the load on the seeding peer is an

important feature of the architecture, because it

means that the seeding peers need not to be pow-

erful machines with high network connectivity.
Besides being moderate machines, the seeding

peers are used only for a short period of time.

Therefore, the cost of deploying and running these

seeding peers (in case of a commercial service) is

greatly reduced.
5.1.3. Results for flash crowd arrivals

Flash crowd arrivals are characterized by a
surge increase in the client arrival rates. These

kinds of arrival pattern arise in cases such as the

release of a popular movie or a publicly interesting

event. To simulate the flash crowd arrivals, we

initially subject the system to a small request rate

of 2 requests/min for some period of time (warm up

period), and then suddenly increase the arrival

rate 10 folds to be 20 requests/min for a limited
time (100 min). The arrival pattern is shown in Fig.

19a.

The results shown in Fig. 19 demonstrate an

appealing characteristic of the P2P architecture,

namely the ability to handle flash crowd arrivals.

For 50% caching, the average service rate in the

system, shown in Fig. 19c, reaches as high as the

client arrival rate (i.e., 20 requests/min) during
the crowd period. Therefore, the system does not

turn away any customers, when the caching per-

centage is 50%, as shown in Fig. 19d. Moreover,

all customers are served without having to wait, as

shown in Fig. 19b.

Fig. 19e indicates that, during the crowd period

and with 50% caching, there are as many as 400

concurrent clients in the system. This is an increase
of 26.7 times in the original capacity. Even with

that many clients, Fig. 19f shows that none of the

clients is being served by the seeding peer, which

confirms that the seeding peer�s role is still just

seeding the media file into the system. Finally, we

notice that for caching percentages lower than

50%, the system needs a longer warm up period to

cope with the flash crowd without the help of the
seeding peer.
5.1.4. Results for Poisson arrivals

We subject the system to Poisson arrivals with

different mean arrival rates. The results for mean

arrival rate of 10 requests/min (i.e., mean inter-

arrival time of 0.1 min) are shown in Fig. 20.
Notice that, Fig. 20a shows the density functions

of the inter-arrival time distribution (exponential

distribution). The results are similar to the case of

constant rate arrivals, except that there are more

fluctuations due to the probabilistic nature of the

Poisson arrivals. The results indicate the ability of

the P2P architecture to handle statistically multi-

plexed client arrival patterns.

5.2. Client-side performance

This section studies the initial buffering needed

by the client and the effect of supplying peer

switching on the quality of playback. We use the

number of ‘‘glitches’’ or pauses during the stream-

ing session to quantify the quality of playback.
More pauses means poorer quality. For a smooth

playback, we should not have any pauses. This is a

rather stringent quality measure, since we either

play the segment or pause till we get all its packets.

No error concealment or interpolation techniques

are used.

5.2.1. Simulation parameters and scenario

In this set of experiments, we set the streaming

rate to be 512 Kb/s, and we stream a file of 34 min

duration. The file is divided into 1024 segments,

each of 2 s length. The simulated topologies have

2,000 nodes. We vary the initial buffering time

from 0 to 20 s. We measure the average number of

times the client experiences buffer underflow for

the simulated initial buffering. Every buffer
underflow instance causes a pause in the playback

until sufficient data packets arrive. These pauses

are mainly due to supplier switching. A switching

happens if the rate coming from a supplying peer

decreases due to failure or congestion. The sup-

plying peer may also stop sending because it has

no more segments to send (recall that peers do not

cache the entire file). To simulate switching, we
populate peers with only 25% of the segments

chosen at random and we allow peers to fail. When

switching happens, we delay sending packets from
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the replacement peer(s) by a random time between

0 and 1 s. This is called the switching time, during

which the degraded peer is detected and a
replacement peer is notified.
To simulate playback of the media, an inde-

pendent playback process is scheduled at regular

times. The first call of this process is after the
simulated initial buffering time. Then, it is called
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every 2 s (the segment length in this experiment).

When the playback process is invoked to play
segment i, it checks the buffer for all packets

belonging to segment i. These packets are identi-

fied through their sequence numbers. If all packets
are available, the playback of segment i is suc-

cessful and the playback process is scheduled for
segment iþ 1 after 2 s from the current simulation

time. If any packet is missing, a pause is encoun-

tered. The playback process is scheduled for the
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same segment after the pause time, which is one

second in this experiment.

We simulate the following scenario. A value for

the initial buffering time is set. A client is chosen at

random. The set of suppliers (main and backup)

are constructed for that client. The streaming
starts from the set of main suppliers. Switching

happens at random times and replacement peers

are chosen from the backup list. On average, 17

switching events occur during each session. After

the initial buffering period, the first invocation

of the playback process is scheduled. We count

the number of pauses encountered throughout the

session. After the streaming session is over, the
experiment is repeated for another randomly

chosen client. We simulate 10 different sessions.

We compute the minimum, maximum, average

number of pauses over these 10 sessions. Then,

another value for the initial buffering is set and the

whole scenario is repeated again.

5.2.2. Results

Fig. 21 shows the effect of switching on the

quality of display for different values of the initial

client buffering. For a small initial buffering of two

seconds, we expect an average of 9 pauses and a

maximum of 12 pauses. A buffer size of 12 s or
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more will absorb all transient effects during sup-

plier switching. We believe that 10–20 s of buffer-

ing is a reasonable requirement to ensure full

quality for streaming a half-hour movie at a rate of

512 Kb/s. Note that this buffering is meant to

cover the peer switching introduced by the limited
reliability of peers. No prolonged congestion

periods were simulated in this experiment. Recall

that the proposed architecture strives to serve each

request from the local cluster, in which congestion

is unlikely to occur (congestion usually occurs at

the peering points between Internet service pro-

viders).

5.3. Evaluation of the dispersion algorithm

We evaluate the proposed cluster-based dis-

persion algorithm and compare it against the

random dispersion algorithm. We evaluate the

efficiency of the dispersion algorithm by measuring

the average number of network hops traversed by

the requested stream. A smaller number of net-
work hops indicates savings in the backbone

bandwidth and less susceptibility to congestion,

since traffic passes through fewer routers. Note

that the comparison criteria not only depend on

the dispersion algorithm but also on the searching

algorithm. We use our cluster-based searching

algorithm in the experiments. Therefore, we in fact

evaluate both the searching and the dispersion
algorithms together.

5.3.1. Simulation parameters and scenario

In this set of experiments, most of the simula-

tion parameters are the same as in Section 5.1,

except that the topology is larger. The topology

has 100 transit domains, 400 stub domains, 2400

routers, and a total of 12,021 hosts. This topology
is chosen to distribute the peers over a wider range,

and hence stresses the dispersion algorithms more

than the previous topology. We vary the caching

percentages from 5% to 90%. Low caching per-

centages, e.g., 5% and 10%, stress the dispersion

algorithm more than the higher caching percent-

ages. With low caching percentages, a peer stores

few segments. Therefore, it is important for the
dispersion algorithm to carefully choose these few

segments. In contrast, with high caching percent-
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ages, a peer stores most of the segments, leaving

little work for the dispersion algorithm. The clients

arrive to the system according to a constant rate

arrival pattern with a rate of 1 request/min.

The simulation scenario is similar to the sce-

nario in the first set of experiments (Section 5.1)
with one difference in the caching step. For each

caching percentage, we run the experiment twice.

In the first run, we use a random dispersion

algorithm, in which a peer randomly selects a

specific number of segments (determined by the

caching percentage) and store them locally. In the

second run, we use the ClusterDisperse

algorithm, which caches the same number of seg-
ments but selects them carefully. Each experiment

lasts for 500 min of simulation time. For every

streaming packet transmitted during the simula-

tion, we measure the number of network hops that

packet traverses. At the end of each experiment,

we compute the distribution of the number of

network hops traversed by all packets of the

streaming traffic. We plot both the probability
mass function (pmf) and the cumulative distribu-

tion function (cdF). The results are summarized in

the following sections.

5.3.2. Results for 5% caching

Fig. 22a shows the pmf of the number of net-

work hops for both the random and the Clus-

terDisperse dispersion algorithms. The pmf
curve of the ClusterDisperse algorithm is
0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16

Fr
ac

tio
n 

of
 tr

af
fi

c 
(%

)

Number of network hops traversed by the traffic 

Random
Cluster-based

(a) (b

Fig. 22. Comparison between the random and the cluster-based disper

of the number of network hops and (b) cumulative distribution funct
shifted to the left of the random algorithm. This

indicates that the traffic crosses a fewer number of

hops using the ClusterDisperse algorithm

than using the random algorithm. The arithmetic

mean of the number of network hops for the

random algorithm is 8.0520, while it is 6.8187 for
the ClusterDisperse algorithm. The saving is

about 15.3% of the total bandwidth needed in the

backbone. Given that a good streaming service

requires a huge bandwidth, our dispersion algo-

rithm achieves considerable savings.

The cumulative distribution, Fig. 22b, shows

that about 44% of the traffic crosses six or less

hops using our algorithm, whereas this value is
only 23% for the random algorithm. A reasonable

ISP network would have an average network

diameter in the vicinity of six hops. This means

that our dispersion algorithm keeps about 44% of

the traffic within the same domain (cluster), which

is often a desirable property for both the clients

and the network.

5.3.3. Results for other caching percentages

Similar results were obtained for other caching

percentages, as shown in Figs. 23 and 24. The

main observation is that the difference between the

two algorithms is shrinking as the caching per-

centage increases. This is expected, since peers

cache more segments as the caching percentage

increases and the room for enhancements by the
dispersion algorithm is decreased.
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Fig. 24. Comparison between the random and the cluster-based dispersion algorithms, 30% caching: (a) probability mass function

(pmf) of the number of network hops and (b) cumulative distribution function (CDF) of the number of network hops.
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Fig. 23. Comparison between the random and the cluster-based dispersion algorithms, 10% caching: (a) probability mass function

(pmf) of the number of network hops and (b) cumulative distribution function (CDF) of the number of network hops.
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6. Related work

We summarize related work in both areas of

P2P and media streaming systems.

6.1. P2P systems

In the last few years, the peer to peer paradigm
has attracted the attention of numerous research-

ers. Two main categories of research can be iden-

tified: research on protocols and algorithms

(mainly on searching and replication), and re-

search on building P2P systems. Searching (or

routing) protocols such as CAN [30], Chord [37],
Pastry [31], and Tapestry [43] guarantee locating
the requested object within a logarithmic number

of steps, if the object exists in the system. How-

ever, they lack the flexibility of supporting key-

word queries and in many cases (except for Pastry)

they do not explicitly consider network locality.

Other searching techniques do not provide such

guarantees but they support flexible queries [42].

Related to our dispersion algorithm are the effi-
cient replication strategies proposed in [6], which

minimize the expected search size. These strategies

are proactive in nature in the sense that files may be

replicated at hosts that did not request them. Our

dispersion algorithm is different, a peer may only
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cache whatever it has requested. Given that media

files are typically large, proactively replicating

them imposes a large overhead on peers. Besides,

peers are not always willing to cache.

On the systems side, Gnutella [26] and Kazaa

[27] are the largest currently running file-sharing
systems, after legal problems brought down Nap-

ster [29]. Freenet is another file-sharing system

focusing on the anonymity of both the producer

and consumer of the files [25]. Examples of large-

scale storage systems built on top of P2P archi-

tectures are presented in [9,15], and [32]. Our

proposed system adds one more to the list but with

a new service, namely, media streaming.

6.2. Media streaming

Significant research effort has addressed the

problem of efficiently streaming multimedia, both

live and on demand, over the best-effort Internet.

In the client/server paradigm, proxies and caches

are deployed at strategic locations in the Internet
to reduce and balance load on servers and to

achieve a better service. Content delivery network

(CDN) companies such Akamai [1] and Digital

Island [24] follow similar approaches to provide

media streaming and other services. Our approach

does not require powerful proxies or caches.

Rather, it uses peers� extra resources as numerous

tiny caches. These tiny caches do not require large
investments and collectively enlarge the capacity of

the system in a way that potentially outperforms

any powerful centralized caches.

The distributed video streaming framework [18]

is relevant to our work. The framework allows for

multiple senders to feed a single receiver. The re-

ceiver uses a rate allocation algorithm to specify

the sending rate for each sender to minimize the
total packet loss. This specification is based on

estimating the loss rate and the available band-

width between the receiver and each of the senders.

The authors assume that senders are capable of

providing the rates computed by the rate alloca-

tion algorithm. In our case, the supplying peers

decide on the rates at which they are willing to

provide.
Related to our work are systems like SpreadIt

[10] for streaming live media and CoopNet [22,23]
for both live and on-demand streaming. Both

systems build distribution trees using application-

layer multicast and, like ours, they rely on coop-

erating peers. Our work is different from these

systems, since we do not use multicast in any form

and our system is more appropriate for on-
demand media service. CoopNet [23] also supports

on-demand media streaming; a client first contacts

a server, which redirects it to peers that recently

received the movie. The authors assume that a peer

can (and is willing to) support the full rate required

for streaming and they do not address the issue of

quickly disseminating media files into the system.

Similar to our architecture, a hybrid media
streaming system is proposed in [40]. Unlike us,

the authors assume that a peer stores all segments

of the media file and is ‘‘always on’’. In contrast,

we account for peers� limited capacity and avail-

ability. They do not discuss dispersion algorithms

and assume a requesting peer will always cache the

entire file. Under the above assumptions, the au-

thors present a neat analytic analysis of the handoff
point at which all clients are served by peers. These

systems do not take network locality into account

when selecting the supplying peers. Finally, in our

previous work [41], assuming peers cache the entire

file, we have proposed a differentiated admission

control algorithm in a purely distributed P2P

media streaming architecture. The algorithm pre-

fers admitting peers with higher out-bound band-
width and decreases the average waiting time and

buffering delay for all clients.
7. Conclusions and future work

We presented a hybrid architecture for on-

demand media streaming that can serve many cli-
ents in a cost effective manner. We presented the

details of the architecture and showed how it can

be deployed over the current Internet. Specifically,

we presented the streaming protocol used by a

participating peer to request a media file from the

system; a cluster-based dispersion algorithm,

which efficiently disseminates the media files into

the system; and a cluster-based searching algo-
rithm to locate nearby peers who have segments of

the requested media file. Through a large-scale
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simulation study, we showed that our architecture

can handle several types of client arrival patterns,

including suddenly increased arrivals, i.e., flash

crowds. Our simulation results also show that the

proposed cluster-based dispersion algorithm re-

duces the load on the underlying network and
keeps a large portion of the traffic within the same

network domain. We are currently implementing a

prototype of the proposed system. The objective is

to better assess the proposed model and to dem-

onstrate its applicability for wide deployment.

Addressing the security issues of the architecture is

part of our future work.
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