1190

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Bio-Inspired Formal Model for Space/Time
Virtual Machine Randomization
and Diversification

Noor Ahmed™ and Bharat Bhargava

, Fellow, IEEE

Abstract—Studies on resiliency against system attacks have contributed well established defensive techniques, sound protocols and
paradigms in distributed systems’ literature. One of this contribution is credited to redundancy and replication techniques which is proven
to be a double—edged—sword, by increasing the number of nodes inherently increases the system’s attack-vector — the set of ways an
attacker can compromise a system. To remedy this issue, system randomization and diversification has been considered as an effective
defensive strategy, referred to as a Moving Target Defense (MTD). In this article, we introduce a bio-inspired formal model for space/time
system randomization/diversification and a quantification scheme for virtual machines (VMs) in a cloud computing environment. We
show the practicality of the model with a MTD framework (Mayflies) integrated into the cloud management software stack (OpenStack)
and illustrate with realistic VM attacks and proactive defense use cases.

Index Terms—Cloud computing security, moving target defense, formal model, hidden Markov model, dynamic bayesian networks,
byzantine fault tolerant, software defined networks, virtual Machines, OpenStack

1 INTRODUCTION

HE traditional defensive security strategy commonly
Temploys well established defensive techniques such as
perimeter-based fire walls, redundancy and replications,
and encryption. Given sufficient time and resources all of
these methods can be defeated, especially, with sophisticated
attacks that target zero-day exploits. This is due to the fact
that the traditional security motto is to stay one-step ahead
of the attackers at all times in which is proven to be ineffec-
tive defensive strategy. With the ever increasing adaptation
on cloud computing due to its virtualized computing model
built on commodity off-the-shelf hardware and software
components, and programmable networking powered by
Software Defined Networks (SDN) — the core building blocks of
the cloud networking, attacks on these platforms and its net-
working fabric has risen in recent years.

Moving Target Defense (MTD) [1] is considered as a game
changer in dealing with sophisticated attacks than the tradi-
tional defensive security strategies. MTD is a defensive strat-
egy that aims to reduce the need to stay one-step ahead of the
attackers by disrupting their gain-loss balance of the system.
The core of this defensive strategy is to continuously shift the
system’s attack surface [2] — the set of ways/entries an adver-
sary can exploit/penetrate the systems, with the goal of
increasing the cost of an attack and the perceived benefit of

e N. Ahmed is with AFRL/RI, Rome, NY 13411 USA.
E-mail: ahmed24@purdue.edu.

o B. Bhargava is with the Purdue University, W. Lafayette, IN 47906 USA.
E-mail: bbshail@purdue.edu.

Manuscript received 24 Nov. 2018; revised 11 Apr. 2019; accepted 20 Apr. 2019.
Date of publication 30 Jan. 2020; date of current version 7 June 2022.
(Corresponding author: Noor Ahmed.)

Recommended for acceptance by V. Piuri.

Digital Object Identifier no. 10.1109/TCC.2020.2969353

compromising it by randomizing/diversifying system com-
ponents (i.e., OS, Memory, CPU, and networking).

For decades, randomization/diversification techniques
have been the ultimate defensive strategy to safeguard against
attacks on memory structures, CPU registers, VMs, and appli-
cations. For example, Instruction Set Randomization [3],
Address Space Randomization [4], randomizing runtime [5],
and system calls [6], have been employed to effectively com-
bat against memory and CPU exploits (i.e., return-oriented/code
injection). Interestingly, these techniques are considered
mature and tightly integrated into most modern operating
systems. Similarly, techniques such as N-Version Program-
ming [7] for running variable binary forms of the same
program, and N-Variant Systems [8] for running multiple var-
iants of the same system in synchrony with a given input then
monitoring for their convergence, are considered to deal with
application-level attacks. However, these techniques are inef-
fective when attacks originate beyond the application bound-
aries (e.g., OS kernel, networks, side channel).

For this, randomization/diversification frameworks for
VMs or containers with the applications running on them
(i.e., [10], [11], [21], [24]) was later introduced to combat
against attacks on the VMs (i.e.,, VM Hopping [15]). This fol-
lowed by network IP randomization techniques (.e., [9], [27]),
also referred to as IP-Hopping, to deal with attacks against the
networking fabric (i.e., network poisoning [27]). In general,
the overarching goal of randomization and diversification
defensive techniques is to disrupt attackers’ gain-loss system
balance, however, a formal model to reason such defensive
solution scheme has not yet been sufficiently explored, thus,
the focus of this paper.

Inspired by the the principles of the species’ population
dynamics of preys (VMs) and predators (attackers) [16], we

2168-7161 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0206-6244
https://orcid.org/0000-0002-0206-6244
https://orcid.org/0000-0002-0206-6244
https://orcid.org/0000-0002-0206-6244
https://orcid.org/0000-0002-0206-6244
https://orcid.org/0000-0003-3803-8672
https://orcid.org/0000-0003-3803-8672
https://orcid.org/0000-0003-3803-8672
https://orcid.org/0000-0003-3803-8672
https://orcid.org/0000-0003-3803-8672
mailto:ahmed24@purdue.edu
mailto:bbshail@purdue.edu

AHMED AND BHARGAVA: BIO-INSPIRED FORMAL MODEL FOR SPACE/TIME VIRTUAL MACHINE RANDOMIZATION AND DIVERSIFICATION

formally model VM randomization/diversification with a
combination of Probabilisitic Finite State Automata (PFSA)
[26], Hidden Markov Model (HMM) [28], and Dynamic Bayesian
Networks (DBN) [31]. To illustrate the practicality of the
model, we use Mayflies MTD framework for the VM random-
ization/diversification with realistic attacks and proactive
defense use cases introduced in our previous papers [21] and
[22]. In this work, we make the following three contributions:

1) We propose a formal model for Time-Interval appli-
cation Run-time Execution, dubbed TIRE.

2) We propose a sound theoretical model to mathemati-
cally formulate cloud-based MTD defensive strategy
and a quantification method using well established
modeling tools and techniques.

3) We introduce an integrated algorithms for a MTD
framework with proactive live VM monitoring with-
out changes to the cloud software stack to show the
practicality of the model.

We have organized this paper as follows; we first give

a brief background in Section 2 and the threat model in
Section 3, then, formulate the problem in Sections 4. In
Section 5, we discuss the practical implementation of Mayflies
MTD framework, and then present the proposed formal
model in Sections 6 and its quantification scheme in Section 7.
Finally, we discuss the related work in Section 8 followed by
the conclusion and future work in Section 9.

2 BACKGROUND

One of the key success factors to cloud computing is attrib-
uted to elastic computing paradigm powered by Live VM
Migration (LVMM) [13]. This is to move/diversify VMs
across distinct host platforms within a data center or across
geographically distributed data centers for load balancing,
system maintenance, and SLA compliance for example.
Although LVMM enables space/time VM randomization and
diversification, adopting it as a defensive strategy is ineffec-
tive in its default formulation. This is due to the fact that
migrating a compromised/infected live VM (i.e., OS) con-
trolled by an attacker on a distinct host platform does not typi-
cally eliminate such control.

For space/time VM randomization and diversification as
a defensive starategy, the VMs are terminated and a fresh
instance is created/pre-prepared for the applications to run
on a heterogeneous OS’s on variable underlying computing
platforms (i.e., hardware and hypervisors). This creates
mechanically generated system instance (s) which is consid-
ered as good defense as type-checking [14], commonly
referred to as Moving Target Defense (MTD). Formally
modeling and quantifying the efficacy of such defensive
strategy in a practical cloud setting is critical.

Although there are many LVMM inspired formal models
such as [34], [35], and [36], their focus is purely on perfor-
mance. Further, MTD-specific models such as [37] and [38]
are based on game-theoretic approaches in which is quanti-
fied in a simulated setting (discussed in Section 8). To the
best of our knowledge, this is the first bio-inspired MTD for-
mal model in a practical cloud setting.

Inspired by the predator-prey interactions theory first
introduced by Lotka-Voltera [16] which lay the foundation

1191

o

; J_,> X)

: &=}

; X X

| 1 A 7

| ol |Q / R S

| g S g - — —— \—' [Prap N S T —

1S t1 tj tk tn
‘ Time Interval Runtime ‘

Openstack GuestiVML.n | _ iVML.n L e i VML...n |
Host OS /KVM/QEMU/xg..\— P e e -

/ Hardwarel -\ = HW2 X . —/ HWn \

Fig. 1. High-level Mayflies architecture-the cloud infrastructure hard-
ware (bottom), hybervisors/hosts (KVM/Xen) on each hardware (second
layer) and guest VMs on the hosts (third layer). OpenStack components
left box and Mayflies framework top right.

to mathematically formalize and quantify the principles of
the species” population dynamics. There has been variations
of predator-prey models studied in many species including
Mayflies [17], aquatic insects with shortest lifespan (i.e.,
5 minutes) in the species eco-system. At the core of most
predator-prey models is measuring the preys” population by
the proportionality of their survival/reproductive rate ver-
sus their eaten/infected rate by predators.

With this, we adopt the Predator Satiation [18] concept that
describes the interaction between preys/predators in which the
quantity of a particular prey at a given point in time far
exceeds the potential number that can be taken by predators
for any given time interval. Furthermore, we consider the
quantification setup scheme introduced in prey/predator Mov-
ing Target Defense framework [19], an inducible defense
scheme for preys (i.e., plants) against the predators (i.e., herbi-
vores), to characterize our quantification scheme (discussed in
Section 7).

Analogous to the cloud computing environment, we con-
sider the VMs as the prey population and the attackers as the
predators. The principle cornerstone of prey-predator model is
to effectively control the preys/VMs survival/reproductive
rate in order to assure a desirable prey/VM population at
all times. With this, we consider two high-level system states,
preys/VMs in a desired state and those in a undesired
(compromised) state, then we reason the system behavior in
terms of the transitions between these two states. Hence,
quantify in terms of the overall proportion of time visited
each state overtime. As such, we employ a Mayflies MTD
framework to control the VMs reproductive/survival (by
replacing) rate, and a proactive live VM monitoring scheme
using Library for Virtual Machine Introspection (LibVMI) [40] to
manage their eaten/compromised rate introduced in our
previous papers [21] and [22].

We recently showed [23] the efficacy of Mayflies frame-
work with a Byzantine Fault-tolerant System (BFT-Smart)
[32] deployed on a private cloud platform (OpenStack). In
this paper, we integrate Mayflies with LibVMI and intro-
duce two abstraction layers as illustrated in Fig. 1 below;
two high-level system states (Desired and UnDesired)
depicted as ovals in the top right quadrant, and Time Inter-
val Runtime Execution (TIRE) abstraction depicted as dotted
lines below the two states. This is to model each abstrac-
tion independently and logically compose for the desired

roposed formal model, discussed in Section 4.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

1192

With TIRE abstraction, we manage the consensus of the
VM population in time-intervals, as a result, accurately rea-
son the transition between the Desired and the Undesired
states overtime. We model the high-level system states with
Binary Random Walk between the set of the two states as a
PFSA. We construct the model using HMM structured as
Hierarchical HMM (HHMM) [29] and represent as DBN.
HHMM is an extension of HMM designed to model domains
with hierarchical structure (i.e., natural language) where
DBN generalizes HMMs state space to be represented in fac-
tored time-linear form, discussed in Section 6.

3 THREAT MODEL

Typically, attackers take control of the system by gaining
the systems’ high privileges, thereby, altering the critical
aspects of the systems’ reliability and integrity. In this case,
The attackers’ advantage is the unbounded time of keeping
the system under their control till exposed. MTD defensive
strategy shifts this gain/loss balance in the system defend-
ers’ favor.

As such, we assume the attacker takes a minimum time ¢
to compromise a VM (VM;), and having seen or attempted to
compromise the VM with a given tactic devised for a given
exploit will not reduce the time to compromise a new VM
(VM;) where j > i. This is because the new VM; will require a
new tactic and new exploit to compromise it given the fact
that it starts with a different characteristics such as different
OS, on different hardware and platform/hypervisor. Fur-
thermore, we consider the adversary can employ arbitrary
attacks on the VMs and assume the cloud software stack, the
hypervisor and the networks (SDN) are secure.

4 PROBLEM FORMULATION

Typically, we deploy systems in a Desired state (fresh/pris-
tine VMs) with all its protective security measures in place.
Then, there is a possibility that some of the VMs transition
into an UnDesired state (i.e., exploited /compromised) with-
out the system defenders’ knowledge, a valid assumption in
cyberspace. The overarching goal of the proposed model is
to formally reason the transition between these two states in
order to keep the VMs in Desired state at all times. Inspired
by the preys-predator model, we aim to achieve this by con-
trolling the VMs survival/reproductive rate with Mayflies
MTD framework (Section 5) and for controlling their eaten/
infected rate with VM attack detection library with LibVMI
(Section 5.3). As illustrated in Fig. 1 (top right box), we intro-
duce Mayflies with two abstraction layers; a pair of high-level
hidden system states .S, dubbed Spesired and Sty pesired, and a
Time-Interval application Runtime Execution (TIRE) as the
driving engine for the two states.

4.1 Time-Interval Runtime Execution (TIRE)

Formally, TIRE is simply the break points of the infinite
sequences of states in the traditional application runtime exe-
cution model, denoted by Q. In each time-interval 7; where i
=1,2,3 ..., n,atleasta VM v; is replaced with v}, thus, the exe-
cution sequences for v; will be those {qy ... ¢;—1} € Q' gener-
ated within Ty to T,_; time intervals, then the execution
sequences for v} will be those {g; . .. ¢;} € @’ of T; to T; where

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

i < j, and so on. Thus, the runtime sequences of v;, v}, v/, ...
are isolated in the form of {Q!, @/, QF, ...} € Q“, thereby,
allowing us to safeguard the individual VMs in time inter-
vals rather than its entire runtime as the traditional runtime
model that tends to be ineffective.

4.2 Reasoning the Hidden System State Transitions
With TIRE breaking the application runtime execution into
time-intervals T} ...T,,. in each time-interval T;, we assess the
systems’ current state S € [Spesired, SunDesired] DY proactively
scanning all the VMs for attacks (infected VMs) using LibVMI
and simultaneously replacing a VM in that time-interval. It's
intuitive to see that these proactive observations are probabi-
listic in nature (either attack detected or not detected). As a
result, we formulate the problem as a Binary Random Walk on
the set of these two states moving randomly one move per
time-interval 7; (i.e., as low as a minute) according to the fol-
lowing scheme.

We start with Spgi,q in the first time-interval (7)) since the
system is initially deployed in the Desired state before any
attack takes place. Then, in each time-interval, we observe a
random outcome of the system status as a coin flip, for exam-
ple, in which we can either move to S, pesired State or stay in
Spesirea State according to the outcome of the observation of a
time-interval (7;) (Section 5.2). Similarly, the next time inter-
val T}, T, and so on. However, for a typical system, the UnDe-
sired state might consist of a set of internal states such as
compromised, failed, crashed. Then, the observations can be
viewed of as rolling a fair dice, for example, in which we
either move to Scompromised if the die comes up 1 or 2, stay at
Sraited if the dice comes up 3 or 4, and move to Scrasheq in the
case of a 5 or 6. As a result, we quantify the model in terms of
the number of visits made in each state overtime (Section 7).

5 VM RANDOMIZATION AND DIVERSIFICATION
FRAMEWORK

To lay the context and the practicality of the proposed formal
model, in this section, we first discuss the design and imple-
mentation of Mayflies MTD framework for VM randomiza-
tion and diversification, then, a proactive VM monitoring
scheme to prioritize VM replacements and detect attacks
using LibVMI (Section 5.2), and finally discuss the design
challenges in Section 5.3.

5.1 MTD Framework Design and Implementation
Mayflies is a MTD framework integrated into OpenStack
cloud software stack [41] introduced in our previous paper
[21]. OpenStack is a widely adopted open source cloud
management software stack that consists of a range of inter-
connected components such as nova compute, horizon, and
neutron, to simplify cloud computing infrastructure manage-
ment at scale with less user (admin) interactions. Fig. 1 above
illustrates the high-level architecture of Mayflies framework
(top right) and OpenStack cloud framework components
(bottom and left quadrant).

Mayflies adopts a cross-vertical design that operates on
three different logical layers of OpenStack; the nova compute at
the application layer (GuestOS layer), the VMI at the hyper-
visor layer (HostOS layer), and the neutron at the networking

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

AHMED AND BHARGAVA: BIO-INSPIRED FORMAL MODEL FOR SPACE/TIME VIRTUAL MACHINE RANDOMIZATION AND DIVERSIFICATION

Fig. 2. Cross section view of cloud infrastructure. At the core inner circle is
Openstack, the second ring depicts the hardware (HW1...HWn) and the
hypervisors/host OS (HV1..HVn) on the third ring, and one or more guest
VMs (VM1..VMn) on each host show on the fourth ring. The outer two
rings depict the internal IPs (10.x.x.x) known as Fix IPs and the externally
visible IPs (192.x.x.x) as Floating IPs, both are referred to as portin SDN.

layer. In addition, we integrated Mayflies with LibVMI [40], a
library for virtual machine introspection to proactively mon-
itor the VM'’s below the hypervisor (depicted next to Open-
Stack components). This is to detect attacks in real-time in
order to prioritize VM replacements as well as to avoid
diversifying vulnerable OS or a combination of certain sys-
tem configurations (Section 5.2).

As the cloud software stack (OpenStack) abstracts the VM
compute nodes from the applications’ architectural style
(i.e., SOA) or its communication model (i.e., synchronous
versus asynchronous) with a unified deployment models
(i.e., IaaS, AaaS, SaaS), Mayflies extends OpenStack to further
abstract the applications’ runtime from the VMs in order to
break the runtime into observable time-intervals regardless
of the applications running on them. In each time-interval
(as low as a minute) we destroy a VM and replace it with a
fresh copy, discussed next. In this paper, we introduced two
abstraction layers; a pair of high-level hidden system states:
Desired and Undesired, and TIRE, depicted as ovals and the
dotted lines in the top right quadrant in Fig. 1, discussed in
the previous section. This is to formally model each abstrac-
tion layer independently and accurately reason the transition
between the hidden system states (Section 6).

5.1.1 VM Replacement

Fig. 2 illustrates the conceptual cross-section view of a cloud
computing building blocks. At the core is OpenStack, the
cloud software stack with a set of hardware (HW1...Hn) and
hypervisors on each hardware (HV1...Hn) on rings (1 and 2)
with LibVMI (rectangle box) operating in this layer. Mayflies’
continuously substitutes guest VMs (third ring) and simulta-
neously reprogram network interfaces powered by SDN
(outer 2 rings), discussed next. The idea is to rotate the outer
three rings in sync without the users knowledge. However,
the fundamental problem is dealing with the terminating
VMs’ application state for the newly instantiated VM (dis-
cussed in Section 5.3.2).

1193
Clients
Floati
: oating IP
»
o
r
S T
4
VMx

o

Fig. 3. lllustration of VM compute and Network interface swaps. VM,
seamlessly replaces VA, from a pool of VMs.

VMy VM Pool

Inspired by the clouds” VM resource (i.e., CPU) schedul-
ing scheme, referred to as live VM migration, the VMs are
paused/stopped then migrated across platforms without
the users knowledge for load balancing. Mayflies dynami-
cally replaces VMs by simply detaching the network inter-
face of the active target VM, then, destroying/terminating
the VM (round robin or random) using the cloud software
stacks’ command line interface (CLI) nova-create VM, nova-
destroy VM and dynamically reprogram the network inter-
face. Note that the CLIs are designed for provisioning and
de-provisioning VMs and we used it as a defensive mecha-
nism without any changes to the software stack.

Algorithm 1. VM Replacement

Input: VMid

1: procedure Replace()

2: targetVMcon fig < CopyCon fig(VMid)

3: DestroyVM (VMid)

4: newVM — GetNewVM()

5. SWITCHINTERFACES() o> algorithm 2.
6: newVMecon fig «— targetVMcon fig

7: end procedure

Algorithm 1. shows the VM replacement process. In
Algorithm 1, we first save the target VM application configu-
ration files and other related runtime state information
including network interfaces IDs in line 2, then, destroy the
target VM in line 3. We get a fresh/new VM from the standby
VM pool in line 4 and swap the network interfaces in line 5
(as illustrated in Fig. 3 and also shown in algorithm 2). Then,
copy back the configuration files in line 6.

Note that the fresh/new VMs can be from a pool of pre-
pared VM with the applications installed without network
interfaces or created on-demand then installed the applica-
tions and configured. The major difference of these two strat-
egies is the start time. Depending on the systems’ workload,
the preprepared VMs start time is less then 20 seconds and
over a minute for on-demand. Consequently, this is the
inherent overhead for cloud based MTD solution. The details
of the pros and cons of VM prepration and selection strategy
is discussed in our previous paper [23].

5.1.2 Network Interface Replacement

Effectively terminating a VM and replacing it with a fresh
new VM in a timely manner is simplified by Software Defined
Networking (SDN), a programmable networking fabric that

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

1194

decouples the control plane (virtual routers and switches)
from the data plane. In SDN environment, active VMs are
attached to a virtual network interface, referred to as ports,
with a fixed IP address for internal access (among the serv-
ers) and a floating IP address for external access that can be
assigned/bind to it at anytime. This is the virtualized ver-
sion of the traditional network settings of Local Area Network
(LAN) and Wide area Network (WAN) respectively. Note that
both Fix and Floating IP addresses are bound to the port even
after it's separated from the VM, thereby, transferable to
another VM. As illustrated in Fig. 3, we detach the port from
the target VM (VMx), then get VMy from the prepared pool
of VMs with the application and all its configuration files
pre-installed and attach the port. Once the network port is
attached to the new VMy, we ssh it to inject the necessary
application runtime state information from the terminated
target VMx and start the application.

Algorithm 2. Network Interface Switch

Require: VM, VM,
1: procedure SwitchInterfaces()
2: if VM, Inter face == NULL then

3: neutron port — create <options>
4. neutron port — attach <options>
5: nova inter face — associate < Floatingl P, VM, >
6: else
7 portip — GetPortID(VM,(ID))
8: nova inter face — dis — associate <VM,, Floatingl P>
9: nova inter face — detach <VM,, V]watw >
10: nova inter face — attach <VM,VM,,,, >
11: nova inter face — associate < Floatingl P, VM, >
12: endif

13: end procedure

Algorithm 2 shows the network interface swap proce-
dure. In algorithm 2, we first check if the new VM, from the
pool was created with network interface in line 2 and create
one for it if needed in lines 3 and 4, then, associate the known
external IP address (Floating IP) of the terminating VM, to
the new V1, in line 5. Note that the <options> for port-create/
attach includes creating the interface with a specific IP
address. We dis-associate the Floating IP if the VM, has net-
work interface in line 8, then swap the interfaces in lines 9
and 10. We finally associate the known IP from VM, to the
VM, in line 11. This allows the servers/replicas to continue
using the known IP and the clients reconnect to this replica
through its floating IP (i.e., 192.x.x.x) as the old server/replica
had dropped off of the network and came back. Typically,
the new VM (VMy) has different characteristics such as
Windows OS or variable Linux-based OSs (ubuntu/Fedora)
than VMx.

Note that, depending on the OS image (i.e., Ubuntu or
Windows) used for VMy in some cases, a reboot is required
after the nova interface-attach <options> call. Fur-
thermore, since nova, neutron, and all of the cloud software
stack components communicate through asynchronous mes-
saging bus, network-swap time varies depending on the
SDN load (discussed in details in Section 5.3.1). With this, we
consider the network swap overhead in part of the VM
replacement time—time logged when (VMy) first contacted
to the other VMs/servers.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

1=af
Replica_n
ilv E
il
0
0
S

Space - MD f(time)

1 minute Intervals

Time

Fig. 4. An illustration of space/time randomization. Infected VMs are
marked D for Dirty and C for Clean otherwise.

5.2 Proactive Monitoring With LibVMI

The concept of live VM migration is to blindly move VMs
across distinct host platforms for load balancing the cloud
infrastructure. This is ineffective for resiliency against
attacks due to the possibility of migrating an infected VM.
In contrast, MTD-based VM randomization terminates the
VM and recreates a fresh VM with different characteristics
(i.e., OS) on distinct host platforms. Since the combination
(entropy) of the common OSs used in these VMs are limited
(i.e., Linux, Windows), we integrate Mayflies MTD frame-
work with Library for Virtual Machine Introspection (LibVMI)
to detect vulnerable OS/applications and hardware plat-
forms in order to avoid recreating it.

LibVMI is an open source library for live memory analy-
sis (i.e., malware) [40]. It captures a running VM’s memory
content at the hypervisor-level with neglegible performance
impact on the application [20]. This content information
includes: the process ID’s, the process/application names,
and the their start and end address block offsets of all the
processes running in the VM. In this work, we simply use
LibVMI to detect the structural changes of this content com-
monly caused by certain attacks (i.e., code injection).

The hypervisor allocates memory address space with spe-
cific start/end address offsets upon spawning a new VM. This
structure gets altered whenever any foreign code (attack) to be
executed is inserted into the VM during runtime. The idea is to
profile the VM before deploying it by taking a snapshot of its
address offset structure (block start and end), then, comparing
it with the subsequent snapshots. For book keeping, we simply
mark C for Clean if the address structure is intact, otherwise
mark D for Dirty, as illustrated in Fig. 4 above. This enables us
to prioritize the replacements as well as to avoid vulnerable
known OSs/platforms in the subsequent time-intervals.

Algorithm 3 shows the VM memory Introspection proce-
dure. In Algorithm 3, for a new VM/node, we first save the
initial VM memory structure (start and end-address offsets)
in line 5 and mark it Clean since this is a fresh VM that is
currently being profiled. Then, for subsequent snapshots,
mark Dirty if the VM'’s address offsets differ/altered from
the initially recorded offsets in lines 8, 9, and 10 respec-
tively. This allows us to replace the dirty VM before the
scheduled VM in the next time-interval.

To illustrate, we performed two attack scenarios using
simple applications (attackl and attack2) that print a number
every couple of seconds. In Fig. 5, the top box shows an
attack to mimic when the application attackl with process ID
[1767] (circled) is stopped and a malicious one is executed.
We detected this change by the mismatch of the processes ID

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

AHMED AND BHARGAVA: BIO-INSPIRED FORMAL MODEL FOR SPACE/TIME VIRTUAL MACHINE RANDOMIZATION AND DIVERSIFICATION

[PID 1744] name: compiz (struct addr:ffff88003c7c2e00

[PID 1765] name: kworker/0:0 (struct addr:ffff88003c655c00)
[PID name: attackl (struct addr:ffff88083c650000)
farget Application [attackl JRunning at Offset[3c650800 ...vs...3b949700]

ATTACK # 1
F#HHEATTACK DETECTED! !!

- Application Altered/Missing!!'!!
ATTACK # 1
Fontinue for Attack2 enter © []

0 66 00 20 60 91 3B 00 88 FF FF 20 60 91 3B 00 88 FF
F 40 60 91 3B 00 88 FF FF 40 60 91 3B 00 88 FF FF GO
74 61 63 6B 31 00 00 00 OO GO 66 G0 00 GO 00 €0 0O
00 00 00 60 00 00 00 60 60 60 60 60 00 6O 60 60 00
FF FF C8 9C 64 3A 00 88 FF FF C8 90 04 EE FF 7F 60

60 91 3B 00 88 Fi
3C 00 88 FF FF 6
<]
0

Fig. 5. An output of live VM attack detection with LibVMI. Process IDs
(PID), process name and its address block offsets (shown in the top box),
and the internal structure of one process address block (bottom box).

and the address offset from the previous offset (underlined).
The bottom box shows attack2 scenario where the application
is hijacked without stopping it using a code injection attack.
The address offsets within the applications memory block
changed (highlighted in black). This is due to the fact that the
small code injected in order to take control of the application
cause the block to shift for the injected code to execute.
A detailed description of our scheme can be found in our
previous paper [22].

Algorithm 3. Virtual Introspect

Input: node
Output: Clean or Dirty
1: procedure Introspect(node)
2: if node == new then
3 initial Proc < GetProcessMemory(node)
4 nodeStatus «— Clean
5. else
6 currentProc «— GetProcessMemory(node)
7 if initial Proc;(key, val) # current Proc;(key, val) then
8: nodeStatus «— Dirty
9: end if
10: endif
11: end procedure

To gain a holistic view of the high-level system state, in
some time interval (i.e., one hour), we determine whether
the system is in a desired state or undesired state by calculating
the proportion of the VMs that are found with Dirty memory
structures and how fast these VMs are being replaced within
that time interval. This allows us to have full control over the
preys/VMs population within pre-specified time intervals.

5.3 Design and Implementation Challenges

In this section, we discuss the inherent challenges of random-
izing and diversifying VMs in virtualized cloud platforms,
and dealing with the application state when replacing VMs.

5.3.1 Cloud Software Stack Limitation

The process of replacing a node/VM in Mayflies is greatly
simplified by the combination of nova for provisioning/de-
provisioning VMs and neutron for dynamically programming
the network interfaces. However, these two components are
asynchronous (functions have no return values to determine
whether the next call can be safely performed). For example,
detaching the network interface off of the VM with the nova

1195

interface-detach <options> to free it's fix and floating
IPs in order to attach it to the new VM instance using the
interface-attach <options> throws an error “IP is still
in use”. The reason is that all OpenStack component (i.e., nova,
neutron, horizon, glance, cinder, etc.) are done through RESTful
messaging (i.e., AMQP) for efficiency and interoperability.

A typical workaround is to insert sleep(x) to hold the pro-
cess for an x amount of time before proceeding to the next
call, however, this x will vary depending on the load of the
controller which is difficult to predict, thereby, increasing
the refresh time if x is large or disrupting the system (crashes)
if x is too small. We synchronized the nova calls by making
other nova reporting function calls (i.e., nova show
-minimal andnova interface-1ist) ina whileloop as
illustrated in the following code snippet.

#/bin/bash

nova interface-detach <options>
while [1]
do
isactive=$ (nova interface-list replicaID
| awk ‘ /\ACTIVE\y/ {print $2}’);
if [-z “*$isactive’’]
then
break;
fi
sleepl
done
nova interface-attach <options>

Basically, the loop holds the execution of the next function
call by repeatedly calling nova interface-list repli-
caID function that reports the status of the given replica ID
every second. We parse the value ACTIVE in isactive var-
iable from the result returned by the nova interface-
list command using awk, then, break once the value is null
with the -z condition. This is to prevent on blindly waiting
for asynchronous message based function calls. For this, we
consider the network interface swap time in part of the VM
start time as described in Section 5.1.2.

5.3.2 Application State

Mayflies framework partitions the traditional runtime execution
of the system by terminating/destroying a VM and replacing it
with another freshly spawned VM. The inherent challenges of
this runtime partitioning are 1) dealing with the application state
transfers, and 2) the performance impact on the application. Gener-
ally, application state is an abstract notion of a continuous
memory region of the application at runtime. Destroying/ter-
minating VMs with a predefined time-interval (as low as a
minute), breaks the continuity of the application state, thus,
requires the state of the terminating VMs to be transferred to
the freshly activated VMs, however, the implementation of
such abstraction is dictated by the applications’ communica-
tion model (i.e., synchronous versus asynchronous) among the
applications/services or the client and the servers, therefore,
MTD-based VM randomization is application dependent.

In [23], we deployed an implementation of a Byzantine
Fault-tolerant System (BFT-Smart) [32] in Mayflies on a private

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

1196

cloud setting built with OpenStack. BFT-Smart is a replicated
quorum-based synchronous system model where the replicas
continue to guarantee reliability even a fraction of the
nodes/VMs are malfunctioning (compromised /malicious).
In this system, the state for the application includes; the sys-
tems’ current transaction number and known leader, num-
ber of the participating replicas in the quorum, to aid the
recovering VM/replica upon crash or failure. Replacing a
VM in this system model only requires injecting the
updated configuration files without any state information
because the recovering/replaced VM connects to the rest of
the replicas to synchronize. For this, we exploited the built-
in reliability properties of the replicated systems to enable
effective VM randomization and diversification with negli-
gible performance impact.

Furthermore, VM randmization and diversification defen-
sive scheme can be effective for applications like RESTful web
services, a asynchronous stateless client/server service model,
for example, the client requests are processed and responded
by the servers without any system state is preserved. In this
service model, the communication protocol that is bound to
the client/server or between services attempt to reconnect
when the VM is terminated and a new/fresh instance is acti-
vated in a timely manner. This is because the communication
protocol (i.e., http/https) retries the connection without user
intervention. In contrast, for stateful services, referred to as
SOAP-based services, for instance, the services are bound to
not only communication protocols but also security sessions
(i.e., WS-*, WS-Secure Conversation) that cannot be disrupted
or terminated and re-initiated, however, one can develop a
work around for this limitation which we consider in the
future work.

6 FoORMAL MODEL

In this section, we first describe the proposed model, then,
the construction and the formulation schemes, and discuss
our quantification scheme in the next section.

6.1 Model Description

Finite State Automata (FSA) is widely adopted mathematical
machinery for specifying systems with both Deterministic
Finite Automata (DFA) and Non-Deterministic (NFA) prop-
erties. Buchi automaton [25], a type of w-automaton which is
NFA is the most popular kind of automaton used in model-
ing distributed systems. It is extremely challenging to
develop an effective proven methods for high-level system
state transitioning under the non-deterministic nature of the
cyber space, therefore, we model the system with Probabilistic
FSA (PFSA) [26].

PFSA is simply a NFSA (with no e transition) with proba-
bilities for all transitions of the FSA. By definition, PFSA is a
generative model, where as the FSA (non-probabilistic)
finite automaton, are accepting devices for strings generated
by grammars in formal languages. We don’t specify any
alphabet a input string > for our automaton, however, we
use the output alphabet donated by A wherea € A.

We consider the Time Interval Runtime Execution (TIRE)
observation outcomes generated by LibVMI (discussed in 5.2)
to represent the output alphabet a € A that drives the high-
level system state (Desired/UnDesired) transitions, discussed

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

in Section 6.3. The outcome of these observation can be either
true or false in which true is the accepting transition to another
state and false is staying in the same state. The expressiveness
of the Accept lies the power of the Buchi automaton to model
TIRE and the correctness property violations can be specified
in terms of the accept condition.

A property is specified as a Buchi automata A and then
the characteristics of the structure of this automata are used
to classify its properties. Modeling Mayflies framework with
PSFA allows TIRE probability observations to be modelled
as Hidden Markov Model (HMM) [28]. We achieve such struc-
tured characteristics by constructing the HMM with Hierar-
chical Hidden Markov Model (HHMM) [29] and representing
it with Dynamic Bayesian Networks (DBN) [31], a time-linear
representation of HMM.

FSA enables modeling complex systems by decomposing
into multiple automaton and then chaining one automaton
output to a second automatons’ input, thereby, reasoning
about the system behavior separately while composing
them to achieve the desired results. Thus, the proposed
model enbales the composition of other formal automata
models such as application interface automata [33] and
attack surface [2]. As such, the proposed model fills the gap
to formally model an end-to-end system spectrum of the
cloud ecosystem.

6.2 Model Construction

As we formulated our model in Section 4, we typically
deploy a system in a desired state and at some point in time
we end up in undesired state (i.e., compromised/infected)
without the system defenders” knowledge (in most cases).
This is mostly credited to the successful stealthy attacks that
create turbulence state infinitely many times until the system
is compromised, ex-filtrated data or less usable (fail or crash).
These high-level uncertainties are driven by what’s happen-
ing at the application’s runtime level, for instance, if a node/
server is compromised and is still running, then, the system is
in a compromised state, in contrast to when a node crashes in
which the system enters into a failed state. One way to formal-
ize this behaviour is through HHMM.

As the name implies, HHMM forms a hierarchy of HMMs
where each state itself is an HHMM with sub level of HMMs
as its abstract/internal states. The top-level states in the hier-
archy are called the hidden states and the low-level is the
production state that emit observations. We adopt the
HHMM automatic construction concept used to detect
semantic patterns in motion video introduced in [30]. An
HHMM is defined as a 3-tuple H =<)\,{,% > where
A D (A, 11, B) which represents the set of the transitions for
the horizontal matrix, the vertical vector and the probability
distributions respectively. The ¢ is the topological structure
which specifies the levels and parent-child relationships of
all the states, and 2. is the observation alphabet.

We construct an HHMM in which the hidden states S are
Desired, UnDesired and Time Interval Runtime Execution (TIRE)
as the omitting/observable state. As illustrated in Fig. 6, we
define the topology of the HHMM hierarchy as follows: The
Desired state (D) as the root state in level I (i.e., initial state),
the UnDesired set of states Compromised (C) and Failed (F) in
level II (can be represented as many states and levels), and
TIRE as the leaf state in level IIL

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

AHMED AND BHARGAVA: BIO-INSPIRED FORMAL MODEL FOR SPACE/TIME VIRTUAL MACHINE RANDOMIZATION AND DIVERSIFICATION

t1 2 t3 tn

Fig. 6. Mayflies DBN model — system states are Desired, UnDesired
(Compromised, Failed) labeled as D, C, F, followed by the Exit state E.
The dotted lines on E depicts for the control returning to the parent node D
bases on the observations. TIRE is the observing state in double circles.

With this HHMM construction, we represent the model
with Dynamic Bayesian Network [31] as depicted in Fig. 6.
DBN represents HHMM with time-linear transition parti-
tions (11, t2, ..., tn) to drive a much simpler and faster algo-
rithms for inference, classifications, prediction and learning
which we consider in our future work. In this work, the
representation and the encoding of the observation sequen-
ces and the transitions between the hidden states (desired/
undesired) of the model is sufficient to illustrate the objective
of the proposed model. Since we are not interested in con-
tracting the model and learning by its probability distribu-
tions, and the hidden state themselves are not internal
HHMMs states with abstract sub-levels of the HMMs, we
treat our HHMM as a flat HMM to reason the transition prob-
abilities of the hidden states. In fact, the hidden state are visi-
ble to us as we anticipate of the observation outcomes from
LibVMI, thereby, enabling us to bounce the system back to a
desired state at any given time.

Thus, we map the VM status observations captured in
time-intervals (i.e., one minute) by the LibVMI at the hyper-
visor level to the TIRE state S (Syjre) emissions. We con-
sider the following three observations:

e A VMis clean which is typically the initial state when
the system is first deployed.

e A VM is failed which can be either not-reachable due
to network drop or hardware/software failures.

e A VM is dirty when the memory integrity violations
is detected.

We define the guiding principle of state transitions as

following:

e The systems starts in a Desired (Sp) state and transi-
tions to either Failed (Sy) state if Srypp emit in-active,
or to a Compromised (S¢) state if Srrrp emit dirty. Oth-
erwise, stays in (Sp).

To illustrate how we map the VMI observations to the
high-level DBN state machine automata model, consider at
time t =1 in Fig. 6, the system starts in a desired (Sp) state and
consider Syrpp emits dirty after the first observation, then the
system transitions to a compromised (S¢) statein t =2. We can-
not change the state till (S¢) transitions to Sg signaling for its
exit according to DBN representations. At this point, we
refresh the compromised VM and asses the system so the
next time in ¢ = 2 we anticipate Sy emit active and the sys-
tem transitions to Sp at t = 3. Modeling Mayflies with HHMM
and encoding it in this manner, we can reason the system

1197

behavior by the transitions between the DBN states (dis-
cussed next), therefore, we quantify it in terms of the overall
proportion of the time {t;, ¢;, ti, ...} the system visited in the
each of the hidden states (Section 7).

6.3 State Transition Probabilities

As illustrated in Fig. 6, we constructed three hidden states
Sp,Sc, Sy and Sprrp as the driving engine of the model. In
this section, we discuss the transitioning probabilities of
TIRE and the high-level hidden states Desired/Undesired.
Note that the Sz and Sr are considered as Undesired state
where S is for the DBN exit state of each level of the HHMM
hierarchy.

6.3.1 TIRE Transitions Probabilities

As described in Section 4.1, the Time-Interval Runtime Execu-
tion (TIRE) is an abstraction that breaks the traditional run-
time execution model denoted by @ into infinite sequences
of states{qy ... q,} € Q”. We consider each sequence of ¢; as
a time unit/interval T (as low as a minute) for a VM to exist
(i.e., VM lifespan). In each time-interval 7;, wherei=1,2,3 ...
n, we simultaneously scan all of the VM’s for attacks using
LibVMI (described in Section 5.2). If an attack is detected in
any one of the rest of the VMs, then, we replace the com-
prised VM(s) before it reaches its predefined lifespan. This is
to keep the VM population in the Desired state in the next
time interval T}, then 7T}, and so on.

One way to formalize and model such observations O (i.e.,
whether a VM status has changed) is through Burnolli Trails
in Hidden Markov Model (HMM). A Markov chain/process is
a sequence of events or states Q = {qi, ¢2, . . . ¢,/, and HMM
represent stochastic sequences as Markov chains where
the states are associated with a probability density function
(pdf). The pdfs in each state ¢; are characterized by the proba-
bilities of the emission p(z|¢;) and the transition ¢; ; where
the transition to a next state is independent of the past states.
An elaborate introduction of the theory of HMM and its
applications can be found in [28].

Formally, let {O, j = 1, 2,...} be observations of all of the
VMs collected by the LibVMI. We model these observation
as a Bernoulli processes where O; €{0, 1}, where O; =0
indicates a VM v; is clean and O; = 1 indicates dirty. Each v;
is defined as a tuple: v; = (Vgi4p¢, v,) Where

vstart € R, represent the real time the VM starts.
Vp € [Vstart, < p|O >], represent the lifespan of the
VM which includes the VM start time vy,,+ and the
end time where the end time can be either its lifespan
p or terminated prematurely based on the observa-
tion i result at time-interval O! due to attacks.

o U, v;,, represent the real time a VM v; is replaced
with v}, call it v;, with its new lifespan o/, thus, the
tuple for v; = (Vstart, Up)-

Therefore, TIRE transition function is simply a real number
— time assigned to the structure which breaks the system run-
time into manageable intervals (i.e., one minute intervals).
Thus, we define the transitioning function as:

+
ali; — R™.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

1198

Using oT; ;, we simply observe node(s) status between oT;
and oTj. At the transition point o7}, we generate a sequen-
ces of observations O = 01, 09, 03, ... of inactive and/or dirty
VM. TIRE transitions T = ty...t, and observations O = oy...0,
lie the probability distributions to easily reason about the
high-level system state transitions (discussed next). Thus,
for each state S in Mayflies, we associate that state with ran-
dom variable taking values in A according to certain (state-
dependent) probabilities.

For this, an HMM observation o is the logical predicate
over Mayflies” high-level states. Each T; is considered a state
predicate evaluates to frue or false. We say that state transi-
tions at each T satisfies a state predicate if the predicate
evaluates to true and vice-verse. Hence, by definition of the
first-order HMM, transition ¢; to ¢; is dependent only upon
the current state at ¢;. Therefore, the probabilistic nature of
that transition can be defined as:

oT; = Pr|Ti =

T,:z}

We make a first-order HMM assumption regarding the
transition probabilities.

P,

1—’7:7171—’7:727"'7T01| = P|:7—’1

1“,;,1],7160,1,2,3....

Similarly, we assume the emission probabilities of the
model on how the observed event from Szypg) results system
state transition:

Pr [Oi,

E7"'77})70i*17"'7001| :P|:OL

Ti],on.

Modeling TIRE as an observable HMM and formulating it
in this manner enables us to anticipate the high-level hidden
state transitions where the probability of system transition-
ing to any of the two state in 7; can go either way (i.e., desired/
undesired). We anticipate this outcome if it results against our
favor to bounce the system back to our desired state in the
next time interval (7;,1). Thus, each TIRE time interval (T;)
is represented as the transition state, and the transition
between the states are the invariant that must be preserved.
We assert that the continuity of the underlying runtime exe-
cution is preserved if these invariant hold.

Note that the fundamental problem of time-interval based
observations is choosing the perfect observation intervals,
for example, if the observation time is too long, we will have
the case where the observation 0;_; results that we are in a
Desired state, then at 0; end up in a Compromised state before
we get the observation 0,4, a valid assumption in cyber
space. In contrast, if the observation time is too short, then
we will introduce unnecessary performance burden on the
applications.

6.3.2 High-Level Hidden State Transition Probabilities

Typically, at the deployment time, the system starts in a
Desired state, call it Spegireq. TIRE observation generates tran-
sition probabilities of either to a Scompromised OF Sruilea State.
The probability that a transition can happen before observa-
tion is collected is:

aTij PT[TO = 0} .

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Therefore, assuming the system starts in Spesircq state and
further assuming in that state till the first observation col-
lected. Certainly, this is the base case.

For the 1st observation or V7; where ¢ > 0, the probabil-
ity of seeing the observed events 01, 02, 03, ... of a sequence
up to 0,_; observations and reaching in state 7;_; time inter-
val, then transitioning to state Scompromised at the next step is:

P(T07 T1, TZ; ey Ti*l: 0j—1 = SDesireda 0; = SCompromised)

= aTij (SDesired)PT<Oi = SCompromised 0j—1 = SDesired) .

Similarly, for the 1st observation or V1; where i > 0, the
probability of seeing the observed events o;,0s,03,... of a
sequence up to o,_; observations and reaching in state 7;_;
time interval, then transitioning to state Spuieqs at the next
step is:

P(Ty, T\, Ts, ..., Ti—1,0i-1 = SpDesired> 0i = SFuiled)

- aTij (SDesi'r‘cd)Pr(oi - SFailed

0j—1 = SDcsircd) .

In general, the probability that we are starting in Spesired
at 7;_; time-interval given the observed events up to o;_i,
and given that we will be in state other than Desired state at
time-interval 7; observation o;, the transitioning probabili-
ties are equally likely, thus, preserving for all cases.

Although we used Mayflies MTD framework with LibVMI
to illustrate the practicality of the model (keeping the preys/
VMs population in balance within the Desired state at all
times), one can use any MTD framework that randomizes/
refreshes VMs and any real time intrusion detection system
with this model.

7 MODEL QUANTIFICATION

In predator-pray MTD model discussed in Section 2, the preys
population is measured by the proportionality of their sur-
vival/reproductive rate versus their eaten/infected rate by
predators. To effectively control the survival/reproductive
rate of the VMs, we consider two competing time; the sys-
tem defenders” and the attackers’ costs as a function of time:

e The defensive cost is the VM Replacement Cost RC(T) -
time to replace a node/VM including the network
interface replacement plus the Observation Cost OC(T)
which is the time it takes for LibVMI scan all the VMs.

e The Attack Cost AC(T) — time it takes for any attack to
be carried (i.e., OS finger printing, code injection
time) and succeed.

Although it’s extremely difficult to accurately calculate
the attackers’ cost for compromising a system, we anticipate
to calculate this cost relative to the rate of the VMs observed
with dirty memory structures in each time-interval T;. With
this, we quantify the long-run distribution (i.e., one hour) by
calculating the proportion of the time 7}, that the system vis-
its the hidden states (Desired/UnDesired) over that time frame.

Formally, let v be the expected overhead time of replacing
a VM and u be the expected overhead time of system obser-
vations in one time interval 7;, where i € 1,2,3...n, then:

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

AHMED AND BHARGAVA: BIO-INSPIRED FORMAL MODEL FOR SPACE/TIME VIRTUAL MACHINE RANDOMIZATION AND DIVERSIFICATION

RO(T,) = wi
i=1

and

OT(T,) = 1,
i=1

where RC(T,,) and OC(T,,) is the total cost of the MTD defen-
sive strategy of some time interval 7}, (i.e., one hour).

Let p,,; denote the probability of going from state g; to g;
in one step, which is characterized by the rate proportional
to the the rate of the prays/VM being eaten/compromised
ye; over the number of the states S [16].

V€
qij = ?)

Let \; represent the matrix P whose entries are the p;;.
For each state S;, we define:

N\ = 27:1 Si 7
T,

where > | S; is the total number n of visits the process
makes to each state S; over the time-intervals 7; € T, Tj,
Ty....T,. Intuitively, the existence of J\; translates to
changes in system states in which in turn is not in a single
state (i.e., undesired) as long as our observations and node
replacements is being performed within the acceptable time
of T},’s. Note that the Markov process model is an exponen-
tial distribution, in that, the decisions are dependent only in
the current state. As such, if we are at Desired state now, the
probability to any other state will be 1/3rd (with the 3 states)
no matter where we were (Failed or Compromised) in the past.

Let A denote the row vector of the elements of the);, given
the underlying HMM state transition for each state S;, then
we have a matrix in the form of A = AP subjectto >, \; = 1.
Calculating A in each transition results a solution set of
< Xp,Xc,Xp > time units for the three states, which
means that in the long run we spent X amount of the time at
the Desired state, X amount of time in Compromised state, and
X amount of our time at Failed state. Thus, we can easily rea-
son the status of the high-level system state in any time inter-
val, for instance, if we run the system for 1 hour, then, we get
time intervals like; for 55 minutes we operated under normal
conditions in a Desired state, 3 minutes in a Compromised
state, and 2 minutes in Failed state.

8 RELATED WORK

There have been several studies on modeling VM randomi-
zation/diversification fueled by live migration on VMs. For
example, iAware [34], a lightweight interference-aware live
VM migration and co-location model that aims to minimize
the performance interference during and after the migration
of the VMs, and a model for predicting the perfromace
impact inherent on the hardware variablity on tenant appli-
cations [35]. A comprehensive survey on models and perfor-
mance mangement on VMs is discussed in [36]. While our
proposed model is purely focused on defensive security, all
of these models are complementary to our work.

1199

Several other VM migration models focused on defensive
security include: a game theoretic MTD-based formal model
and a quantification approach [37], and a theory of MTD sys-
tems and an attacker theory that defines how elements of the
MTD systems and attacker theories interact in which the
effectiveness of the model is quantified in terms of the suc-
cess likelihood of intrusion [38]. Unlike our bio-inspired for-
mal model and the quantification scheme with a practical
cloud design illustration and implementations of algorithms,
most of the previous MTD-based formal models are theoreti-
cal and analyzed in a simulated settings.

9 CONCLUSION

We introduced a simple but effective bio-inspired formal
model for reasoning and quantifying Virtual Machine (VM)
space/time diversification and randomization across cloud
computing platforms with a combination of HMM, HHMM
and DBN. To illustrate the practicality of the model, we
described Mayflies, a MTD framework, and discussed the
implementation details of VM and network interface
replacements in Openstack private cloud software stack. For
future work, we consider a through experiments on the
inference, classifications, prediction and learning from the
model to predict attacks using machine learning techniques.

ACKNOWLEDGMENTS

We credit the idea of the probability transition function
setup in sec. 6.3 and the matrix calculation format in sec. 7
from an informal notes that we could not locate its url.

REFERENCES

[1]1 S.Jajodia et al., Moving Target Defense: Creating Asymmetric Uncer-
tainty for Cyber Threats, vol. 54, Berlin, Germany: Springer, 2011.

[2] P.K.Manadhata and J. M. Wing, “An attack surface metric,” IEEE
Trans. Softw. Eng., vol. 37, no. 3, pp. 371-386, May/Jun. 2011.

[3] G.S.Kc, A. D. Keromytis, V. Prevelakis, “Countering code injec-
tion attacks with instruction-set randomization,” in Proc. 10th
ACM Conf. Comput. Comm. Security, 2003, pp. 272-280.

[4] S.Bhatkar, D. DuVarney, and R. Sekar, “Address obfuscation: An
efficient approach to combat a broad range of memory error
exploits,” in Proc. 12th USENIX Sec. Symp., 2003, pp. 105-120.

[5] C.Kil,]. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space lay-
out permutation (ASLP): Towards fine-grained randomization of
commodity software,” in Proc. 22nd Annu. Comput. Secur. Appl.
Conf., 2006, pp. 339-348.

[6] S.Rauti, S. Laurén, S. Hosseinzadeh, J]. M. Makeld, S. Hyrynsalmi,
V. Leppanen, “Diversification of system calls in linux binaries,” in
Proc. Int. Conf. Trusted Syst., 2015, pp. 15-35.

[7] L.Chenand A. Avizienis, “N-version programming: A fault toler-
ance approach to reliability of software operation,” inProc. Digest
8th Int. Symp. Fault-Tolerant Comput, 1978, pp. 3-9.

[8] B. Cox, D. Evans, A. Fillipi,]. Rowanhill, and, W. Hu, “N-variant
systems: A secretless framework for security through diversity,”
Proc. 15th Conf. USENIX Secur. Symp., 2006, Art. no. 9.

[9]1 . Jafarian, E. Al-Shaer, and G. Duan, “Open flow random host

mutation: Transparent moving target defense using software

defined networking,” in Proc. 1st Workshop Hot Topics Softw.

Defined Netw., 2012, pp. 127-132.

M. Carvalho et al., “A human-agent teamwork command and con-

trol framework for moving target defense,” in Proc. 8th Annu.

Cyber Secur. Inf. Intell. Res. Workshop, 2013, Art. no. 38.

H. Okhravi, A. Comella, E. Robinson, and]. Haines,“Creating a

cyber moving target for critical infrastructure applications using

platform diversity,” Int. |. Crit. Infrastructure Protection, vol. 5, no. 1,

pp- 30-39, Mar. 2012

[10]

[11]

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

1200

[12] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse com-
puter systems,” in Proc. 6th Workshop Hot Topics Operating Syst.,
1997, pp. 67-72.

[13] C. Clark et al., “Live migration of virtual machines,” in Proc. 2nd
Conf. Symp. Networked Syst. Des. Implementation, 2005, Art. no. 286.

[14] F. Schneider, 2010, “From fault-tolerance to attack tolerance.
[Online]. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/
a548748.pdf

[15] T. Ormandy, “An empirical study into the Security exposure to
hosts of hostile virtualized environments,” in Proc. CanSecWest
Appl. Secur. Conf., 2007, pp. 1-18.

[16] A.]. Lotka, Elements of Physical Biology. Wllliams and Witkins,
Baltimore MD, USA: Franklin Classics Trade Press, 1925.

[17] B. Sweeney, Mayflies and Stoneflies: Life Histories and Biology. Nor-
well, MA, USA: Kluwer Academic Publisher, 1987.

[18] B.Sweeney and R. Vannote, “Population synchrony in mayflies: A
predator satiation hypothesis,” Evolution, vol. 36, pp. 810-821,
1982.

[19] F. Adler and R. Karban, “Defended fortresses or moving targets?
Another model of inducible defenses inspired by military meta-
phors,” Amer. Naturalist, vol. 144, pp. 813-832, 1994.

[20] T. Garfinkel and M. Rosenblum, “A virtual machine-based architec-
ture for intrusion detection,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2003, pp. 191-206.

[21] N. Ahmed and B. Bhargava, “Mayflies: A moving target defense
framework for distributed systems,” in Proc. ACM Workshop Moving
Target Defense, 2016, pp. 59-64.

[22] N. Ahmed and B. Bhargava, “Towards targeted intrusion detec-
tion deployments in cloud computing,” Int. |. Next-Gener. Comput.,
vol. 6, no 2, pp. 129-139, 2015.

[23] N. Ahmed and B. Bhargava, “From byzantine fault-tolerant to
fault-avoidance: An architectural transformation to attack and
failure resiliency,” IEEE Trans. Cloud Comput., to be published,
doi: 10.1109/TCC.2018.2814989.

[24] M. Villarreal-Vasquez, B. Bhargava, P. Angin, N. Ahmed,
D. Goodwin, K. Brin and J. Kobes, “An MTD-based self-adaptive
resilience approach for cloud systems,” in Proc. IEEE 10th Int.
Conf. Cloud Comput., 2017, pp. 723-726.

[25] N. Lynch and M. Tuttle, “An Introduction to Input/Output
Automata,” CWI-Quarterly, vol. 2, no 3, 1989. [Online]. Available:
https:/ /groups.csail. mit.edu/tds/papers/Lynch/CWI89.pdf

[26] M. Robin, “Probabilistic automata,” in Proc. Inf. Control, vol. 6,
pp- 230-245, 1963.

[27] S.Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility
in software-defined networks: New attacks and counter meas-
ures,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2015, pp. 8-11.

[28] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proc. IEEE., vol. 77, no. 2
pp- 257-286, Feb. 1989.

[29] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden Markov
model: Analysis and applications,” Mach. Learn., vol. 32, pp. 41-62,
1998.

[30] O. Samko, A. D. Marshall, and P. L. Rosin, “Automatic construc-
tion of hierarchical hidden Markov model structure for discover-
ing semantic patterns in motion sata,” in the Proc. 5th In. Conf.
Comput. Vis. Theory Appl., vol. 1, 2010, pp. 275-280.

[31] K.P.Murphy, “Dynamic Bayesian Networks: Representation, Infer-
ence, and learning,” PhD Dissertation, Dept. Comput. Sci., Univ.
California at Barkley, California, CA, USA 2002.

[32] A.Bessani, J. Sousa, and E. Alchieri, “State machine replication for
the masses with BFT-SMaRT,” in Proc. 44th Annu. IEEE/IFIP Int.
Depend. Syst. Netw., 2014, pp. 355-362

[33] L. Alfaro and T. Henzinger, “Interface automata,” in Proc. 8th Eur.
Soft. Eng. Conf. Held Jointly 9th ACM SIGSOFT Int. Symp. Founda-
tions Softw. Eng., 2001, pp 109-120

[34] F.Xu, F. Liu, L. Liu, H. Jin, B. Li, and B. Li, “iAware: Making live
migration of virtual machines interference-aware in the cloud,”
IEEE Trans. Comput., vol. 63, no. 12, pp. 3012-3025, Dec. 2014.

[35] F. Xu, F. Liu and H. Jin, “Heterogeneity and interference-aware
virtual machine provisioning for predictable performance in the
cloud,” IEEE Trans. Comput., vol. 65, no. 8, pp. 2470-2483, Aug. 1,
2016.

[36] F.Xu, F. Liu, H. Jin and A. V. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey,
state of the art, and future directions,” in Proc. IEEE, vol. 102, no. 1,
pp- 11-31,2014.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

[37] Z. Yulong, B. LiKun, and Z. YuWanyu, “Incentive compatible
moving target defense against VM-colocation attacks in clouds,”
in Proc. Int. Inf. Secur. Conf., 2012. pp 388-399.

[38] R.Zhuang, PhD Dissertation, Dept. Comput. Inf. Sci., Kansas State
Univ., Manhattan. 2015. [Online]. Available: http://hdl.handle.
net/2097 /20525

[39]1 L. Cheng, Z. Hong-Qi, T. Jing-Lei, Z. Yu-Chen, and L. Xiao-Hu,
“Moving target defense techniques: A survey,” in Proc. Secur.
Commun. Netw., vol. 2018, [Online]. Available: https://doi.org/
10.1155/2018/3759626

[40] Library for Virtual Machine Introspection, 2018. [Online]. Avail-
able: LibVML. http://libvmi.com

[41] OpenStack, 2014. [Online]. Available: https:/ /www.openstack.org/

Noor Ahmed received the BSc degree from Utica
College, in 2002, the MSc degree from Syracuse
University, in 2006, and the PhD degree from Pur-
due University, in 2016, all in computer science. He
is currently a computer scientist with AFRL/RIS
since 2003. His research interests include block-
chain applications, security/privacy and quality of
services issues in service oriented architectures,
reliability and resiliency on cloud computing plat-
forms with emphasis on moving target defense.

Bharat Bhargava (Fellow, IEEE) is currently a pro-
fessor of computer science with Purdue University.
He is the founder of the IEEE Symposium on
Reliable and Distributed Systems, IEEE confer-
ence on Digital Library, and the ACM Conference
on Information and Knowledge Management. His
research interests include the security and privacy
issues in service oriented architectures and cloud
computing, and internet scale routing, and mobile
networks.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:29:26 UTC from IEEE Xplore. Restrictions apply.

http://www.dtic.mil/dtic/tr/fulltext/u2/a548748.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a548748.pdf
http://dx.doi.org/10.1109/TCC.2018.2814989
https://groups.csail.mit.edu/tds/papers/Lynch/CWI89.pdf
http://hdl.handle.net/2097/20525
http://hdl.handle.net/2097/20525
https://doi.org/10.1155/2018/3759626
https://doi.org/10.1155/2018/3759626
http://libvmi.com
https://www.openstack.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

