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ABSTRACT
Deep Reinforcement Learning (RL) suffer from catastrophic for-
getting due to being agnostic to the timescale of changes in the
distribution of experiences. Although, RL algorithms are guaran-
teed to converge to optimal policies in Markov decision processes,
this only holds in the presence of static environments. However,
this assumption is very restrictive. In many real world problems
like ridesharing, traffic control, etc., we are dealing with highly
dynamic environments, where RL methods yield only sub-optimal
decisions. In this paper, we introduce an adaptive model-free deep
reinforcement approach that can recognize diurnal patterns in the
ridesharing environment. To achieve this, we (1) adopt a change
point detection algorithm to detect the changes in the distribution
of experiences, then (2) we develop a Deep Q Network (DQN) agent
that is capable of recognizing diurnal patterns and making informed
dispatching decisions according to the changes in the underlying
environment. Based on the demand, our DQN approach re-balances
idle vehicles by dispatching them to the areas of anticipated high
demand using Deep Reinforcement Learning. This approach can be
adopted in various domains through tuning the RL agent’s objective
function, where it will still capture the changes in the correspond-
ing underlying environment. Our framework is validated using the
New York City Taxi public dataset. Experimental results show the
effectiveness of our approach in real-time and large scale settings.

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Computing methodologies→Multi-agent planning.
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1 INTRODUCTION
In Q learning, there is a tight coupling between the learning dy-
namics (probabilty of choosing an action) and underlying execution
policy (the effective rate of upating the Q value associated with that
action). This coupling can cause performance degradation in dy-
namic noisy environments [1]. As the RL agent continues to build
on its experiences in order to learn increasingly complex tasks,
it should be able to quickly adapt while maintaining its acquired
knowledge. However, once the i.i.d assumption is violated, artificial
neural networks have been shown to suffer from catastophic for-
geting [4]. In literature, most approaches that address catastrophic
forgetting focus on sequential learning of distinct tasks, where they
rely on the awareness of task boundaries [7], This is not practical
because in many situations the data distribution evolve gradually
over time during training, and thus can not be discretized into
separate tasks. We address this problem in the ride-sharing envi-
ronemnt, where the data distribution can change at multiple and
unpredictable timescales while the training the agent to learn one
single task (i.e, making dispatching decisions). This can arise due
to the fact that (i) states are correlated in time, (ii) the dynamics of
the agent’s environment are non-stationary [3].

Thus, a robust framework is needed to identify various diurnal
patterns and recognize the changes in the underlying environmnent,
when the environment dynamics or rewards change with time, and
thus quickly adapt its policy to maximize the long-term cumulative
rewards collected and ensure efficient system operation as well.
This paper utilizes the dispatch of idle vehicles using a Deep Q-
learning (DQN) framework as in [2], and we add the profit term in
the reward function so that the output expected discounted rewards
(Q-values) associated with each action, becomes a good reflection
of the expected earnings gained from perfroming this action. We
identify the following as our major contributions:
• Wepropose amodel-free RL algorithm for handling non-stationary
environments, where we adapt Deep Q-learning (QL) to learn
optimal policies for different environment models. This approach
is built on top of a distributed model-free approach for matching
and dispatching vehicles in large-scale systems, DeepPool [2].

• We adopt a change point algorithm to detect the changes in data
distribution, and thus identify different diurnal patterns within
the day. This model utilizes data samples collected during training
and it leverges a novel detection algorithm [8].

• Using results of change detection, the RL agent switches between
models, and estimates policy for the new model or improves the
policy learnt, if the model had been previously experienced. In
this manner, our method avoids catastrophic forgetting [4].

• Through experiments using real-word dataset of New York City’s
taxi trip records [5] (15 million trips), we simulate the ride-
sharing system. We show that the optimization problem of our
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novel AdaPool framework is formulated such that it enhances
the overall accepatance rate, increases the profit margins of the
fleet, minimizes the extra travel distance and the average idle
time, when compared to non-adaptive RL approaches.

2 METHODOLOGY
We consider the scenario where the environment changes between
models 1, 2, ...., 𝑛 dynamically. The implication of the non-stationary
environment is this: when the agent exercises a control 𝑎𝑡 at time
𝑡 , the next state 𝑠𝑡+1 as well as the reward 𝑟𝑡 are functions of
the active environment model dynamics. In our approach, we as-
sume the knowledge of the pattern of change in the environemnt
models𝑀1, 𝑀2, ....𝑀𝑛 . However, neither the context information of
each model nor the change points 𝑇1,𝑇2, ..., etc., when these model
changes occur, are known to the RL agent. In this case, the agent can
collect experience tuples while simultaneously following a model-
free learning algorithm to learn an approximately optimal policy.
Instead of assuming any specific structure, our model-free approach
learns the Q-values dynamically using convolutional neural net-
works. Our method works in tandem with a change point detection
algorithm, to get information about the changes in the environemnt.
Then, it updates Q-values of the relevant model whenever a change
is detected and does not attempt to estimate the transition and
reward functions for the new model. Additionally, if the method
finds that samples are obtained from a previously observed model,
it updates the Q values corresponding to that model. Thus, in this
manner, the information which was learnt and stored earlier (in
the form of Q-values) is not lost.

The learning begins by obtaining experience tuples 𝐸𝑡 according
to the dynamics and reward function of current active model𝑀𝜃𝑐 .
The state and reward obtained are stored as experience tuples, since
model information is not known. The samples can be analyzed for
context changes in batch mode or online mode. If a change gets de-
tected, then the counter 𝑐 is incremented, signalling that the agent
believes that context has changed. We adapt the online parametric
Dirichlet changepoint (ODCP) detection algorithm proposed in [8]
for data consisting of experience tuples. This algorithm transforms
any discrete or continuous data into compositional data and utilizes
Dirichlet parameter likelihood testing to detect change points. Mul-
tiple changepoints are detected by performing a sequence of single
changepoint detections. Although ODCP requires the multivariate
data to be i.i.d samples from a distribution. The justification in [6]
explains the utilization of ODCP in the Markovian setting, where
the data obtained does not consist of independent samples.

At every time step 𝑡 , the DQN agent obtains a representation
for the environment, 𝑠𝑡,𝑛 , and calculates a reward 𝑟𝑡 associated
with each dispatch-to location in the action space 𝑎𝑡,𝑛 according
to the dynamics and reward function of current active model𝑀𝜃𝑐 .
Based on this information, the agent takes an action that directs the
vehicle to different dispatch zone where the expected discounted
future reward is maximized. In our algorithm, we define the reward
𝑟𝑘 as a weighted sum of different performance components that
reflect the objectives of our DQN agent. The reward will be learnt
from the environment for individual vehicles and then leveraged
by the agnet/optimizer to optimize its decisions.

We define the overall objectives of the dispatcher, where our
dispatch policy aims to (1) minimize the supply-demand mismatch:
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Figure 1: Evaluation Metrices for AdaPool and the baseline

(diff𝑡 ), (2) minimize the dispatch time: 𝑇𝐷
𝑡 (i.e., the expected travel

time of vehicle𝑉𝑗 to go zone𝑚 at time step 𝑡 ), (3) minimize the extra
travel time a vehicle takes for car-pooling compared to serving one
customer: Δ𝑡 , (4) maximize the fleet profits 𝑃𝑡 , and (5) minimize
the number of utilized vehicles: 𝑒𝑡 . We capture this by minimizing
the number of vehicles that become active from being inactive at
time step 𝑡 . The DQN overall reward function is represented as a
weighted sum of these terms for individual agents/vehicles:

𝑟𝑡,𝑛 = 𝑟 (𝑠𝑡,𝑛, 𝑎𝑡,𝑛) = 𝛽1𝐶𝑡,𝑛 + 𝛽2𝑇
𝐷
𝑡,𝑛 + 𝛽3𝑇

𝐸
𝑡,𝑛 + 𝛽4P𝑡,𝑛+

𝛽5 [max(𝑒𝑡,𝑛 − 𝑒𝑡−1,𝑛, 0)]
(1)

3 EXPERIMENTAL RESULTS
Our simulator is created based on real public dataset of taxi trips
in Manhattan, New York city [5]. We consider the data of June
2016 for training, and one week from July 2016 for evaluations. We
trained our DQN neural networks for 10000 epochs and used the
most recent 5000 experiences as a replay memory. We compare
our adaptive RL approach to a baseline non-adaptive approach that
only learns one model throughout the training.

Figure 1 shows that AdaPool improves the overall acceptance
and occupancy rates. Over a week long of simulation, AdaPool
consistently shows a significantly larger number of utilized vehicles
(≈ 800 extra vehicles) in the fleet as well as an approx. 10 % higher
acceptance rate for ride requests. This comes at the cost of only a
slight increase in the average travel distance of the fleet. This can be
explained by the additional number of requests served, which will
-in turn- increase the average profits of the fleet as well. This is a
positive outcome that points towards the viability of our proposed
approach to learn diurnal patterns and adapt in a timely manner.
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