
Auditable Serverless Computing for Farm Management
Servio Palacios

spalacio@purdue.edu
Purdue University, Qlever LLC
West Lafayette, Indiana, USA

Drew Zabrocki
dz@centricity.us
Centricity Global

Seatle, Washington, USA

Bharat Bhargava
bbshail@purdue.edu
Purdue University

West Lafayette, Indiana, USA

Vaneet Aggarwal
vaneet@purdue.edu
Purdue University

West Lafayette, Indiana, USA

ABSTRACT
Currently, a multitude of applications that target farm management
activities has been proposed. Unfortunately, those applications do
not interoperate and require that the farmer utilize several of them,
making operations and task management cumbersome. Similarly,
those applications require a tiered pricing model ranging from a
restricted/limited free tier to several thousand dollars per year—
mainly in a software as a service SaaS model.

In this paper, we propose a novel mix of serverless functions,
shared ledgers, webhooks, and REST APIs to enhance Agriculture/-
Farm Management Systems, providing an integrated solution for
Task, User, and Field Management that exploits a fine-grained pric-
ing model. Further, our technique utilizes serverless oblivious smart
contracts as a building block. To the best of our knowledge, this
is the first solution that leverages serverless functions and shared
ledgers to provide an elastic, pay-as-you-go, and auditable task
management system for the AG industry.

Our work has a significant impact on providing an open-source
solution released and used in production that can pave the way for
future relevant ideas in the AG industry. Therefore, we demonstrate
the system feasibility exposing evidence of the system performance
for auditable task creation and chat mirroring.

CCS CONCEPTS
• Applied computing → Agriculture.

KEYWORDS
Auditable Serverless Computing, Serverless Computing, Farm Man-
agement, Serverless Functions, Serverless Oblivious Smart Con-
tracts, Auditable Farm Management

ACM Reference Format:
Servio Palacios, Drew Zabrocki, Bharat Bhargava, and Vaneet Aggarwal.
2021. Auditable Serverless Computing for Farm Management. In Big Data
in Emergent Distributed Environments (BiDEDE’21), June 20, 2021, Virtual

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BiDEDE’21, June 20, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8465-0/21/06. . . $15.00
https://doi.org/10.1145/3460866.3461770

Event, China. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3460866.3461770

1 INTRODUCTION
There are an extensive set of applications that target automating
farm business processes. Solutions such as Granular [9] utilize data
to determine the profitability of fields under certain crops; their
monetization model is based per acre. Conservis [6] aims to manage
field activities such as applications and planting and analyze yields.
Farmbrite [7] targets record-keeping, crop planning, scheduling,
and activity tracking. Agriculture ERP systems such as FarmLog-
ics [8] and Microsoft Dynamics [10] provide modules for crop man-
agement, Geographic Information Systems, and Task/Work Flow
Management. Those systems are far from a customized solution that
fits every customer’s requirements or budget. In particular, current
solutions require investing in mostly yearly subscriptions without
considering the time that modules or processing is not needed or is
idle. Further, these systems assume that all modules utilize the same
processing units or pricing model. Also, many of those solutions
do not provide auditability features for task management. Most
of the applications reviewed are delivered as a ’software service’
(SaaS) and offer tiered pricing running from a limited free tier to
several thousand dollars per user per year. Similarly, most of those
applications collect user data in the cloud, leading to significant
privacy issues [13, 14].

In this paper, we propose a novel mix of serverless functions,
shared ledgers, webhooks, and REST APIs to enhance Agriculture/-
Farm Management Systems, providing an integrated solution for
Task, User, and Field Management that exploits a fine-grained pric-
ing model named AuditFarm.io. Our technique leverages a relaxed
version of serverless oblivious smart contracts [13, 14] as a building
block. For instance, AuditFarm.io leverages Twilio Serverless Func-
tions [16] to provide a straightforward communication channel
with people across the farm operation, specifically: crop advisors,
applicators, irrigators, and administrative staff. The objective is to
streamline real-time communication in a way that is useful and easy
to adapt while systematically logging events for immediate and
historical analysis. We accomplished a customized and auditable
Task management system via Azure Serverless Functions, Azure
Key-Vault, and IBM Hyperledger Fabric. Our solution exploits the
main characteristics of serverless computing, i.e., elasticity and
pay-as-you-go. The user is charged only for the utilized resources.

https://doi.org/10.1145/3460866.3461770
https://doi.org/10.1145/3460866.3461770
https://doi.org/10.1145/3460866.3461770
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460866.3461770&domain=pdf&date_stamp=2021-06-20

BiDEDE’21, June 20, 2021, Virtual Event, China Palacios, et al.

1.1 Problem Definition
Farmers often use a dozen or more software solutions; each system
offers benefits; however, the value that could be achieved from
data-enriched decisions is often trapped in siloed systems that do
not interoperate.

Field and administrative staff constantly switch between differ-
ent applications making it difficult to maintain focus and remember
where to store certain information. Redundant data entry and tran-
scription introduce additional labor cost and is error-prone; the
greatest disadvantage is lost time and lack of clear communication
among the team. When faced with pressing challenges of logistics
and agronomy, interaction with data and systems often are put
aside to address issues staring them in the face.

Software and solution providers have attempted to resolve these
challenges by either developing more features—swiss army knife
approach— or through proprietary integrations, which often fall
short on delivering optimal user experiences or require significant
ongoing investments to implement and maintain.

Partially connected systems often result in user dissatisfaction
with the spider web of applications and endless forms. Grasping for
’what works,’ users often gravitate towards simplified communica-
tions and familiar tools that work for all, such as Text Messaging
and To-Do Lists. While easy to use and broadly accessible, these
simplified communication tools lack data standardization making
reporting and analysis nearly impossible; unfortunately, the infor-
mation captured is often lost.

1.2 Overview of technical approach
In this project, we enhanced the Task Management System through
a set of serverless functions that allow task creation, user assign-
ment, field geolocation, and chat mirroring (Figure 1). The Parsing
Module (§3.1.1) integrates SendGrid’s Inbound Parser to provide
email parsing guarantees that can send an Excel File through a
webhook that triggers an Azure Function’s execution. These Azure
Functions create Field Tasks and assign specific users. The Azure
Functions leverages Google Maps API and ClickUp Field Location
custom fields to expose real-time field monitoring capabilities. The
TaskManagementmodule (§3.1.3) allows the use of ClickUp automa-
tions, webhooks, chat views, users, and custom fields to provide
Task Management and real-time monitoring features. The Chatbot
engine (§3.1.2) integrates Twilio serverless functions, current SMS
Text Messaging groups, and ClickUp chat views to offer an inte-
grated tool that allows monitoring issues in the field in real-time.

1.3 Contributions
The contributions of this paper are summarized as follows:

• We develop an integrated solution that provides auditable
task management capabilities for farm management.

• As a fundamental component of our implementation, we
include the use of serverless functions to provide a diverse
use of compute nodes (elasticity) and a new pricing model
for the AG industry. Additionally, we incorporate privacy-
preserving design principles as described in [13].

• We contribute an open-source implementation of our pro-
posed technique that can serve future solutions in the AG
industry1.

2 TECHNICAL BACKGROUND
This project provides Task Management Automation through a set
of short-lived serverless functions that automate task creation, user
assignment, and field management. Similarly, this work exposes
a chatbot functionality via Twilio Serverless Functions to mirror
Group Text Messaging to the Farm Management Web Application.
We first explain Serverless Computing, and then we explore the
core concepts for accountability, traceability, and ordering of tasks.

2.1 Serverless Computing
In this section, we utilize Castro, Ishakian, Muthusamy, Slomin-
ski (2019) contributions [1]. Serverless Computing is defined as "a
platform that hides server usage from developers and runs code
on-demand automatically scaled and billed only for the time the
code is running" [1]. Castro et al. described elasticity and cost —pay-
as-you-go— as the two critical components of serverless computing.
Serverless Computing diminishes IT administration’s burden on
virtual machines and resources, facilitating business application
development. For instance, a developer can expend a significant
amount of time allocating the correct virtual machines, resources,
and subscriptions to provide a particular business application. These
business applications can be reduced to stateless, self-contained
computation kernels that run eventually in a bursty fashion for
some specific use cases. The bursty nature of serverless functions re-
quires that resources are allocated according to demand—elasticity;
this property must scale down to zero and scaling up towards infin-
ity. Similarly, a new cost model arises with serverless computing
allowing the consumer to pay only for the resources they consume
when a function is running—the pay-as-you-go cost model. Current
activities for farm management often exhibit a bursty nature, i.e.,
seasonal tasks/applications making the use of serverless computing
a natural computing model. We leverage serverless computing to
enhance the Oblivious Smart Contract concept (§2.3) to provide an
elastic compute engine and pay-as-you-go pricing model.

2.2 Blockchain technologies
Blockchain technologies have been widely used to provide features
such as traceability, auditability, accountability, and event order-
ing, e.g., in the supply chain. In this section, we explain the main
characteristics of shared ledgers that allow those features. Satoshi
Nakamoto (2008) introduced the first concept of blockchain, propos-
ing a solution for the double-spending problem named Bitcoin [12].
Blockchains are also called shared-ledgers or decentralized and im-
mutable shared-ledgers, as explained in [1, 12]. The Bitcoin paper de-
scribes how a resource is not permitted to be consumed/spent twice
by transactions, even in the presence of malicious actors. There-
fore, Bitcoin introduces proof-of-work—based on cryptographic
hash functions—to generate an immutable record. Utilizing cryp-
tographic hashes and imposing complex constraints, the network

1As part of our contributions, we reported several bugs in well-known Task Man-
agements systems. Moreover, some of these bugs have been fixed during the review
process for this paper.

Auditable Serverless Computing for Farm Management BiDEDE’21, June 20, 2021, Virtual Event, China

participants must compete to commit a transaction in the shared
ledger. Moreover, the proof-of-work and the longest correct chain
expose verifiable proof of the ledger’s events—assuming that at-
tackers or malicious nodes cannot control more than 50% of the
nodes/participants, which will make it extremely hard to produce
a parallel longest malicious chain. The proof-of-work and the in-
herently byzantine fault tolerance provided by a blockchain [2]
provides a verifiable sequence of events and, therefore, is utilized
to provide auditability, traceability, and accountability features.

AuditFarm.io utilizes a blockchain-gateway to provide asynchro-
nous and anonymous accesses to shared ledgers. We store a hash of
the content of a task or a set of tasks in the share-ledger so that we
can verify the original content when running payment processes.
AuditFarm.io implementation includes an IBM Hyperledger Fabric,
but the blockchain-gateway can be extended to connect to other
popular shared ledgers such as Ethereum and many others.

2.3 Oblivious Smart Contracts
An Oblivious Smart Contract (OSC) is a certified/pre-approved soft-
ware code that computes on top of private data to obtain a privacy-
preserving derivative from the private data, such as a pass/fail
outcome [13, 14]. In the OSC trust model, the data owner preserves
data ownership and approves the algorithm that will run on top of
their private data (OSC.) This paper extends the OSC capabilities
utilizing serverless functions, i.e., serverless oblivious smart contracts
(SOSCs). The farmer approves in advance the algorithm that creates
the tasks in the task management system. Further, the SOSC will
keep track of the content of the task storing a cryptographic hash
of the content of the task (or a set of tasks) in the ledger.

3 METHOD: SYSTEM MODEL
3.1 Architecture
Our architecture considers three critical modules: the Parsing Mod-
ule, the Farm Management Module, and the Chatbot engine.

3.1.1 ParsingModule. The parsingmodule includes the integration
of SendGrid’s Inbound Parse [15] and a Serverless Function that
takes the content sent by Sendgrid. Figure 1 shows the workflow
with the following steps:

• An Administrator or Business user prepares a set of tasks in
an Excel File Format.

• The administrator or business user emails the Excel File.
• SendGrid’s Inbound Parse processes the email and Excel file.
• SendGrid triggers a webhook that points to an Azure Server-
less Function that contains the semantics to create new tasks,
assign users to tasks, and georeference the activities per field.

• The serverless function uses REST requests to the Task Man-
agement Module to create Tasks, assign users, and georefer-
ence fields.

We preserve the previous workflow utilized widely by the farmer,
but we enhanced the operations by providing an automated Task
Management module. The SendGrid Inbound Parsing requires mod-
ifications in the DNS records [15] to allow this feature. The admin-
istrator periodically runs this module—usually once every week,
following the bursty nature of serverless computing.

Blockchain Gateway: The blockchain gateway stores the in-
tegrity (hash of the task’s content) of parsed tasks for particular
dates. Since the user can change the description of a task in the
Task Management App, AuditFarm.io uses this gateway to check
for the task’s integrity and expose a trustworthy payment process.

3.1.2 Chatbot engine. In Figure 1, we observe that current Text
Group Messaging (SMS groups) are integrated into the Farm Man-
agement Module via Twilio serverless functions [16] that mirrors
all communications happening on the field, e.g., crop advisors, ap-
plicators, irrigators, and administrative staff. The business user can
verify all history of issues and comments related to a particular
field or activity.

3.1.3 Farm Management Module. The core component of this mod-
ule is ClickUp [4]. ClickUp defines a hierarchy that includes Teams,
Workspaces, Lists, and Tasks (Figure 1). The Parsing Module creates
all Field Irrigation and Application Tasks utilizing ClickUp’s REST
API [5]. This module allows Administrator users to assign Tasks
and comments to Irrigators or Applicators on the field. Irrigators
and Applicators can update the assigned Tasks, e.g., setting a task
as completed or attaching a photo of an issue on the field. Another
essential component of the Farm Management Module is the Chat
View capabilities. AuditFarm.io integrates currently available Text
Group messaging into the ClickUp Chat Views. We created a Twilio
Serverless function to mirror all the communications that happen in
the field and with the administrator. The administrator or business
user can verify all history of comments at a later time.

4 USE CASES
4.1 Clearly communicating work and job status

from the office to the field and back
Office staff are entering irrigation and nutrient applications into
spreadsheets and emailing them to staff and contractors on a weekly
basis. Workers are then writing as-applied data on notebooks and
returning paper records for data entry on an intermittent basis.
These records are required for compliance and marketing purposes
but could be most useful to agronomists if available on a near-real
time basis. Streamlining the process without introducing additional
steps or complex workflows is essential to engaging users who
are mobile and often hurried to accomplish their tasks. Increasing
requirements for sustainability and food safety data reporting re-
quire more complete documentation and auditable accounts of field
activity.

We will ‘meet users where they are’. Excel spreadsheets con-
tinue to be used to document and report activities. Text messages
will be used to communicate status updates. When tasks are as-
signed for the week, office staff will email the serverless function
which will automatically parse and assign tasks individually to
each worker. Serverless functions will notify users via text mes-
sage and update the digital ‘to-do’ list. Users will receive reminders
to update their to-do lists. When complete, the to-do list will be
processed by a serverless function to update the excel spreadsheet
with the as-applied data which can then be reported. Meanwhile,
agronomists and managers will have real-time work and agronomic
data available without having to constantly follow-up with staff.

BiDEDE’21, June 20, 2021, Virtual Event, China Palacios, et al.

Figure 1: Auditable Farm Management with Serverless Functions. Architecture Overview.

4.2 Orchestrating internal and external
business partners, using various systems, to
execute nutrient, irrigation, and pest
management jobs

Skone & Connors Ranching (SCR) operates across a vast territory
and works with a number of suppliers and contractors to advise,
manage and execute on applications of pest management and nu-
trient products in a sustainable and efficient manner. This requires
coordination of dozens of third party companies, independent con-
tractors, employees, and administrative staff.

SCR subscribes to ApRecs a unified recommendation and ap-
plication management system. While all third-party data formats
integrate seamlessly, encouraging third parties to update status in a
separate system has proven difficult. While some contractors have
adopted the ApRecs solutions, some have are tied with legacy sys-
tems. For those, ApRecs employs an API to enable interoperability
with their mobile and web applications.

By leveraging serverless functions, updates to ApRecs will au-
tomatically create SMS messages and update to-do lists so that
all parties are on the same page. ApRecs users will benefit from
improved, real-time interaction with 3rd party companies. The busi-
ness will also see reduced licensing costs since third-party users
will not need individual accounts.

5 PROTOTYPE IMPLEMENTATION
Our project includes a released version (𝑣1.0) moving into pro-
duction by the end of this month2. All projects are hosted under
GitLab. In future releases, we will publish a library for the Task
Management System and Chatbot3.

2March, 2021.
3All projects are hosted under GitLab and are kept private during this paper review

5.1 Parsing module
The parsing module includes the implementation of Azure Func-
tions for parsing and Excel file sent by the SendGrid Inbound Parse
Module. SendGrid points to our Azure Serverless Function (web-
hook call) and triggers the serverless function when an email with
particular characteristics is received. SendGrid takes care of Spam
Messages. We utilize an 𝐻𝑀𝐴𝐶 of the content of the Excel File
as part of the flow. The key (used by 𝐻𝑀𝐴𝐶𝑘𝑒𝑦 (𝑐𝑜𝑛𝑡𝑒𝑛𝑡)) is only
known to the business user—admin that sends the email and the
serverless function—via Azure Key Vault. To build, test and deploy
the serverless function, we utilized Visual Studio Code 𝑣1.54 with
Azure Functions 1.3.0 extension.

5.1.1 Fields dataset. We upload a set of currently used fields pars-
ing an Excel File provided by the farmer. Since the amount of fields
is reduced —less than 100 fields per season, it is a manageable num-
ber to store in the task management system. The field location
assignment into a ClickUp field location custom type is done via
Google Maps API. We exposed a Fields’ Search Engine in the server-
less functions to geo-reference the tasks. This process includes
application records attributes to interact with other systems.

5.1.2 Users dataset. The users’ dataset is obtained from an Excel
file provided by the farmer. We follow a similar process as described
above (users instead of fields.) This dataset is utilized by Twilio
Serverless functions, i.e., to map phone numbers to real names
in the Task Management System. Similarly, the Azure Serverless
functions for parsing tasks assign the users in charge of a particular
task using this users’ dataset.

5.1.3 Blockchain Gateway. We implemented a Blockchain-Gateway
utilizing IBMHyperledger Fabric using JavaScript and Visual Studio
Code. Table 1 shows the schema stored in the blockchain. We store
a hash of a task’s content (or a set of tasks) in the share-ledger to
verify the original content when running payment processes.

Auditable Serverless Computing for Farm Management BiDEDE’21, June 20, 2021, Virtual Event, China

Property(fabTask) Type
𝑖𝑑 String (UUID)
𝑡𝑎𝑠𝑘𝐻𝑎𝑠ℎ String

Table 1: Task business network in IBM Hyperledger Fabric.

5.2 Task Management module
This module required the ClickUp REST API 𝑣2.0. We used Type-
Script 𝑣4.0.3 and Axios 𝑣0.21.0. Additionally, we leverage ClickUp
webhooks and automations to enrich ClickUp functionality.

ClickUp REST API limitations: We encountered several bugs
and limitations with the ClickUp REST API during the development
of the Task Management Module4. Please refer to Table 2.

5.3 Chatbot engine
To include the current SMS Text Message infrastructure, we develop
a set of Twilio serverless functions utilizing Javascript (Table 3).
The Twilio serverless functions mirror all messages into the Task
Management Module. To build, test and deploy Twilio serverless
functions, we utilized Visual Studio Code 𝑣1.54with VSCode Twilio
0.1.0 extension.

6 EVALUATION
6.1 Experiment setup
We prepared a set of experiments to demonstrate serverless com-
pute engines’ performance that provides an integrated Task, Users,
Fields Management System. We configured two Functions App and
Key Vault resources under an Azure development subscription5. We
setup a MacBook Pro (15-inch, 2017) with an Intel Core i7 2.8GHz
and 16GB of RAM running macOS Catalina Version 10.15.4 and
IBM Blockchain Platform 1.0.31 Visual Studio Code Extension as
the Blockchain-Gateway.

6.2 Task Management Serverless Function
Performance

We analyze the time to execute a serverless function that creates
tasks into the Task Management System utilizing a REST API. We
run 100 REST requests to the Azure serverless function. As ex-
plained in Section §5.1, the function will parse an Excel File and
create the tasks accordingly. The process includes the creation of a
task and a subtask (fertigation.) The serverless function includes
users’ and fields’ search engine and field location assignment. In Fig-
ure 2, we can observe that the total time to execute a call is around
2516𝑚𝑠 . The first calls to the Azure function (utilizing SendGrid’s
webhooks) take significantly more time to execute (3777𝑚𝑠).

The Parsing Module asynchronously accesses a shared ledger
(IBM Hyperledger Fabric) to provide auditability features for the
Task Management Module. In Figure 3, we can observe the different
operations executed under the Blockchain. For instance, creating a
new record in the ledger takes around 2.2𝑠 . Creating new records
in the ledger is an asynchronous process.
4As part of our contributions, we reported several bugs in well-known Task Manage-
ments systems. Moreover, some of these bugs (Task Description Table) have been fixed
during the review process for this paper.
5All Virtual Machines, subscriptions, and resources are provided by Centricity Global.

Figure 2: Parsing Module Azure Serverless Function Perfor-
mance. The total time to execute the serverless function sta-
bilizes after the second call.

Figure 3: Parsing Module Blockchain-Gateway Performance.
We asynchronously access a shared ledger to provide au-
ditability features for the Task Management. Blockchain-
Gateway is interacting with IBM Hyperledger Fabric and
𝑡𝑎𝑠𝑘𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 developed in JavaScript.

In Figure 4, we analyze the primary task management operations.
This experiment include a set of test cases using the Chai assertion
library [3], the Mocha test framework [11], and Axios. First, we
analyze the task creation time (575𝑚𝑠 on average); this operation
includes searching and assigning users to the task and geolocating
the field name into a Field Location. Similarly, we analyze the
time to retrieve users (351𝑚𝑠) and fields (1202𝑚𝑠) from the task
management system. We also show the time to create subtasks
(around 150𝑚𝑠) and to log the activity (166𝑚𝑠) into the workspace.

Figure 4: Task management REST API performance.

6.3 Application Records - Task Creation
Performance

Similarly, we analyze the total time to create Application Record
Tasks in the Task Management system. The running time for this

BiDEDE’21, June 20, 2021, Virtual Event, China Palacios, et al.

Bug | Limitation Explanation
Task Description Table A table created using Markdown through the ClickUp REST API is not shown in the mobile ClickUp
Field Tags Tags created using the ClickUp REST API are not shown in the mobile ClickUp app
Field Location - Custom Fields The ClickUp REST API does not allow updating Field Location custom Fields

Table 2: Summary of bugs and limitations in the ClickUp REST API. We notified ClickUp Team about this bugs since January,
2021. We tested with the Mobile App 𝑣3.4.1.

Serverless Function Chat Mirror
twilio-chat-view-mirror/random-id-1 Irrigation
twilio-chat-view-mirror/random-id-2 Applications
twilio-chat-view-mirror/random-id-3 Admin

Table 3: Summary of Twilio Serverless functions for allowing
Chat Mirrors in the Task Management System.

operation is 2.55𝑠 approximately. This time measures the total time
to call an Azure Function via a webhook and the server’s response
time. The serverless function includes users’ and fields’ search
engine and field location assignment.

6.4 Chatbot Serverless Function Performance
In this experiment, we analyze the total time that a text message
takes to arrive at a Task Management System Chat View Mirror.
We used cURL to test the response time from Twilio Serverless
Functions. The average time for a call to a chat mirror function was
1.741678𝑠 . We tested all Twilio Serverless Functions in Table 3.

7 RELATEDWORK
7.1 Farm Management Systems
We include the most relevant existing technologies for Farm Man-
agement Systems. Due to space limitations, we created a medium
article6 as an addendum to this section.

7.2 Granular
Granular [9] is a cloud-based software that tracks crop inventories,
crop variety, work orders, and schedules in the field, particularly
tracking farm profitability. Granular provides an annual subscrip-
tion relative to the farm size and crop variety. Granular uses client’s
data to improve their software and services. AuditFarm.io, on the
other hand, allows the data owner to approve the algorithms that
are going to run on their private data (Excel files) to generate tasks
in the task management system enabling the client to preserve data
ownership. Further, AuditFarm.io includes a set of tools already
used by the client to provide an integrated and customized solution.
Our solution offers robust auditability features for task manage-
ment, leveraging a lightweight and extensible fabric network7.

7.3 Conservis
Conservis [6] aims to manage field activities such as applications,
planting, and analyze yields. Conservis is a cloud-based software as
a service (SaaS) that provides harvest management, planning, inputs
6https://serviopalacios.medium.com/farm-management-systems-2131f87c8c19
7The blockchain gateway allows connecting to other blockchain technologies.

management, and budgeting. Conservis collects client’s data. As
explained in [13], moving data from/to the cloud poses significant
privacy issues and can potentially expose private data. AuditFarm.io
provides auditability features for task management and helps to
protect data ownership via serverless oblivious smart contracts.

8 CONCLUSION
This paper presented an auditable and integrated Task, User, Field
management system that exploits a fine-grained pricing model. Our
technique utilizes a novel mix of serverless functions (Azure and
Twilio), distributed ledgers, serverless oblivious smart contracts,
and REST APIs to provide an auditable Task Management System
with elastic scaling and a fine-grained pricing model. To the best of
our knowledge, this is the first solution that leverages serverless
functions and shared ledgers to provide an elastic, pay-as-you-go,
and auditable task management system for the AG industry preserv-
ing data ownership.We contributed an open-source implementation
of a released and production-ready software and experiments that
contribute empirical evidence of our solution’s feasibility.

REFERENCES
[1] Marcus Brandenburger, Christian Cachin, Rüdiger Kapitza, and Alessandro

Sorniotti. 2018. Blockchain and Trusted Computing: Problems, Pitfalls, and
a Solution for Hyperledger Fabric. arXiv:1805.08541 [cs.DC]

[2] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the Third Symposium on Operating Systems Design and Implemen-
tation (New Orleans, Louisiana, USA) (OSDI ’99). USENIX Association, Berkeley,
CA, USA, 173–186. http://dl.acm.org/citation.cfm?id=296806.296824

[3] Chai NPM Library [n.d.]. https://www.chaijs.com/. [Online; accessed March 16,
2021].

[4] ClickUp 2021. https://www.clickup.com. [Online; accessed December 14, 2020].
[5] ClickUp API 2021. https://clickup.com/api. [Online; accessed December 16,

2020].
[6] Conservis 2021. https://conservis.ag/. [Online; accessed March 16, 2021].
[7] Farmbrite 2021. https://www.farmbrite.com/. [Online; accessed March 16, 2021].
[8] Farmlogics 2021. https://farmlogics.com/home. [Online; accessed March 16,

2021].
[9] Granular 2021. https://granular.ag/. [Online; accessed March 16, 2021].
[10] Microsoft Dynamics 2021. https://dynamics.folio3.com/. [Online; accessed March

16, 2021].
[11] Mocha NPM Library 2021. https://mochajs.org/. [Online; accessed March 16,

2021].
[12] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system”. http:

//bitcoin.org/bitcoin.pdf.
[13] Servio Palacios. 2020. Auditable Computations on (Un)Encrypted Graph-

Structured Data. Ph.D. Dissertation. Purdue University. https://doi.org/10.
25394/PGS.12721169.v1 https://hammer.purdue.edu/articles/thesis/Auditable_
Computations_on_Un_Encrypted_Graph-Structured_Data/12721169.

[14] Servio Palacios, Aaron Ault, James Krogmeier, and Bharat Bhargava. Forthcom-
ing. AGAPECert: An Auditable, Generalized, Automated, and Privacy-Enabling
Certification Framework with Oblivious Smart Contracts. (Forthcoming). Sub-
mitted.

[15] Twilio 2021. SendGrid Inbound Parse. https://sendgrid.com/docs/for-developers/
parsing-email/setting-up-the-inbound-parse-webhook/. [Online; accessed Janu-
ary 10, 2021].

[16] Twilio Functions 2021. https://www.twilio.com/docs/runtime/functions. [Online;
accessed December 20, 2020].

https://serviopalacios.medium.com/farm-management-systems-2131f87c8c19
https://arxiv.org/abs/1805.08541
http://dl.acm.org/citation.cfm?id=296806.296824
https://www.chaijs.com/
https://www.clickup.com
https://clickup.com/api
https://conservis.ag/
https://www.farmbrite.com/
https://farmlogics.com/home
https://granular.ag/
https://dynamics.folio3.com/
https://mochajs.org/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.25394/PGS.12721169.v1
https://doi.org/10.25394/PGS.12721169.v1
https://hammer.purdue.edu/articles/thesis/Auditable_Computations_on_Un_Encrypted_Graph-Structured_Data/12721169
https://hammer.purdue.edu/articles/thesis/Auditable_Computations_on_Un_Encrypted_Graph-Structured_Data/12721169
https://sendgrid.com/docs/for-developers/parsing-email/setting-up-the-inbound-parse-webhook/
https://sendgrid.com/docs/for-developers/parsing-email/setting-up-the-inbound-parse-webhook/
https://www.twilio.com/docs/runtime/functions

	Abstract
	1 Introduction
	1.1 Problem Definition
	1.2 Overview of technical approach
	1.3 Contributions

	2 Technical Background
	2.1 Serverless Computing
	2.2 Blockchain technologies
	2.3 Oblivious Smart Contracts

	3 Method: System Model
	3.1 Architecture

	4 Use cases
	4.1 Clearly communicating work and job status from the office to the field and back
	4.2 Orchestrating internal and external business partners, using various systems, to execute nutrient, irrigation, and pest management jobs

	5 Prototype implementation
	5.1 Parsing module
	5.2 Task Management module
	5.3 Chatbot engine

	6 Evaluation
	6.1 Experiment setup
	6.2 Task Management Serverless Function Performance
	6.3 Application Records - Task Creation Performance
	6.4 Chatbot Serverless Function Performance

	7 Related Work
	7.1 Farm Management Systems
	7.2 Granular
	7.3 Conservis

	8 Conclusion
	References

