

Vulnerabilities and Threats in Distributed Systems

Bharat Bhargava and Leszek Lilien

Department of Computer Sciences and
Center for Education and Research in Information Assurance and Security (CERIAS)

Purdue University, West Lafayette, IN 47907, USA
{bb, llilien}@cs.purdue.edu

Abstract. We discuss research issues and models for vulnerabilities and threats
in distributed computing systems. We present four diverse approaches to reduc-
ing system vulnerabilities and threats. They are: using fault tolerance and reli-
ability principles for security, enhancing role-based access control with trust
ratings, protecting privacy during data dissemination and collaboration, and ap-
plying fraud countermeasures for reducing threats.

1 Introduction

Security vulnerabilities dormant in a distributed system can be intentionally exploited
or inadvertently triggered. The threats of exploitation or triggering are only potential,
and materialize as an attack or an accident. Efficient elimination and masking of vul-
nerabilities and threats requires cost-based risk analysis.

Vulnerabilities exist in hardware, networks, operating systems, database systems,
and applications. New ones are being discovered every day. Information about identi-
fied vulnerabilities and threats can be obtained from the well-known security incident
databases, or metabases, such as ICAT, CERT, vdb, or CVE, from notification sys-
tems such as Cassandra [22], or from other sources of information on security inci-
dents.

After discussing vulnerabilities and threats, this paper presents briefly four different
ideas or mechanisms for reducing them:
Applying Reliability and Fault Tolerance Principles to Security Research Many
ideas or algorithms from research in reliability and fault tolerance provide useful
analogies to research in security. Examples include disabling quorums to deny access,
use of checkpointing for intrusion detection, and adaptability to timing, severity, dura-
tion, and extent of attacks.
Using Trust in Role-based Access Control Trust is needed for access control in open
systems. There are problems with identity-based approaches and use of digital creden-
tials. Ongoing research can produce credible trust ratings for a user based on multiple
types of evidence, including credentials, observed behavior, recommendations, and
reputations. Trust ratings are used to enhance the role-based access control (RBAC)
mechanism. We are building a testbed for experiments to validate the process of trust,
and study privacy and fraud.

Privacy-preserving Data Dissemination Trust and privacy are closely intertwined in
interactions among cooperating entities. Preserving data privacy is essential. Objects
can encapsulate privacy policies, owner’s preferences, and other metadata along with
owner’s data. They can include mechanisms such as apoptosis—that leads to a clean
self-destruction whenever this object feels threatened, and evaporation—that allows
gradual and adaptive object distortion and erasure in proportion to perceived misuse.
Fraud Countermeasure Mechanisms Vulnerabilities can be identified via studies of
fraud. Fraud can be detected by identifying patterns of deceiving behavior. We identi-
fied three types of fraudulent user behavior, and developed schemes to evaluate
threats and detect fraud.

2 Vulnerabilities

Modeling Vulnerabilities A vulnerability can be defined as a flaw or weakness in
system security procedures, design, implementation, or internal controls.
A vulnerability can be accidentally triggered or intentionally exploited, causing
security breaches [27].

Modeling vulnerabilities includes analyzing their features, classifying them and
building their taxonomies, and providing formalized models. Many diverse models of
vulnerabilities in various environments and under varied assumptions are available in
the literature. A detailed analysis of four common computer vulnerabilities in [17]
identifies their characteristics, the expected policies violated by their exploitation, and
the steps needed for the eradication of such vulnerabilities in future software releases.
A vulnerability lifecycle model has been applied in [4] to three case studies, which
show how systems remain vulnerable long after security fixes. During its lifetime,
vulnerability can be in any of the following six states: birth, discovery, disclosure,
correction, publicity, and death.

A model-based analysis technique to identify configuration vulnerabilities in dis-
tributed systems [23] involves formal specification of desired security properties, an
abstract model of the system that captures its security-related behaviors, and verifica-
tion techniques to check whether the abstract model satisfies the security properties.

Two kinds of vulnerabilities can be distinguished: operational and information-
based. The former include an unexpected broken linkage in a distributed database, and
the latter include unauthorized access (secrecy/privacy), unauthorized modification
(integrity), traffic analysis (inference problem), and Byzantine input [3].

Vulnerabilities do not have to be exhaustively removed since they only create
a potential for attack. Feeling threatened by vulnerabilities all the time is not desir-
able. Vulnerabilities exist due to not only mistakes or omissions, but can be a side
effect of a legitimate system feature, as was the case with the setuid UNIX com-
mand [14]. Some vulnerabilities exist in systems and cause no harm in its life cycle.
Some known ones have to be tolerated due to economic or technological limitations.
Removal of others may reduce usability. To require passwords not only for logging in,
but also for any significant resource request may make it secure but lowers usability.

The system design should not let an adversary know vulnerabilities unknown to the
system owner.
Fraud Vulnerabilities A fraud can be defined as a deception deliberately practiced
in order to secure unfair or unlawful gain [2]. Disclosing confidential information to
unauthorized people or unauthorized selling of customer lists to telemarketers
constitutes fraud. This shows an overlap of fraud with privacy breaches.

Fraud can make systems more vulnerable to subsequent fraud. This requires protec-
tion mechanisms to avoid future damage.

Fraudsters can be classified into two categories: impersonators and swindlers [13].
An impersonator is an illegitimate user who steals resources from victims, for instance
by taking over their accounts. A swindler is, in contrast, a legitimate user who
intentionally benefits from the system or other users by deception. For instance,
swindlers obtain legitimate telecommunications accounts and use the services without
intention to pay the bills.

Fraud involves abuse of trust [12, 29]. A fraudster strives to present himself as
a trustworthy individual and friend. In a clear way, the more trust one places in others
the more vulnerable one tends to become.
Vulnerability Research Issues Vulnerabilities, analogously to faults, enable
failures and attacks. They could be characterized as flaws in design, implementation,
or deployment. The severity of a flaw and its impact on an application need analysis.
Qualitative impact may be expressed as a low/medium/high degree of degradation in
terms of performance and availability. Quantitative impact is in terms of economic
loss, measurable cascade effects, and time needed to recover. It could include
quantification of reoccurrences of failures or attacks.

Procedures and methods are needed for efficient extraction of the characteristics
and properties of the known vulnerabilities. This is analogous to understanding how
faults occur. Tools that search for known vulnerabilities in the metabases have limita-
tions. Security mechanisms that add or modify entries in the metabases can only fol-
low, not anticipate, the steps of an attacker. Characteristics can be learnt from the
behavior of the attacker or using ideas such as honeypots.

A comprehensive taxonomy of vulnerabilities for different application areas need be
constructed. Medical systems may have critical privacy vulnerabilities, whereas vul-
nerabilities in defense systems might destroy or distort resources and capabilities. A
good taxonomy will facilitate both prevention and elimination of vulnerabilities.
A metabase of vulnerabilities reveals characteristics in flaws for preventing not only
identical but also similar vulnerabilities. It also contributes to identification of related
vulnerabilities, including dangerous synergistic ones. Characterization of and a model
for a set of synergistic vulnerabilities can lead to uncovering gang attack threats or
incidents. It should be noted that the characteristics for a set are, in general, more than
a simple “sum” of individual characteristics.

Formalisms to represent vulnerabilities and their contexts are needed. The challenge
is to investigate how vulnerability in one context propagates to another. Different
kinds of vulnerabilities might be emphasized in different contexts.

Quantitative lifecycle models for vulnerabilities should be built after a thorough
analysis of vulnerabilities for a given type of application or system, exploiting their
unique characteristics. In each lifecycle phase, the cumulative system vulnerability
should be determined, and the most dangerous or the most common types of vulner-
abilities recognized. Knowledge of the degree of system vulnerability, the duration of
the lifecycle phases, and the prominent types of vulnerabilities for a given phase will
be helpful in protecting the system against these types of vulnerabilities. The best
defensive procedures can be adaptively selected from a predefined set.

The lifecycle models should help solving a few problems. First, they should help
avoid vulnerabilities in a deployed system most efficiently by discovering and elimi-
nating them at the design and implementation stages. Second, they should facilitate
evaluations and measurements of vulnerabilities in system components and subsys-
tems and of the system as a whole at each lifecycle stage. Third, the models would
assist in most efficient discovery of vulnerabilities in a deployed system before they
are exploited by an attacker or a failure. They would assist in most efficient elimina-
tion or masking of these vulnerabilities, e.g. based on principles analogous to fault-
tolerance. Alternatively, an attacker can be kept unaware or uncertain of important
system parameters by, for example, non-deterministic or deceptive system behavior,
increased component diversity, or multiple lines of defense.

Research should provide methods of assessing the impact of vulnerabilities on se-
curity in applications and systems. It should create formal descriptions of the impact
of vulnerabilities, and develop quantitative vulnerability impact evaluation methods.
Resulting ranking will help in risk analysis. Investigators can identify the fundamental
design principles and guidelines for dealing with system vulnerabilities at any system
lifecycle stage. Based on these principles and guidelines, the best practices for reduc-
ing vulnerabilities at different lifecycle stages should be developed. Finally, interac-
tive or fully automatic tools and infrastructures—encouraging or enforcing use of
these best practices—at each lifecycle stage should be developed.

Research is also needed on vulnerabilities in security mechanisms themselves, and
on vulnerabilities due to non-malicious but threat-enabling uses of information [21].

3 Threats

3.1 Models of Threats

We define threats against systems as entities that can intentionally exploit or inadver-
tently trigger specific system vulnerabilities to cause security breaches [16, 27]. An
attack is an intentional exploitation of vulnerabilities, and an accident is an inadver-
tent triggering of vulnerabilities. Both materialize threats, changing them from poten-
tial to actual.

Threats can be classified according to actions and consequences [26]. Actions can
be of the following types: observe, destroy, modify, and emulate threats. Conse-
quences include disclose, execute, misrepresent, and repudiate threats, integrity

threats. A threat can be tolerated or eliminated based on the degree of risk acceptable
to an application. Threat to human life may require complete elimination. Threat to
redundant software or hardware can be tolerated briefly.

Threats can be countered by their avoidance (prevention) or tolerance.
Threat Avoidance The analogy between fault avoidance in the reliability area [24,
5, 21] and threat avoidance should be considered in the system design. Once the sys-
tem is deployed, the designers cannot change the basic system structures and mecha-
nisms. The threat avoidance methods, petrified in the system, are effective only
against less sophisticated attacks. Executors of the most sophisticated attacks have
motivation, resources, and the whole system lifetime to discover its vulnerabilities.
Such attacks need to be approached from the threat tolerance side [20], and knowl-
edge of fault avoidance in the reliability area can be leveraged.

Understanding different threat sources is necessary for effective threat avoidance.
Different human threats, their motivation and potential attack modes are described in
[27]. Attacks can be classified as target-of-opportunity attacks, intermediate attacks,
or sophisticated attacks [20].

Several research efforts focus on providing guidelines for better designs that pre-
vent threats. A model for secure protocols is proposed in [15]. Formal models for the
analysis of authentication protocols are proposed in [25] and in our paper [10]. Secu-
rity models for statistical databases useful to prevent data disclosures are discussed in
[1], and a detailed comparative analysis of the most promising methods for protecting
dynamic-online statistical databases is presented there.
Threat Tolerance Fault-tolerant schemes are neither concerned with each individual
failure nor spend all resources in dealing with them. Transient and non-catastrophic
errors and failures are ignored if this can benefit the system. In the same way, we
need to conduct research on using a form of intrusion tolerance for dealing with lesser
security breaches, which are common in daily activities. Applying the fault tolerance
approach to security attacks on database systems [3], we can list the following phases:
attack avoidance (a.k.a. prevention), attack detection, damage confinement, damage
assessment, reconfiguration, repair, fault treatment to prevent a recurrence of similar
attacks, and continuation of service.
Fraud Threat Detection for Threat Tolerance Fraud threats can be viewed as
a special category of general security threats, and as the first step in some threat toler-
ant solutions (majority voting is an example of threat tolerance without threat detec-
tion). Fraud detection systems are widely used in telecommunication, online transac-
tions, computer and network security, and insurance. Effective fraud detection uses
both fraud rules and pattern analysis. Due to the skewed distribution of fraud occur-
rences, one challenge in fraud detection is a very high false alarm rate.

3.2 Fraud Threats

Fraud threats can be viewed as a special category of general security threats that
should be analyzed considering salient features of fraud [9]. It should be noted that
fraud often occurs as a malicious opportunistic reaction, triggered by a careless action.

Threat analysis should also consider that fraud escalation seems to be a natural phe-
nomenon. Gang fraud can be especially damaging since gang fraudsters can cooperate
in misdirecting suspicion on others.

Individuals or gangs planning fraud thrive in an environment with fuzzy assignment
of responsibilities between participating entities, be they human or artificial [9]. Very
powerful fraudsters might be able to create environments that facilitate fraud that they
plan. Examples include CEO’s involved in insider trading.

3.3 Threat Research Issues

Since threats are context-dependent, an analysis of threats already present in the secu-
rity incident metabases has to start with identifying threats relevant for the context.
The analysis needs to find salient features of these threats, as well as indirect associa-
tions between threats—also via their links to related vulnerabilities. Next, a threat
taxonomy, specialized for the considered context, should be defined.

Formal models of threats, including their context-dependent aspects, are needed.
Quantifying the notion of a threat calls for measures to determine threat levels. Avoid-
ing/tolerating threats via unpredictability or non-determinism should be tried.

The formal qualitative and quantitative models—such as a lifecycle threat model—
can provide a solid basis for detecting known and discovering unknown threats, and
for establishing threat measures. Since threat analysis is strongly linked to the analysis
of vulnerabilities, this should result in identifying characteristic features of related
vulnerabilities that link them to specific threats. Similarly, one can investigate the
links from threats to vulnerabilities. The results of this reverse link analysis may ne-
cessitate correcting our vulnerability analysis models and methods.

Development of quantitative threat models can use analogies to the reliability mod-
els. An example is a Markov chain model to compute security measures. Two vari-
ables time and effort can be used to rate different threats or attacks. By investigating
the nature and properties of attacks, threats, and vulnerabilities, one can formulate the
distribution of their random behavior. The security measure named the Mean Effort
To security Failure (METF), which is analogous to the Mean Time To Failure
(MTTF) reliability measure, could be used. New security measures can be introduced,
starting with an evaluation of the suitability of two measures, namely the Mean Time
To Patch and Mean Effort To Patch. They are analogous to the Mean Time To Repair
(MTTR) reliability measure, and the METF security measure.

An evaluation a specific threat impact can start with the relevant threat properties,
such as direct damage, indirect damage, recovery cost, prevention overhead, and in-
teraction with other threats and defensive mechanisms.

Research must include inventing algorithms, methods, and design guidelines to re-
duce the number and the severity of threats. Injection of unpredictability or uncer-
tainty may increase system security. As an example, one can enhance data transfer
security in a distributed system by sending portions of critical data through different
routes. Research is also needed on threats to security mechanisms themselves.

Finally, since threat detection is needed for threat tolerance, it should be studied.
This includes investigation of fraud threat detection for fraud threat tolerance.

4 Mechanism to Reduce Vulnerabilities and Threats

4.1 Applying Reliability and Fault Tolerance Principles to Security Research

We have been conducting research in reliable distributed systems for a very long time.
We have worked on the development of concepts such as consistency, atomicity,
durability, availability, rollback, checkpoints, adaptability, etc. [8, 10].

We perceive that the ideas, concepts, or algorithms known from reliability area can
have analogies in the security area. We need to apply the science and engineering of
reliability research to the research in security and vice versa [6].

The analogies start with basic notions used in security and reliability. Vulnerability
corresponds to a fault, a threat corresponds to an error, and a security breach corre-
sponds to a failure/crash [6, 7].

We perceive an analogy between fault tolerance and threat tolerance. The ap-
proaches to handling a threat are: threat disregarding (ignores a potential threat),
threat avoidance (avoids a threat by eliminating it, its cause, or its consequences), and
threat tolerance (gracefully adapts to threats that have materialized) [27].

The analogy between the notion of time for accidental failures and the notion of
expended effort for intentional security breaches can be exploited [18]. The effort-to-
breach distribution of security is analogous to time-to-failure distribution of reliability.
There are differences between seemingly identical notions in reliability and security
areas, such as the notion of system boundaries—narrower for reliability and more
open for security. Further, reliability analogies are not helpful in some situations,
including the instance of intentional breaches arising from intentional malicious faults,
and the instance when expenditure of effort is instantaneous. In this case, analogy to
time in the area of reliability is meaningless, due to the sequential nature of time. The
security function R(e), analogous to the reliability function, can be defined to address
some quantitative aspects of operational security.

The following examples of solutions illustrate reliability-security analogies. To in-
crease reliability in distributed systems, a quorum of replicas can be formed in the
presence of failures. To make systems secure against unauthorized access, one can use
the reverse strategy of making it difficult to form quorums. Research on checkpoint-
ing can be applied to intrusion detection. The checkpoints ensure that the systems can
be brought back to a secure status. To deal with failures, we build systems that are
fault tolerant. We must build systems attack tolerant to security attacks. We need
to deal with common and less severe security violations as we have learned to deal
with every-day and relatively benign reliability failures.

4.2 Using Trust in Role-based Access Control

The traditional, identity-based approaches to access control are inadequate or even
inapplicable to open computing, including Internet-based computing [28]. In addition,
the common user authorization approach of granting access privileges to users based
solely on user’s ownership of digital credentials (evidence), presented directly to the
system, has its share of problems. First of all, holding credentials does not certify that
the user will not carry out harmful actions [12].

Authorization based on both credentials and trust is more credible than one based
on credentials alone, since it makes access control adaptable to users' behavior. This is
the reason why we included trust in access control mechanisms in open computing.
Existing computational trust management models can be classified as authorization-
based or reputation-based. Our design integrates them into one framework.

In our model of trust [12], we have incorporated comprehensive aspects of trust in
social systems and computer science applications. One challenge was to select care-
fully all and only useful trust aspects needed for our system design in a way prevent-
ing adverse affects on the flexibility or performance.

We developed algorithms for automating evaluation of trust, or inference of trust.
They produce trust ratings for a user based on: (a) dynamic, continuously updated
system’s own view of user’s behavior in interactions with the system, (b) system’s
own evidence records, (c) evidence records obtained from “foreign” reputation serv-
ers, and (d) system security policies. It is important to note that in producing the trust
ratings the algorithm considers credibility of the evidence provider.

Good trust inference algorithms needs to accommodate multiple types of evidence.
They should be adaptive, and able to tolerate uncertainty, incompleteness or inaccu-
racy of evidence (especially in case of subjective evidence). Before the algorithm is
able to infer trust for a specific application, available and acceptable evidence must be
identified. Examples of pieces of evidence include credentials, observed user behav-
ior, recommendations, and reputations. The credibility, availability, and volatility of
different types of evidences differ, and they are all affected by societal value, privacy
concerns, relevant legislation, and other factors.

The capability to use trust ratings for users was applied for enhancing the well-
known role-based access control (RBAC) mechanism. Trust management is performed
in this system by a trust-enhanced role-mapping (TERM) server, which interacts with
RBAC and a reputation server in the process of user authorization.

TERM uses two kinds of evidence for producing trust ratings: (a) direct, first-hand
experiences reported to TERM by RBAC, and (b) recommendations of users about
others users. The TERM server does not accept recommendations at a face value but
assigns to them its credibility rating. TERM server interacts with a reputation server,
which is a dynamic trust information repository, and evaluates reputation—based on
trust information—by using algorithms specified by the TERM server. We have built
a testbed prototype system, named Trust Enhanced Role Assignment (TERA), for
experiments verifying the system’s process of producing trust ratings for its users, and
studying trust, privacy, and fraud.

4.3 Privacy-preserving Data Dissemination

Trust and privacy are closely intertwined. For any collaboration—or even any interac-
tion—a level of trust must be established. Even just perceived threats to users’ privacy
by a collaborator may result in substantial lowering of trust. This could result in rejec-
tion of collaboration between prospective partners, a loss to all of them. Therefore,
protecting and ensuring privacy of sensitive information are necessary components of
mechanisms for reducing vulnerabilities and threats.

We briefly sketch our approach [11]. A guardian is either the original owner, or
a subsequent stakeholder of sensitive data. A guardian may pass private data to an-
other guardian in a data dissemination chain (actually, a cyclic graph). The risk of
privacy violations grows with the chain length and milieu fallibility and hostility.

Traditionally, owner’s privacy preferences or policies are not transmitted due to ne-
glect or failure. If a privacy policy is not included with data, even an honest receiving
guardian is unable to honor them. A simple solution is encapsulation of policies and
other metadata including owner’s privacy preferences with owner’s sensitive data and
ensuring that owner’s metadata are never decoupled from his data.

Suppose that a customer “deposits” his data in a bank. The bank immediately en-
capsulates data within an atomic private object, which includes private metadata with
customer’s privacy preferences. Obviously, transmitting complete metadata is ineffi-
cient. They are extensive, describing all foreseeable aspects of data privacy that can be
needed to address privacy issues under any circumstances. For efficiency reasons,
based on the application semantics, only some metadata are carried along.

With atomic self-descriptive objects, there is no way that a sending guardian can
transmit to a receiving guardian an incomplete object. This solution solves the prob-
lem for friendly environments.

The solution must be extended to embrace hostile and unfamiliar environments. In
the first step, the extension will involve an atomic apoptosis, that is a clean self-
destruction, whenever the object feels threatened. A private object is here a binary-
state or atomic entity, which can be either intact or safely destroyed. In the second
step, we generalize the notion of apoptosis with the idea of evaporation. Object’s
private data are not destroyed all at once but evaporate gradually, adaptively and in
proportion to the object’s distrust towards its current milieu.

Perfect passing of objects is not always desirable. When data are captured by spy-
ware embedded in browser extensions, owners want to see them distorted once they
leave their computer. Owners are often willing to share their data locally, e.g., with
colleagues in their lab, but want to prevent any wider dissemination. This suggests that
private objects should be evaporating in proportion to their “distance” from their
source. Owners generally trust their original guardians more than subsequent and more
distant ones. Unauthorized data disclosures become more probable further away. Dif-
ferent context-dependent proximity metrics can be used.

4.4 Fraud Countermeasure Mechanisms

We have concentrated on swindler detection. The major challenge is to react to
a suspicious action or cooperation that may lead to a fraud. Three approaches were
considered: (1) detecting an entity’s activities that deviate from legitimate patterns; (2)
constructing state transition graphs for existing fraud scenarios and detecting frauds
similar to the known ones; and (3) discovering an entity’s intention based on past
behavior. An architecture incorporating all three approaches is proposed in [13].

The deceiving intention prediction (DIP) algorithm is the critical element of the ar-
chitecture. Its role is discovery of deceiving intention of an entity, based on entity’s
history and current behavior.

We have identifies three types of deceiving user behavior: (a) uncovered deceiving
intentions, where swindler’s trust ratings are stably low and vary in a small range over
time, (b) trapping intentions, where a swindler first exhibits intentionally blameless
behavior to gain trust, and then commits a fraud, and (c) illusive intentions, where a
swindler exhibits cycles of blameless behavior followed by intervals of fraudulent
actions. We see cycles of preparation and entrapment in Case (c), in contrast to Case
(b) where one preparation interval precedes one entrapment period.

We have experimentally evaluated the DIP algorithm [13] investigating its perform-
ance for different types of user behavior, including the deceiving behaviors defined
above. Given a user behavior sequence, DIP calculates for it the value of the DI-
confidence indicator, which is a real number ranging over [0,1] with the higher values
indicating higher chances of an illegitimate behavior.

Our experimental results can be summarized as follows [13]:

• For a swindler with uncovered deceiving intentions: Since the probability of fraud is
high, the swindler is put under system supervision most of the time. The final trust
values are at 0.1, close to the minimum. The DI-confidence is around 0.9.

• For a swindler with trapping intentions: DIP responds very quickly with a drop in
trust ratings when a swindler ends preparation and enters the entrapment phase: in-
creasing DI-confidence from 0.22 to 0.76 takes only a sequence of 6 ratings.

• For a swindler with illusive intentions: DI-confidence increases (trust falls) when
the swindler ends the preparation phase of a cycle and starts an entrapment. DI-
confidence decreases (trust grows) when the swindler ends the entrapment phase
and reenters the preparation phase. Still, DIP is able to catch this smart swindler be-
cause her DI-confidence eventually increases to about 0.9. This demonstrates that
an effort to hide periods of fraudulent activities with periods of good behavior is
less and less effective with each repetition of the preparation-entrapment cycle.

5 Conclusions

Investigation of vulnerabilities and threats and devising countermeasures is an impor-
tant research area with a high potential for practical impact. Our contributions of four

different ideas and mechanisms for reducing system vulnerabilities and threats, pre-
sented in the paper, show a few of the possible directions for research.

We are using the presented mechanisms in our experimental testbed for investiga-
tion of new solutions for security and privacy in distributed systems. (More informa-
tion is available at: http://raidlab.cs.purdue.edu/zhong/NSFtrust/Demo/index.html.).

Acknowledgements We are grateful for contributions made by Ms. Anjali Bhargava
(fault tolerance and security) and Ms. Yuhui Zhong (trust in RBAC and fraud).
Research is supported in part by NSF grants IIS-0209059 and IIS-0242840.

References

1. N.R. Adam and J.C. Wortmann, “Security-Control Methods for Statistical Databases:
A Comparative Study,” ACM Computing Surveys, Vol. 21, No. 4, Dec. 1989.

2. The American Heritage Dictionary of the English Language, Fourth Edition, Houghton
Mifflin, 2000.

3. P. Ammann, S. Jajodia, and P. Liu, “A Fault Tolerance Approach to Survivability,” in
Computer Security, Dependability, and Assurance: From Needs to Solutions, IEEE Com-
puter Society Press, Los Alamitos, CA, 1999.

4. W.A. Arbaugh, et al., “Windows of Vulnerability: A Case Study Analysis,” IEEE Com-
puter, pp. 52-59, Vol. 33 (12), Dec. 2000.

5. A. Avizienis, J.C. Laprie, and B. Randell, “Fundamental Concepts of Dependability,”
Research Report N01145, LAAS-CNRS, Apr. 2001.

6. A. Bhargava and B. Bhargava, “Applying fault-tolerance principles to security research,”
in Proc. of IEEE Symposium on Reliable Distributed Systems, New Orleans, Oct. 2001.

7. B. Bhargava, “Security in Mobile Networks,” in NSF Workshop on Context-Aware Mo-
bile Database Management (CAMM), Brown University, Jan. 2002.

8. B. Bhargava (ed.), Concurrency Control and Reliability in Distributed Systems, Van
Nostrand Reinhold, 1987.

9. B. Bhargava, “Vulnerabilities and Fraud in Computing Systems,” Proc. Intl. Conf. IPSI,
Sv. Stefan, Serbia and Montenegro, Oct. 2003.

10. B. Bhargava, S. Kamisetty and S. Madria, “Fault-tolerant authentication and group key
management in mobile computing,” Intl. Conf. on Internet Comp., Las Vegas, June 2000.

11. B. Bhargava and L. Lilien, “Private and Trusted Collaborations,” Proc. Secure Knowledge
Management (SKM 2004): A Workshop, Amherst, NY, Sep. 2004.

12. B. Bhargava and Y. Zhong, “Authorization Based on Evidence and Trust,” Proc. Intl.
Conf. on Data Warehousing and Knowledge Discovery DaWaK-2002, Aix-en-Provence,
France, Sep. 2002.

13. B. Bhargava, Y. Zhong, and Y. Lu, "Fraud Formalization and Detection,” Proc. Intl. Conf.
on Data Warehousing and Knowledge Discovery DaWaK-2003, Prague, Czechia, Sep.
2003.

14. M. Dacier, Y. Deswarte, and M. Kaâniche, “Quantitative Assessment of Operational Secu-
rity: Models and Tools,” Technical Report, LAAS Report 96493, May 1996.

15. N. Heintze and J.D. Tygar, “A Model for Secure Protocols and Their Compositions,”
IEEE Transactions on Software Engineering, Vol. 22, No. 1, 1996, pp. 16-30.

16. E. Jonsson et al., “On the Functional Relation Between Security and Dependability Im-
pairments,” Proc. 1999 Workshop on New Security Paradigms, Sep. 1999, pp. 104-111.

17. I. Krsul, E.H. Spafford, and M. Tripunitara, “Computer Vulnerability Analysis,” Techni-
cal Report, COAST TR 98-07, Dept. of Computer Sciences, Purdue University, 1998.

18. B. Littlewood at al., “Towards Operational Measures of Computer Security”, Journal of
Computer Security, Vol. 2, 1993, pp. 211-229.

19. F. Maymir-Ducharme, P.C. Clements, K. Wallnau, and R. W. Krut, “The Unified Informa-
tion Security Architecture,” Technical Report, CMU/SEI-95-TR-015, Oct. 1995.

20. N.R. Mead, R.J. Ellison, R.C. Linger, T. Longstaff, and J. McHugh, “Survivable Network
Analysis Method,” Tech. Rep. CMU/SEI-2000-TR-013, Pittsburgh, PA, Sep. 2000.

21. C. Meadows, “Applying the Dependability Paradigm to Computer Security,” Proc. Work-
shop on New Security Paradigms, Sep. 1995, pp. 75-81.

22. P.C. Meunier and E.H. Spafford, “Running the free vulnerability notification system Cas-
sandra,” Proc. 14th Annual Computer Security Incident Handling Conference, Hawaii,
Jan. 2002.

23. C. R. Ramakrishnan and R. Sekar, “Model-Based Analysis of Configuration Vulnerabili-
ties,” Proc. Second Intl. Workshop on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’98), Pisa, Italy, 2000.

24. B. Randell, “Dependability—a Unifying Concept,” in: Computer Security, Dependability,
and Assurance: From Needs to Solutions, IEEE Computer Society Press, Los Alamitos,
CA, 1999.

25. A.D. Rubin and P. Honeyman, “Formal Methods for the Analysis of Authentication Proto-
cols,” Tech. Rep. 93-7, Dept. of Electrical Engineering and Computer Science, University
of Michigan, Nov. 1993.

26. G. Song et al., “CERIAS Classic Vulnerability Database User Manual,” Technical Report
2000-17, CERIAS, Purdue University, West Lafayette, IN, 2000.

27. G. Stoneburner, A. Goguen, and A. Feringa, “Risk Management Guide for Information
Technology Systems,” NIST Special Publication 800-30, Washington, DC, 2001.

28. M. Winslett et al., “Negotiating trust on the web,” IEEE Internet Computing Spec. Issue
on Trust Management, 6(6), Nov. 2002.

29. Y. Zhong, Y. Lu, and B. Bhargava, “Dynamic Trust Production Based on Interaction
Sequence,” Tech. Rep. CSD-TR 03-006, Dept. Comp. Sciences, Purdue Univ., Mar.2003.

