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Abstract—Satellite-ground integrated computation where ma-
chine learning models trained on satellites and aggregated on
Earth offers novel opportunities for federated learning (FL).
While satellites in space provide isolated computing environ-
ments, satellite-terrestrial (S-T) communication links are exposed
to spoofing and hijacking attacks, making transmitted models
vulnerable to poisoning attacks. To address this paradigm-
specific threat, we introduce STARFed, a novel framework that
enhances robustness of satellite-based FL by leveraging S-T link
characteristics during model transmission. It comprises three
components: (1) crowdsourcing-based link authentication, (2)
hybrid poison model detection based on both S-T link and model
characteristics, and (3) reputation-based model filtering against
adaptive adversaries. Our link-aware defense is of independent
interest and can be combined with various FL robust aggregation
schemes. We evaluate the framework’s resilience through com-
prehensive experiments spanning five dataset-model settings and
five attacks, including both model and data poisoning attacks. The
framework’s performance is compared with six state-of-the-art
robust FL aggregation schemes in scenarios with varying degrees
of non-IID data distribution, client dropout, and adversarial
participation. STARFed demonstrates robust performance across
all test scenarios, standing as the only defense mechanism to
maintain effectiveness throughout. In the most favorable case, it
achieves an increase in FL accuracy of 15.6% compared to the
best link-unaware aggregation scheme, with minimal overhead
introduced.

Index Terms—Federated learning, satellite-terrestrial inte-
grated computing, poisoning attacks, crowdsourcing, reputation
systems.

I. INTRODUCTION

Space-based computation is opening new frontiers in artifi-
cial intelligence. SpaceX’s recent Transporter 11 mission [I,
2], which deployed NVIDIA AI GPUs into space, demon-
strates the growing industry commitment to satellite-based Al
computing. The space environment offers unique advantages
for Al training: efficient cooling and continuous solar power
provide sustainable energy solutions, while satellites benefit
from enhanced security through their physical isolation and
controlled access points [3, 4]. Within this evolving space-
computation landscape, Federated Learning (FL) emerges as
an ideal paradigm where a ground-based coordinator orches-
trates the global model while leveraging satellites’ training
resources and environments for local training. This distributed
approach not only unleashes space-exclusive resources but
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also avoids difficulties in space-ground data sharing, includ-
ing privacy requirements [5], regulatory compliance [6], and
communication bandwidth limitations [7].

Traditional FL systems face long-concerned vulnerabilities
to poisoning attacks, where compromised clients inject poi-
soned data (during training) or models (during aggregation)
to undermine training. However, space-based FL exposes
new security challenges that demand rethinking of the con-
ventional threat models. Unlike many existing FL systems
involving clients such as commercial off-the-shelf (COTS)
mobile phones or IoT devices that can be easily controlled
or compromised by malicious users [8], satellites provide
naturally isolated, difficult-to-compromise training environ-
ments or trusted execution environments (TEEs) [3, 9]. First,
satellites are more difficult to physically access after being
launched into space, greatly increasing the attack threshold and
cost. Second, satellites used to train machine learning models
can provide a TEE through the deployment of specialized
security hardware [3], which is uncommon in COTS mobile
phones and IoT devices. Successful examples include the
deployment of security-critical applications on satellites such
as hardware security modules for root-of-trust storage [3],
blockchain consensus mechanisms [10], quantum key distri-
bution [11], and randomness generation [12], which are all
enabled by satellites’ physically isolated and tamper-resistant
nature.

Despite enhanced onboard training, satellite-terrestrial (S-
T) links remain the system’s Achilles’ heel, vulnerable to
spoofing and hijacking attacks [13, 14, 15] due to long
distances, varying signal strengths, and environmental inter-
ference. This inverted security paradigm, where endpoints
are more secure than communication channels, represents a
blind spot in current satellite-based FL research, necessitating
a shift in how we ensure FL security in space-ground sys-
tems. Motivated, we propose a novel resilient FL. framework
specifically designed for the unique characteristics of such
systems. Current research exhibits a critical gap that existing
satellite-based FL studies [16, 17, 18, 19, 20, 21] overlook
their security aspects, while conventional FL security mech-
anisms [22, 23, 24, 25, 26] fail to account for the unique
security challenges in space-ground systems.

To bridge this gap, we introduce STARFed: Satellite-
Terrestrial Authenticated Resilient Federated Learning, a novel
framework that leverages S-T link characteristics to authen-
ticate model transmissions. Our architecture as illustrated in
Figure 1 employs ground relays in a dual role: forwarding
models between satellites and the server while collecting S-
T link status information to validate transmission authen-



ticity. This topology is supported from both standard and
practical perspectives. According to 3GPP 5G NR Non-
Terrestrial Networks (NTN) [27, 28], ground relays should
connect the satellite payload to the terrestrial core (e.g., FL
aggregation server) via feeder links, and the satellite should
be able to switch among relays to ensure continuity. Mean-
while, the market of satellite-capable devices such as mobile
phones and IoT modules is growing: mainstream smartphones
and modules now support satellite connectivity (e.g., Apple
iPhone 14+ [29], AT&T/AST SpaceMobile 5G calls [30],
Starlink [31]/T-Mobile [32] direct-to-cell texting), while 3GPP
Rel-17 has standardized NB-IoT/eMTC over NTN for massive
IoT [33]. Such a topology guarantees participation under
intermittent links [34, 35] and achieves ubiquitous connectivity
through dense relay deployments [36, 37, 38, 39], as already
demonstrated in operational space networks. However, S-T
link status reported by relays does not come free, it introduces
a new security consideration: potentially malicious ground
relays may report falsified link information. This challenge is
further compounded by space-ground communication issues,
including client dropout due to unstable S-T links [7] and non-
IID data distribution [40], undermining the overall training
robustness.

STARFed addresses these challenges through three inte-
grated components: 1) A crowdsourcing-based link authenti-
cation system that validates S-T link legitimacy by collecting
and cross-validating physical link characteristics reported by
multiple ground relays; 2) A hybrid poison model detec-
tion approach that combines validated link information with
model behavior analysis to identify poisoned models; 3) A
reputation-based model filter that tracks relay trustworthiness
over time, enforcing adaptive adversaries to contribute more
benign models than poisoned ones to maintain positive repu-
tations. Through the coordinated operation of its components,
STARFed achieves robust model aggregation under untrusted
S-T links and ground relays. Moreover, we believe integrating
link status awareness is independently useful for otherwise
link-unaware FL robust aggregation frameworks. It provides
an additional source for determining model qualifications or
weights under various aggregation schemes. We also noticed
that, regardless of isolation, the satellites can still be compro-
mised. Our experiments show that even when both satellites
and S-T links are compromised by colluding adversaries,
STARFed tolerates a corruption ratio of at least 60%.

To the best of our knowledge, our work proposes the first
comprehensive approach to secure FL that consider the unique
threat model of space-ground systems while maintaining ro-
bustness against client dropouts and non-IID data challenges.
Our main contributions include:

¢ A novel framework, STARFed, that leverages unreliable
S-T link information for a robust satellite-based FL
aggregation scheme, exploring how model transmission
channel characteristics can enhance FL training robust-
ness.

o Security analysis for the robustness of the hybrid poison
model detector and reputation-based filter, as well as the
integrated analysis for the framework’s overall sensitivity
to adaptive adversaries and unpredictable S-T link con-

Satellites
N w‘iﬁ%

% Aggregation
A
1

N 2
Offload X A &8
Data &
Remote Area N 0 v
o= 2 ~<  Ground %’3 S os Server
(=2 & > Relays G .‘@ __
So -~ l” - A 4 A t+1 . w

Terrestrial Network

Fig. 1: System architecture of STARFed.

ditions.

o Comprehensive experimental evaluation across five
dataset-model combinations, five attack types, varying
degrees of non-IID data distribution, and diverse dropout
and adversarial scenarios, demonstrating STARFed’s su-
perior robustness compared to state-of-the-art robust FL.
aggregation schemes across all settings.

The rest of the paper is organized as follows: We begin
with a review of related works in Section II. Section III
introduces the preliminaries of FL and its poisoning attacks.
Section IV outlines the system and threat models, followed
by the problem definition. In Section V, we provide an in-
depth exploration of STARFed’s key components. Section VI
presents the theoretical analysis of STARFed’s robustness and
the evaluation results are demonstrated in Section VII. Finally,
we conclude the paper with Section VIII.

II. RELATED WORK

FL security has been studied since its introduction
by McMahan et al. [41], with early works such as
[26] and [25] providing robustness under minimal as-
sumptions. Later defenses addressed practical threats with
more relaxed assumptions, including FLTrust [24] for trust-
bootstrapped aggregation, BaFFLe [23] for client-side cross-
validation, FLAME [22] for hybrid defense solutions, and FL-
Guardian [42] for layer-wise backdoor mitigation. In parallel,
FL has recently been applied in satellite contexts, with works
such as [7], [17], and [19] optimizing bandwidth efficiency,
scalability, and satellite—ground coordination to achieve faster
model convergence.

Meanwhile, the security of satellite communications has
long been a concern, particularly regarding spoofing attacks.
Studies such as [13], [14], and [15] have revealed systemic
vulnerabilities in satellite mega-constellations as well as con-
crete overshadowing attacks against downlinks. FL emerges
as a natural solution to safeguard such tasks, as demonstrated
in [43] and [44], which apply FL to various satellite-involved
tasks to enhance security and safety.

However, the security of FL itself in satellite contexts
has received little attention. Our work addresses this gap
by designing defenses that ensure practical robustness under
vulnerable satellite—terrestrial links. The most relevant work
is SFL-LEO [45], which protects the FL training process on
satellite networks. However, it is limited to a topology where
low-Earth orbit (LEO) satellites act as servers aggregating
models from Internet of Remote Things (IoRT) clients, and it



TABLE I: Our work compared with previous works in aspects of FL and satellite security.

Name Topic Novelty in Sat. Net. / FL Security Novelty in Sat-FL Application
FLGuardian [42] FL Security Evaluates the model by layer-wise clustering, assigns | N/A
weights for each layer, then averages the weighted
models.
FLAME [22] FL Security Defends against backdoor attacks based on cluster- | N/A
ing, clipping, and adding noise.
FLTrust [24] FL Security Assumes the server has bootstrapped clean data and | N/A
can train a benign model for reference.
BaFFLe [23] FL Security Lets clients cross-validate each other’s models and | N/A
server-aggregate them according to feedback.
Med/Trimmed- FL Security Aggregates the median of coordinates as the out- | N/A
mean [25] put model (Med). / Excluding outliers by trimming
extreme values and then computing the average
(Trimmed-mean).
Krum [26] FL Security Takes the model with minimal distance from its | Not Applicable (N/A)
neighbors among all models as the global model for
the next iteration.
SatelliteFL[7] Sat-FL App. N/A Designs scheduling and bandwidth allocation algo-
rithms for faster satellite-based FL convergence.
Matthiesen et al. [17] | Sat-FL App. N/A Summarizes FL in satellite constellations based on
communication patterns among satellites, between
satellites and ground stations, and constellation
types.
FedSpace[19] Sat-FL App. N/A Designs an FL aggregation scheme based on com-

munication patterns between satellites and ground
stations.

satellite networks against cyberattacks.

Semi-FedDA [44] FL for Sat. Sec. | Applies FL on LEO satellites and ground servers for | N/A
timely building-damage assessments.

SatOver[13] Sat. Net. Sec. Reveals a man-in-the-middle attack on satel- | N/A
lite—ground communication leveraging LTE/5G stack
vulnerabilities.

Firefly[14] Sat. Net. Sec. Demonstrates a spoofing attack on satellite—ground | N/A
communication, where an adversary modifies down-
link images in Earth observation tasks.

Salkield et al. [15] Sat. Net. Sec. Showcases a low-cost spoofing attack on satellite | N/A
downlinks.

DFL-IDS [43] FL for Sat. Sec. | Develops an FL-based detection method to protect | N/A

SFL-LEO [45]

Sec. for FL on
Sat. Net.

Proposes a homomorphic encryption-based FL ag-
gregation scheme to achieve private model aggrega-
tion for IoRT at satellites.

Protects the privacy of IoRT devices whose models
are aggregated at LEO satellites.

STARFed (ours)

Sec. for FL on
Sat. Net.

Develops a link-status-aware, robust aggregation
framework for the ground server to aggregate models

Enhances the robustness of satellite—ground FL ap-
plications.

from satellites.

focuses on the privacy of IoRT models rather than aggregation
robustness. A comparison between prior works and ours across
different aspects of federated learning and satellite security is
summarized in Table I, with related topics surveyed in the
remainder of this section.

A. Ground Assisted Satellite FL

The emergence of satellite-based computation has sparked
significant interest in ground-assisted satellite FL, driven by
satellites’ ability to provide global connectivity and unique
data collection capabilities. Research in this domain broadly
falls into two categories: systems where satellites act as pri-
mary data collectors and training nodes [7, 17, 19, 20, 40], and
those where satellites serve as relay nodes for data collected
by remote ground devices [16, 18, 21].

One of the challenges that has been extensively studied
in the first category is the resource utilization of satellite-
ground links. Yang et al. [7] addressed bandwidth limitations
and intermittent connectivity through progressive block-wise
quantization, while So et al. [19] proposed dynamic scheduling
mechanisms to balance satellite idleness and model staleness.

Matthiesen et al. [17] provided a comprehensive analysis of
satellite-ground communication patterns, demonstrating supe-
rior performance of inter-satellite links in maintaining near-
persistent connections compared to direct ground communi-
cation. Our work also falls into this category, where satellites
act as primary data generators. For instance, using onboard
cameras to capture Earth images for land change [46], air
quality monitoring [47], or maritime surveillance [48]. In the
second category, where satellites collect data from ground
sensors, our framework still applies, as satellites can train
FL models on collected data and return them for aggregation.
However, this setting is less aligned with the FL principle that
data should remain at its source. Addressing how to privately
offload ground data to satellites is beyond our scope.

System heterogeneity is the main concern in the second
category. Razmi et al. [40] developed frameworks addressing
both data non-IID and connection heterogeneity, later extend-
ing their work to leverage intra-orbit inter-satellite links for im-
proved training robustness [20]. For remote area applications,
several works [16, 18, 21] explored satellites as computational
relays for resource-constrained ground devices, with Han et al.



[16] specifically focusing on accelerating FL. convergence in
such scenarios.

Despite these advances in addressing communication and
heterogeneity challenges, how security defects of S-T links
could affect FL robustness remains unexplored. This oversight
is particularly critical as these links represent the most exposed
and vulnerable component of space-ground FL systems. A
compromised communication link can undermine the entire FL
process, highlighting the importance of link security alongside
other system optimizations.

B. ML for Satellite-based Task Security

Beyond optimizing FL for satellite communication, machine
learning has also been applied to satellite tasks. Salim et al.
[43] used FL to detect threats in harsh satellite environments,
while [44] employed federated and semi-supervised techniques
for privacy-preserving Earth observation. These works focus
on securing satellite tasks, not on ML/FL security itself.
The most relevant work to ours is SFL-LEO [45], which
utilizes homomorphic encryption to safeguard the privacy of
IoRT devices in LEO satellite networks. However, it assumes
satellites aggregate models from IoRT devices and emphasizes
privacy preservation rather than aggregation robustness.

C. Satellite Spoofing Attacks

S-T links suffer from spoofing and hijacking attacks stem-
ming from physical constraints such as long transmission dis-
tances and predictable signal paths [49, 50]. While historically
focused on Global Navigation Satellite System (GNSS) signal
protection through signal processing [51] and more recent deep
learning approaches [52], the threat landscape has expanded
with the advent of software-defined radio (SDR) technology
and increasingly complex S-T infrastructures.

Recent research has demonstrated the increasing accessi-
bility and sophistication of satellite communication attacks.
Li et al. [13] revealed how SDR-based false satellites can
execute man-in-the-middle attacks against satellite networks
and ground devices by exploiting protocol vulnerabilities. In
the context of earth observation systems, Salkield et al. [14]
demonstrated how low-cost radio equipment (under $1000)
could manipulate satellite data downlinks to fabricate or mask
environmental events in NASA’s Fire Information for Re-
source Management System (FIRMS) [53]. Salkield et al. [15]
showed that effective overshadowing attacks could be executed
at distances up to lkm using modest hardware (~$2000),
affecting both legacy and modern satellite systems.

In the context of space-ground machine learning, these secu-
rity vulnerabilities pose equivalent risks, where the adversary
compromising S-T links could not only tamper with benign
models but also inject poisoned models.

D. Poisoning Defenses for FL

Existing defenses against FL poisoning attacks can be
broadly categorized into three approaches:
Clustering-based Aggregation: These methods use clustering
to separate benign models from poisoned ones. FLAME [22]

applies HDBSCAN [54] clustering with clipping and noise
addition, while Krum [26] selects as the global model the one
closest to a specified number of neighbors. Li et al. [55] re-
cently used Euclidean distance to detect poisoned models and
clipping to improve aggregation robustness as in [22], dubbed
E&C method. Beyond that, the authors presented a privacy-
preserving E&C to protect client privacy while ensuring the
aggregation robustness. The main drawback of the clustering-
based approach is the risk of including poisoned models in
aggregation, especially when adversarial clients outnumber the
benign clients — potentially leading to an aggregated model
dominated by poisoned updates.

Statistical Aggregation: Building upon the simple parame-
ter averaging of FedAvg [41], Trimmed-Mean [25] excludes
extreme values before averaging, while Median [25] uses
coordinate-wise median for aggregation. FLPurifier [56] de-
couples the client’s model into an encoder and a classifier.
The encoders from clients are averaged while the classifiers are
weighted averaged based on their deviation degree from the av-
erage classifier of all clients. More recently, FLGuardian [57]
performs poisoned model filtering by weighting different
layers of a model, accounting for the fact that poisoning at
different depths has varying impacts on model performance.
However, these center-seeking methods are less effective for
FL on non-IID data, where the unbalanced data results in the
models not having a representative central reference.
Trust-based Validation: These approaches use either trusted
data or client feedback for validation. FLTrust [24] relies on a
clean root dataset, which is difficult to obtain in satellite-based
FL due to bandwidth limitations and the satellite’s diverse
geographical coverage. BaFFLe [23]’s client-based validation
fails with non-IID data since clients cannot effectively validate
models trained on different data distributions.

Two key limitations of existing aggregations are their
sensitivity to non-IID data (common in satellite-based FL
as discussed in Section II-A) and robustness consistency
against diverse attacks. Most defenses target specific attacks
— Krum [26] focuses on Gaussian Byzantine attacks, while
FLAME [22] and BaFFLe [23] address backdoor attacks. As
shown in Section VII-B, no existing aggregation scheme is
robust under all tested attacks with non-IID data.

III. PRELIMINARIES
A. Federated Learning

Federated Learning (FL) is a distributed machine learning
paradigm that enables multiple clients to collaboratively train
a shared model without exposing their local training data. In
each training epoch ¢ € {1,..., T}, each selected client i €
{1,...,n} trains a local model w; based on the previous global
model G;_ using its local data D;, and sends it to the server
for aggregation into a new global model G;.

Several aggregation mechanisms have been proposed, with
FedAvg being the most widely used. In FedAvg, the global
model is updated by weighted averaging of local models: Gy =
Yoy si X %t where s; = ||Ds]| and s = Y_" | s;. However,
malicious clients may falsify their dataset sizes to amplify the
impact of their updates. Therefore, equal weights (s; = %)



are more commonly employed in practice, resulting in G; =
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B. Poisoning Attacks Against FL

Poisoning attacks aim to manipulate the training process
to corrupt the resulting model. In FL, these attacks can be
categorized into two types:

Data Poisoning: The adversary manipulates the training data
of compromised clients by modifying, adding, or removing
examples. For instance, in label-flipping attacks [58], labels
of training examples are changed while keeping their features
unchanged.

Model Poisoning: Rather than manipulating training data,
the adversary directly modifies the parameters of the updated
model and scales it up to maximize attack impact or down to
evade detection.

IV. PROBLEM STATEMENT

In this section, we present our system model, which intro-
duces the role of each entity involved in satellite-based FL.
We then describe the threat model. Finally, we introduce the
problem definition and our design goals.

A. System Model

Our system model, illustrated in Figure 1, comprises three
components: satellites, ground relays, and a centralized server.
This architecture facilitates distributed learning across satel-
lites via flexible ground access points.

The server initiates the training process by distributing a
global model G, to satellites through ground relays for a
specific task. Satellites, acting as FL clients, train models
using data locally observed or collected from sensors at
remote terrestrial areas. Upon completion, they return updated
models {w!}X | to the server via ground relays, which may
be different relays from those used for initial distribution.
The server then aggregates these updates into a new global
model G for the next training epoch, continuing until the
termination criteria are met. Both server-relay and satellite-
terrestrial communications occur through unicast channels.

Ground relays are terrestrial devices ranging from compact
satellite phones to large ground stations, establishing direct
satellite links. In addition to model forwarding, they extract
S-T link measurements /! during model reception and relay
this information to the server alongside the models.

We also consider client dropout due to the limited commu-
nication window and unstable S-T links. For a total number of
N satellites, K (K < N) clients are involved in the training
in each epoch t.

B. Threat Model

Among entities, we assume that satellites are honest and
secure due to their isolation and limited physical accessibility
as discussed in Section I. Additionally, we assume the central-
ized server is secure since it can be protected with dedicated
security resources as a critical single infrastructure point.

The vulnerability lies in the S-T links for model transmis-
sion, which are susceptible to over-the-air (OTA) Man-in-the-
Middle (MitM) adversaries. These adversaries possess varying
capabilities and can launch different types of poisoning attacks
against the FL training process. We classify adversaries based
on their radio capabilities and the degree of S-T link control
they can achieve:

Channel Interference Adversary: This represents the most
basic form of attack, where an OTA MitM can interfere
with the downlink model transmission. The adversary injects
noise into the updated models through parameter-flipping (PF)
attacks [59], replacing a fraction of model parameters with
random values. This attack requires no knowledge about the
model architecture or training data, aligning with the limited
capabilities of channel interference adversaries.

Eavesdrop and Overshadow Adversary: This more sophis-
ticated adversary can eavesdrop on the uplink S-T channel to
obtain the global model GG; and overshadow the downlink S-
T channel during model updates. The adversary launches the
Model Poisoning Attack based on Fake client (MPAF) [60]
that generates a poisoned model w!’ by subtracting a Gaussian
noise from the global model and then applying a factor
A to enlarge or reduce the poisoned model’s effectiveness.
The flexibility in choosing A makes MPAF attacks more
challenging to defend and mitigate.

Task-Aware Adversary: A task-aware adversary combines
the radio capabilities of eavesdropping and overshadowing
adversaries with knowledge of the FL task and training
data structure. Specifically, under this model, we assume an
adversary can eavesdrop on uplink channels during model
distribution, compromise confidentiality, and infer the task or
data type by launching membership inference attacks [61] or
data reconstruction attacks [62] against the models. Leveraging
this knowledge, the adversary can forge poisoned data to
retrain the intercepted model and inject it by hijacking the
downlink channel [14, 15] when the satellite transmits its
honestly trained models. We consider three types of data
poisoning attacks:

o Untargeted label-flipping (ULF) attack [58]: For a clas-
sification task with C' classes, the adversary transforms
labels y to (y mod C') + 1, aiming to degrade the overall
model performance.

o Targeted label-flipping (TLF) attack [58]: The adversary
maps all training labels to a single target class y;, forcing
the poisoned model to misclassify any input as the chosen
class.

o Backdoor attack [63]: The adversary injects a trigger
pattern into training samples z to create poisoned samples
while changing their labels to a target class ;. This
creates a hidden backdoor in which the poisoned model
classifies data with the trigger as y, while behaving
normally on clean data.

Data poisoning attacks are harder to detect than model poi-
soning attacks as they produce poisoned models that more
closely resemble benign ones. However, they require a longer
attack window for training on poisoned data. We note that data
poisoning attacks cannot be launched by overshadowing the
uplink channel, as the brief transmission window precludes



TABLE II: Poisoning attacks according to radio capabilities.
Abbreviations: Atk. - Attack, M/DP - Model/Data Poisoning,
UL - Uplink, DL - Downlink, PD - Poisoned Data.

Adversary Capability Attack Atk. Type Atk. Pattern
Channel Interference PF MP Interfere UL/DL
Eavesdrop & Eavesdrop on UL;
Overshadow MPAF MP Overshadow DL
ULF Eavesdrop on UL;

Task-Aware TLF DP Train on PD;
Backdoor Overshadow DL

eavesdropping, training, and overshadowing within a single
communication cycle. Table II summarizes the OTA MitM
adversary capabilities and associated attacks.

Beyond OTA MitM adversaries, we consider that ground
relays may be malicious. A malicious relay can execute any of
the aforementioned poisoning attacks and can also fabricate S-
T link information sent to the server. Furthermore, we assume
relays are aware of the server’s model aggregation scheme
and can adapt their attack strategies accordingly. The unsecure
communication paths are highlighted in red in Figure 1. Note
that adversaries can only corrupt benign models but cannot
legitimize poisoned ones.

C. Problem Definition and Design Goals

Given our system and threat model, we formally define the
problem as follows: Consider an S-T FL system where K out
of N benign satellite clients exchange models with the server
via K out of H ground relays in each epoch. Among these
relays, M are malicious and report forged link information,
while P models are poisoned by either OTA MitM adversaries
or malicious relays.

In each training epoch t, the server receives a set of K
model-link information pairs:

Lo = {(wi, )}, Q)

where w! represents the model update forwarded by relay i

and [! denotes the corresponding S-T link information. Within
this set £;, B pairs contain benign models and legitimate
link information, while O pairs contain poisoned models
and forged link information. The relationship between these
parameters is illustrated by an example with K = 10 in
Figure 2, where legitimate information is denoted in green
and malicious information is in red.

Based on the received untrusted tuple set £; at epoch ¢, our
work aims to design a framework that achieves:

o Robustness: The training process should maintain re-
silience against all attacks summarized in Table II.

e Accuracy: The final global model G after T training
epochs should achieve higher accuracy compared to ex-
isting defense mechanisms.

e Privacy: The link information [} reported by relay i
should preserve relay privacy by being less identifiable
than the corresponding model update w!. Formally, we
evaluate it with the distinctiveness of the link information
and models, calculated as the mean pairwise Euclidean
distance between the normalized samples.

[(W:, l’)’ (Wz, lz)y (w»” 13)’ (W4, l")’ (w~" l’)y
(w”’ lﬁ)) (w’) l’)’ (w“” l")’ (w"’ l’), (W"” l”)]

Wi (li) /Wi (li) — legitimate / poisoned (forged) model update (link info.)
B: (Wi, s M: (%, [y; P: Wi, 9; 0: Wi, [

Fig. 2: Tllustration of K = 10 model-link pairs with adversarial
patterns: benign pairs (B = 4), poisoned models (P = 4),
forged link information (M = 4), and both poisoned models
and forged link information (O = 2).

o Efficiency: The framework should introduce minimal
communication overhead.

V. STARFED DESIGN

Algorithm 1 outlines STARFed’s procedure. In each epoch,
the server receives model-link information pairs from relays
(line 5) and authenticates link information (line 7), which is
detailed in Section V-A. Section V-B presents how authenti-
cated link information is leveraged for poison model detection
using the hybrid link-model characteristic clustering approach
(line 8). The server uses the reputation-based progressive
filter, described in Section V-C, to trace relays’ historical
behaviors and ensures aggregation robustness against adaptive
adversaries (lines 9-10). Finally, Section V-D describes how
the models that pass both filters are aggregated into the global
model (line 11).

Algorithm 1 STARFED

1: Input: H, Ry, Gy, T > H is the number of ground
relays; R are relays’ initial reputations; G is the initial
global model; T is the number of training epochs

2: Output: Ry, G > Ry are relays’ reputations after T’
epochs; Gr is the global model after 7" epochs

3: for each training epoch ¢ in [1,7] do

for eachrelay 7 in [1, K] do > K = (1—p)H is the
number of active relays, where p is the dropout portion

5: L:—1 < RELAYREPORT(G;_1) © Server dis-
tributes G;_; and receives model-link information pairs
defined in (1)

6: end for
Z;-1 <+ CROWDLINKAUTH({™',... ltY) b
Ty = {ind!" '}, where ind! ™! is an S-T link status
indicator
8: W& < LINKCLUSTERFILTER Wi—1,Z;—1) >

Wi—1 = {wl '}, are all received models; WY ' are
models passed link-clustering filter

9 Wil < REPPROGFILTER(W;_1,Z;—1,Rt—1) >
Wﬁ{l are models passed reputation-based progressive

filter

10: R < UPDATEREPUTATION(R;—_1,Z;—1, W5 ')
1. Gy« AGGRAGATE(WS ', Wi )
12: end for




A. Crowdsourced Link Authentication

The link information is defined as a tuple:
l=(clean_flag,DP(link_samples)) 2)

where clean_flag € {0,1} represents the relay’s local
assessment of link legitimacy (1 for clean, O for spoofed),
link_samples contains raw physical link measurements,
and DP(-) applies differential privacy to the measurements.

The server authenticates links through crowdsourced spoof-
ing detection. Specifically, each relay contributes a data point
for the spoofing detector where DP(link_samples) is
the data and clean_flag is the locally assessed label.
STARFed does not specify the spoofing detection method used
by ground relays since recent advances in this task [64, 65]
can be implemented with sufficient precision while remaining
lightweight. In these works, pretrained ML models are adapted
for spoofing detection by modifying their final layers to adapt
satellite I/O features. This approach requires no training data,
is computationally lightweight, and achieves high accuracy
(0.8-1) by aggregating packet-level predictions into reliable
stream-level decisions.

At the server side, STARFed adopts an SVM-based classi-
fier [66] that is continuously trained on link samples received
over epochs through an online learning scheme. The online
learning procedure is presented in Algorithm 2. As shown in
line 5 of the algorithm, the server uses the classifier to predict
spoofing status of link samples. Since the prediction results
may be affected by the relays’ dishonesty or environmental
variants, the server’s prediction may not agree with the relay’s
reported label. The online learning is a conservative approach
where the classifier is only updated based on consensus
predictions, as shown in lines 6 and 7. Besides, the server
computes a link indicator ind = <ieanflaghserver det
for each model update, where ind € {0,0.5, 1} indicates
agreement on spoofed (0) or clean (1) links, or disagreement
(0.5) between relay and server assessments.

For the link samples, existing works have shown that a broad
range of S-T link physical layer features such as Doppler
shifts [67, 68], the direction of arrival (DoA) [69, 70], and
signal quality monitoring (SQM) [71, 72] are effective for
spoofing detection in various scenarios. Thus, STARFed does
not specify features in link_samples. Generally, each
link_samples sequence is defined as: 1ink_samples =
{;}™,, where z; represents the feature vector of a single
sample and m denotes the sequence length.

To preserve relay privacy, we apply the Laplace mecha-
nism [73]:

DP(z;) = x; + Laplace(y, %) 3)
where p is the expectation of the Laplace distribution and
€ controls the privacy budget. The motivation of DP(:) is
to ensure that the link samples used by the framework do
not introduce more identifiable information compared with
the aggregation scheme that does not use the crowdsourced
link authentication. In short, we add randomness to the link
information sent to the server to achieve the privacy guarantee

Algorithm 2 CROWDLINKAUTH’s Online Learning Procedure

1: Input: M;, a, v © M, is the SVM-based classifier at
epoch t; « is the learning rate; v is the decay factor where

€(0,1)
2: Output: M;y; > My, is the classifier at epoch ¢ + 1
3: AM] + 0 b Initialize a temporary classifier
4: for [; in {I!}5, do > I; as defined in (2)
5: srv_det; < DETECT(M;, DP(link_samples;))
> srv_det; is server’s detection (0: spoofed, 1: clean)
: if srv_det; = clean_flag,; then
7: AM] <~ AM/+COMPUTEUPDATE(M,,l;,a) >
Leverage [; to update the classifier with «
end if
9: end for
100 Mypq < v- M+ (1 —7~)-AM] > Apply weighted

update

defined in Section IV-C. More detailed analysis is introduced
in Section VI-D.

B. Hybrid Link-Model Characteristic Clustering Filter

The hybrid link-model characteristic clustering filter (link-
clustering filter) integrates both model clustering analysis and
link indicator to detect poisoned updates. Following Nguyen
et al. [22], we employ pairwise cosine distances between
received models as the metric and cluster the models using
the HDBSCAN algorithm [54]. The cosine distance effectively
captures angular deviations between models while remaining
invariant to scaling attacks, where adversaries attempt to evade
detection by scaling poisoned models.

HDBSCAN dynamically determines cluster cardinality,
identifying the majority cluster (cluster_label = 0) and
marking divergent models as outliers (cluster_label =
-1). While effective for IID scenarios where benign models
are similar, this binary classification presents two limitations:
Non-IID Issue: In non-1ID settings, benign models inherently
exhibit greater variance due to data heterogeneity. HDB-
SCAN’s majority-based clustering identifies only the subset
of similar models as the majority cluster, while marking other
benign but diverse models as outliers. This degrades the FL
performance by excluding valid training contributions from
the global model updates. Majority Attack Vulnerability: More
threateningly, coordinated attacks can exploit this majority-
based clustering approach: When multiple adversaries align
their poisoned models toward a common malicious objective
(e.g., by uniformly flipping labels to a single target class
as in TLF attacks), these poisoned models are similar and
can outnumber the diverse benign models. Consequently, the
poisoned cluster is identified as the majority, allowing the
attack to successfully evade the defense.

To address these limitations, we first revise the binary
clustering results (i.e. majority vs. outliers) as a con-
tinuous cluster score c—-score = cluster_label -
outlier_score that maps model evaluations to (—1,0],
where outlier_score € [0,1) quantifies model isolation
relative to the distribution. This evaluation maintains the
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Fig. 3: Model separation results based on c-score and
ind.

majority cluster at 0 while distributing outliers across (0, —1),
enabling more nuanced filtering when combined with link
indicators.

Figure 3 illustrates the c—scores of the benign models (in
green) and models poisoned (in red and purple) by MPAF (3a)
and backdoor (3b) attacks of 10 epochs of our non-IID data
experiments which will be detailed in Section VII. As shown
in Figure 3a, although benign models are clustered at 0 while
poisoned ones are clustered at -1, many benign models are
isolated from the majority and spread from (0,-1). In this case,
these models will be excluded from aggregation by clustering-
based filtering that only accepts the majority, validating the
non-I1ID issue. Moreover, Figure 3b validates the majority
attack vulnerability: The poisoned models are clustered as the
majority and located at O in the plot at epochs ¢+3, 5, 7 and 8.
In those epochs, the poisoned models outnumber the benign
ones and will be accepted by the existing clustering-based
approaches, potentially failing the overall training process, as
we will show in Section VII.

Motivated by the observations, we leverage link indicators
as an additional factor to separate benign models from poi-
soned ones as clustering alone is insufficient. Algorithm 3
details our separation mechanism that operates in two stages.
First, the algorithm partitions models based on their link
indicators, creating two sets: suspicious models with ind
= 0 and non-suspicious models with ind > 0 (lines 3-
4). For the suspicious set, which likely contains poisoned
models, we compute separation thresholds using the statistical
properties of their c-scores: up_sep = max(S) + Var(S)
(upper threshold, line 7) and low_sep = min(S) - Var(S)
(lower threshold, line 8). These thresholds then separate non-
suspicious models into sets Nypope and Npejow (lines 9-10).
Models are accepted if either set contains at least ¢ proportion
of the non-suspicious models (lines 12-17).

The rationale for the algorithm stems from the novelty

Algorithm 3 LINKCLUSTERFILTER’s Separation Component

1: Input: Wy, C;, Iy, ¢
is the separation factor

2: Output: W,

3: § < {c-score; | ind; =0} > S are c-scores of
models with suspicious link indicators

4 N + {c-score; | ind; > 0} > N are c-scores of
models with non-suspicious indicators

5. if S = 0 or N' = () then return ()

6: end if

7: up_sep <+ max(S) + Var(S) > up_sep is the upper
separator based on the maximum and variance of &

8: low_sep < min(S) + Var(S) > low_sep is the lower
separator based on the minimum and variance of S

9: Napove ¢ {w; | c—score; € N & c-score; >
up_sep} > Nypove are non-suspicious models above
up_sep

10: Nperow  {w; | c—score; € N & c—-score; <
low_sep} B Npeiow are non-suspicious models below
low_sep

11: WE 0

12: if [Napove| > ¢ - [N| then

13: Wé' — Nabove

14: end if

15: if |Nbelow| > Q- |N| then

16: Wé' — Wey UNbelow

17: end if

18: return W,

> C; are models’ c-scores; @

of evaluating models along two complementary dimensions:
model similarity and communication reliability. The first di-
mension, quantified by the c-score, measures how close a
model is to the distribution, capturing deviations that may in-
dicate poisoning. However, in non-IID settings, benign models
may diverge, making similarity alone insufficient. The second
dimension, indicated by the link status ind, reflects whether
the model was transmitted through a trustworthy channel. This
provides an orthogonal trust source: adversarial updates may
appear statistically consistent yet still arrive via compromised
links. A benign model must be validated on both dimensions
before being accepted.

For the suspicious set (models with ind=0), we further
refine the separation using thresholds derived from the sta-
tistical properties of their c-score. Specifically, up_sep
and 1ow_sep extend the boundaries around the most extreme
suspicious scores. Anchoring at max(S) + Var(S) and min(S)
- Var(S) ensures that no poisoned models are mistakenly
accepted, while the variance term adaptively adjusts for dis-
persion. When suspicious models are tightly clustered (low
variance), the thresholds remain narrow, excluding similar
poisoned models. When suspicious models are diverse (high
variance), the thresholds expand to tolerate such diversity.

As shown in Figure 3, the algorithm effectively handles
multiple scenarios: The upper (and lower) separators for each
epoch are shown as the blue triangles pointing up (and down).
Models with link indicators greater than 0 are marked circles,



and the ones with link indicators equal to O are marked
rectangles. The legend shows benign (B) and poisoned (P)
models with their indicator values (B_Ind > 0, P_Ind = 0,
and P_Ind > 0) and the upper and lower separators (Sep).
We discuss the separation approach based on the following
representative cases:

1) Under MPAF attacks (Figure 3a), poisoned models form
outlier clusters while many benign ones disperse across
(0,—1). The separation effectively captures these scat-
tered models, addressing the non-1ID issue. Note that if
a binary model evaluation such as the one in [22] is
applied, only models evaluated at c—score = 0 will be
aggregated and all benign models evaluated in (0, —1) are
missed. This comparison shows STARFed’s inclusiveness
of benign models in non-IID data scenarios.

2) During backdoor attacks (Figure 3b), when poisoned
models infiltrate the majority cluster (epochs t+3, 5, 7),
the separation still accepts benign models with ind > 0,
even when they are in the minority. This case demon-
strates how the framework avoids the majority attack
vulnerability.

3) More importantly, even when an aggressive malicious
relay attempts to deceive the server by reporting ind > 0
for poisoned models (shown as red circles in the plots),
these models are filtered out as their c-scores align
more closely with other poisoned models rather than the
benign ones.

4) Conversely, if a malicious relay reports ind = 0 for
benign models, this may affect the separation thresholds
through max(S), min(S), and Var(S). However, as dis-
cussed in Section IV-B, a malicious relay cannot control
a benign model’s position in the c-score spectrum as
it cannot fabricate a benign model, preventing arbitrary
manipulation of the separation thresholds.

While the separation provides robust filtering in most cases,
corner cases exist (e.g., epoch ¢+8 in Figure 3b) where no
models meet the acceptance criteria. We address these limita-
tions through the reputation-based progressive filter, which is
detailed in the following section.

C. Reputation-based Progressive Filter

Before presenting the reputation-based filter, we introduce
STARFed’s reputation system that evaluates relay reliability.
Following Algorithm 1 (line 10), the server updates relay rep-
utations after each training epoch based on their link indicator
values and the link-clustering filter results. The reputation
update for relay ¢ at epoch ¢ is defined as:

—p ifind; <1
rep_update; =< p if ind; =1 and w; € W (4)
—cp if ind; =1 and w; ¢ We

where p > 0 is the reputation factor and ¢ > 1 is a weighting
factor for severe penalties.
The reputation system handles six distinct scenarios based
on the link indicator value and model acceptance status:
o Suspicious Link, Accepted Model (ind = 0, w; € We):
Indicates a disturbing S-T link condition where both relay

and detector fail to identify a clean channel. While this
incurs a moderate penalty —p, it’s unlikely to be caused
by a malicious relay, as intentionally reporting ind = 0
for an acceptable model would only damage the relay’s
reputation without providing any poisoning effects.

o Suspicious Link, Rejected Model (ind = 0, w; ¢ Wc):
The system penalizes the relay with —p, regardless of
whether it’s legitimate but under attack or malicious.

o Uncertain Link, Accepted Model (ind = 0.5, w; € We):
Suggests either imperfect link assessment or variation
from other relays’ samples. Results in a moderate penalty
—.

e Uncertain Link, Rejected Model (ind = 0.5, w; ¢ We):
Similar to case 3, receiving penalty —+v discourages
inconsistent reporting.

o Clean Link, Accepted Model (ind = 1, w; € W¢): The
ideal case where the link assessments match the link-
clustering result. The relay receives a reward .

e Clean Link, Rejected Model (ind = 1, w; ¢ We):
The most severe case, receiving an increased penalty
—cy. This strict penalty applies to: (1) malicious relays
attempting to inject poisoned models with forged link
information, and (2) benign relays potentially under so-
phisticated OTA MitM attacks that can manipulate both
the physical link characteristics and model content, mak-
ing even honest relays report clean links for compromised
models.

The reputation system assigns penalties (—p) for suspi-
cious/uncertain links, rewards (p) for clean links with accepted
models, and increased penalties (—cp) for clean links with
rejected models.

Building on this reputation mechanism, the reputation-based
filtering design should address two key requirements unique
to satellite-based FL systems: 1) Resilience to Intermittent
Connectivity: Due to frequent satellite dropouts, the filter must
accommodate benign models from benign relays even after
periods of disconnection. 2) Recovery from Attacks: Benign
relays temporarily compromised by OTA MitM attacks should
regain system trust once the attack ceases. To meet these
principles, we define the link reputation filter that accepts
models satisfying:

w; € Wh <= (ind; > 0) A (! > rep_thr,) (5)
where the reputation threshold evolves as:
rep_thr, = wpt + 70 (6)

Here, r! represents relay 4’s reputation at epoch ¢, w € (0,1)
is the progression factor, and r° denotes the initial reputation
assigned to all relays.

The threshold increases linearly by wp each epoch, where
w < 1 ensures gradual progression. Specifically, a relay with
reputation exactly at threshold (r! = rep_thr,) can still
contribute benign models for ¢ epochs, provided ¢ < % Be-
sides, even if a relay’s reputation falls below the threshold, this
design still allows legitimate relays to maintain participation
and rewards consistent, honest behaviors, enabling eventual
recovery.



D. Model Aggregation

STARFed’s aggregation strategy balances inclusiveness and
selectivity. Inclusiveness captures diverse training data from
benign models, while selectivity filters out divergent poisoned
models to prevent training failure. Specifically, it adapts based
on the link-clustering filter’s output. When the filter accepts
more than half of the received models (W | > Wgt‘ ), indicat-
ing strong separation from the potentially malicious c-score
range, we accept W5 only without considering W%, accepted
by the reputation-based filter. This scenario satisfies both inclu-
siveness and selectivity requirements through reliable model
separation. Conversely, when insufficient models are identified
by clustering ((W§| < %), including cases like epoch ¢+8
in Figure 3b where Wtc = (), we take the union of two filters’
outputs WL UWS) as finally accepted models. This approach
is safe because weak separation indicates poisoned and benign
models are not significantly distinguished in the c-score
spectrum, making reputation-based decisions more reliable.

The final aggregation averages [41] the accepted models
as the updated global model to maximize the inclusiveness.
If both filters accept no model, STARFed computes the
coordinate-wise median of model parameters [25] to maintain
selectivity against extreme poisoned values as a fallback for
extreme corner cases.

VI. SECURITY ANALYSIS
A. Robustness of the Link-Clustering Filter

We define the conditions that must be satisfied for a mali-
cious relay to inject poisoned models into the system. We then
analyze STARFed’s robustness against such attacks based on
the definitions.

Definition 1: (Separable) Let WV be the set of all received
models in an epoch. Define Wg C W as the set of suspicious
models with link indicator ind = 0, and Wy C W as the set
of non-suspicious models with link indicator ind > 0. Let
f:W —0,1) be the function computing the c-score. The
set of separated models W4 is defined as:

Wa = {’U)l ‘ w; € WnA
(f(w;) < low_sep V f(w;) > up_sep)}

where low_sep and up_sep are the separation boundaries
calculated according to Algorithm 3. The set of models is
considered separable if:

)

Wal
W
where ¢ is the separation factor.

Definition 2: (Evading) Given a set of separable models, a
poisoned model w,, is evading if:

wy € Wi ©)

> ®)

Based on Definitions 1 and 2, injecting a poisoned model
requires satisfying two conditions simultaneously: (1) the set
of models must be separable, and (2) the injected model must
be evading. Consider the following cases:

If all adversaries forge link information with ind > 0
for their poisoned models, the link-clustering filter remains

inactive due to lack of suspicious models, violating the sep-
arability condition in Definition 1. If all adversaries forge
link information with ind = 0 for their poisoned models,
these models form the suspicious set WWg. This prevents any
poisoned model from being evaded according to Definition 2,
as W, only contains models from Wy.

Therefore, adversaries must adopt a mixed strategy where
some relays must report ind = 0 to establish separability
while others report ind > 0 to enable model evasion.

To execute this strategy successfully, relays reporting
ind = 0 must carefully craft their poisoned models to form
a suspicious range that excludes at least ¢ proportion of non-
suspicious models, requiring knowledge of both ¢ and all other
models’ c-scores. The presence of even a single honest
relay can disrupt this strategy. When an honest relay detects
an OTA MitM attack and reports ind = 0, it expands the
suspicious range. This expansion violates the guarantee of
successful poisoned model injection. Moreover, such failed
injection attempts lead to severe reputation penalties according
to (4). Therefore, the successful injection of poisoned models
requires adversary’s control over all relays.

B. Robustness of Reputation-based Model Filter

We consider two scenarios that may affect the robustness
of the reputation-based model filter. In the first scenario,
the adversary is adaptive and changes its attack probability
each round, trying to inject poisoned models while main-
taining a high reputation for the relays it controls. In the
second scenario, we consider that network irregularities and
unpredictable environmental effects may lead honest relays
to output noisy or inconsistent measurements, degrading their
reputation.

For adaptive adversary, we let the attack probability be p, at
each round. The expected number of epochs before detection is
p%. However, the reputation penalty for a detected attack (—cp)
can be set to exceed potential gains from reputation building
(p). Specifically, for an OTA adversary that cannot forge the
link measurement to pass STARFed’s link authentication, its
expected reputation gain is Elrepora] = pa X (—p) + (1 —
Pa) X p= (1 —2p,) X p. In this case, the adaptive adversary
has to make its overall attack probability p, lower than half to
maintain a positive reputation, enforcing it to contribute more
benign models than poisoned ones.

For an adversary that can control ground relays to send
forged link measurements, the expected reputation for a mali-
cious ground relay is E[reppyrar] = pa X (—cp) + (1 —pg) X
p=(1—(1+4¢c)Xpg,) x p. Since ¢ > 1, the adversary has to
make p, < 17 < 3 to maintain a positive reputation. The
flexibility of tuning the reputation penalty factor c enforces an
adaptive and stricter model contribution requirement compared
to OTA adversaries.

Following the above discussion, an honest ground relay,
under unpredictable and irregular S-T link conditions, can
achieve a positive reputation as long as the probability of
irregularity (p;,) is lower than half (the same requirement as
Pqo)- If a ground relay is suffering from network irregularity
with a probability higher than half, the reputation-based filter



should exclude its contributing model from aggregation for the
system’s overall robustness, regardless of whether it is benign.

C. Integrated Analysis for Overall Robustness

The above analysis only considers cases where an OTA
adversary hijacking the S-T link can never pass the link
authentication, and the model from a malicious ground relay
can always be excluded by the link-clustering filter. Now, we
integrate STARFed’s components with errors and analyze its
overall robustness.

Assuming the SMV for link authentication has error rate
Equtn and the hybrid link-clustering filter has error rate Ej,,y,.
The condition for a poison model evading the hybrid detector
is discussed in Section VI-A. We now analyze the conditions
under which an adversary can inject a (link-clustering filter-
bypassing) poisoned model with a positive reputation. Com-
bining the analysis in Section VI-B with components’ error
rates, the expected reputation for a malicious OTA adversary
is E[repgr{"A} = Pa X (1 - Eauth) X (7/)) + Da X Eauth X
(1_Ehyb) ( CP)-HDa ><-Eauth ><-Ehyb Xp+(1_pa) X p.
To maintain the overall positive reputation, the adversary has
to keep its attack probability p, <

2— ((1+C)Ehyb+(1 ¢))Equth
The boundary is approxrmately 5 relaxed by an error factor

(1 + ) Enyp + (1 — ¢)) Equer, in the dominator.

For an adversary controlling a malicious ground relay, its
expected reputation under component error is E[rep$iap] =
Pa X (1 = Epyp) X (—cp) + pa X Epyy X p+ (1 — pa) X p.
To maintain the overall positive reputation the adversary has
to keep its attack probability p, < m Given the
reputation penalty factor ¢ > 1, the boundary for malicious
ground really under error is also approximately 1 5. relaxed by
an error factor 1 — Ej, .

The analysis for honest ground relays under unpredictable
S-T link conditions is similar. Based on the above discussion,
we conclude that even in the scenarios in which link authen-
tication and hybrid link-clustering filter misclassify link mea-
surements and models with specific error rates, the framework
still forces the adversary to contribute more benign models
and poisoned ones with a small error factor determined by the
error rates of individual components.

D. Privacy Analysis

We now analyze how applying differential privacy (DP) to
link status samples reduces relays’ privacy exposure. Recall
that we measure privacy exposure by the distinctiveness of a
distribution in Section I'V-C. Formally, given a model or link

status vector v;, we normalize it as u; = W’ and compute

z/ 2(1 — 51']'), where 6ij =
Thus, distinctiveness of the distribution is defined as

D) 2V 2= 6y)

7<j

the pairwise Euclidean distance as

T
U; Uj.

Disc = (10)

Adding Laplace noise with scale L < (as in Eq. (3)) makes the
normalized vectors noisier. In the case where link statuses
are highly distinct (i.e., the average cosine similarity d;; is
negative), decreasing e increases §;; toward zero. This, in

turn, reduces the overall distinctiveness. In practice, we tune e
such that Discjjn < Discpogel, Which ensures that link status
information is less distinctive (and thus reveals less privacy)
compared to FL. models.

VII. EVALUATION

Section VII-A outlines our experimental setup. We compare
STARFed’s effectiveness against state-of-the-art FL. aggrega-
tion schemes across multiple datasets in Section VII-B. The
effectiveness of the framework’s key components is examined
in Section VII-C. Section VII-D reveals the influence of non-
IID degrees, client dropout rates, and adversarial ratios. The
system’s communication and privacy overhead are measured
and discussed in Section VII-E.

All experiments run on a machine equipped with an In-
tel Core 19-12900k CPU (3.2 GHz), 32 GB RAM, and an
NVIDIA RTX 3090 GPU. All the attacks, defenses and model
training are implemented in Python using PyTorch [74] and
Torchvision [75] libraries. The implementation code will be
made publicly available upon publication of this paper.

A. Experimental Settings

FL Datasets and models. We evaluate STARFed on three
benchmark datasets. MNIST [76] contains 70,000 grayscale
handwritten digit images (28x28 pixels). CIFAR-10 [77]
consists of 60,000 color images (32x32 pixels) spanning 10
classes. EuroSAT [78] comprises 27,000 Sentinel-2 satellite
images (64x64 pixels) with 10 land use classes, which is
particularly suitable for satellite-based FL scenarios.

We implement different model architectures tailored to each

dataset’s unique sizes and characteristics. For the MNIST ex-
periments, we employ two architectures: a basic convolutional
neural network (CNN) [76] structured with 2 convolutional
and 2 fully connected layers, and a multilayer perception
(MLP) [79] designed with 3 fully connected layers. CIFAR-
10 tasks utilize a ResNet50 architecture [80]. The EuroSAT
dataset is trained using ResNetl8 [80] and a lightweight
variant of EfficientNet [81]. Table III summarizes the dataset
splits and corresponding model parameters.
S-T link spoofing and detection. Due to the absence of
publicly available general-purpose S-T link spoofing datasets,
we evaluate STARFed’s spoofing detection capabilities using
a benchmark dataset for GNSS spoofing research called the
Texas Spoofing Test Battery dataset (TEXBAT) [82]. It is
a widely used dataset in GNSS spoofing research that was
developed at the University of Texas at Austin’s Radionav-
igation Laboratory. It was specifically designed to provide
researchers with real-world GNSS spoofing scenarios collected
from physical experiments for testing and evaluating spoofing
detection algorithms. The dataset includes recordings of GPS
signals subjected to various spoofing attacks under controlled
laboratory conditions and has become the most popular and
commonly used benchmark in GNSS spoofing detection re-
search [71, 72]. Our experiments specifically use dataset3
(spoofed signals with static, low-power advantage scenarios)
and cleanStatic (clean signals in static scenarios) record-
ings as spoofing and non-spoofing samples, respectively.



TABLE III: Datasets and models used in our evaluations.

Each client randomly receives a fixed number of shards. For
the MNIST training set (60k samples), we create shards of
240 samples, each with identical labels. Each client receives

Datasets #Training | #Testing | Model #params
CNN ~582k
MNIST k 10k
S 60 0 MLP ~199k 60k samples
CIFAR-10 | 50k 10k ResNet50 ~26M 240 samples x 50clients
ResNet18 ~196k
EuroSAT | 21.6k >4k EfficientNet-Light | ~2M

As discussed in Section V-A, the framework can accom-
modate any domain-specific S-T link features. Without loss
of generality, we extract six S-T link characteristics: carrier-
to-noise ratio (C/Ny), I-Q samples, and correlator outputs
(early/prompt/late) from GNSS signal tracking. The feature
extraction is motivated by state-of-the-art GNSS spoofing
detection works [66, 67, 71, 72] in which the features
are shown to be representative and effective for spoofing
detection. While the latter three features are GNSS-specific,
this specialization does not affect STARFed’s general design
principles. Although our experiments use GNSS spoofing
data, the physical-layer observables we extract—SNR prox-
ies (C'/Np), complex baseband I/Q statistics, and matched-
filter outputs near the timing estimate (early/prompt/late)—are
generic to satellite—terrestrial receivers. Spoofing in any S-T
system disturbs these quantities due to attacker imperfections
in power control, synchronization, and phase alignment. We
thus view GNSS as a publicly available instance of the broader
radio frequency (RF)-layer detection problem. In non—spread-
spectrum systems (e.g., general S—T links), correlator taps are
replaced by preamble/pilot matched-filter taps. These yield
similar timing-related structures—such as peak symmetry and
slope—that enable spoofing detection. Despite differing signal
primitives, both GNSS and non-spread-spectrum systems pro-
duce structurally similar receiver outputs, allowing spoofing
detection methods based on peak perturbation to generalize
across protocols.

Each relay forwards 10 (i.e., m = 10 in 1ink_samples
definition) feature vectors to the server, where the central-
ized spoofing detector processes individual samples. The final
spoofing detection employs majority voting across 10 feature
vectors. The progression factor w and reputation reward p
for the reputation-based filter (6) are set 0.001 and 0.01,
respectively. We note that developing a complete state-of-the-
art spoofing detector for general-purpose S-T links extends
beyond our current scope.

B. Comparison Results

Existing Defenses. We compare STARFed with the basic
aggregation scheme FedAvg [41] and state-of-the-art defense
mechanisms (Krum [26], Median [25], Trimmed-Mean [25],
FLAME [22], and FLGuardian [57]) introduced in Sec-
tion II-D.

Additionally, we implement a link-aware baseline that com-
bines the link filter with FLGuardian. This baseline only
accepts models with ind = 1, then aggregates them with
FLGuardian.

Adversarial Settings. We configure a network of N = 50
satellite clients. To create non-IID conditions, we first sort each
dataset by labels and then partition it into shards of equal size.

= 5 shards, ensuring at most 5 different
label types for each client. We apply similar partitioning to
CIFAR-10 and EuroSAT datasets.

Following our threat model depicted in Figure 2, we test

with K = 20 satellite clients per global training epoch, each
communicating with the server through a unique ground relay.
Each relay ¢ forwards a model (w;) and reports associated
link information (I;) to the server. The adversarial setup
consists of P = 7 poisoned models (35%) injected by OTA
MitM adversaries or malicious ground relays. Concurrently,
M = 7 malicious ground relays report forged link information.
Among these, O = 4 relays accompany poisoned models
with dishonest link information, where two report inconsistent
link information and two present consistent but contradictory
information (indicating clean links for poisoned models). The
remaining (M — O = 3) relays report inconsistent link
information for benign models. In total, (M + P — O = 11)
out of 20 (55%) model-link pairs contain malicious content,
leaving B = 9 honest pairs with benign models and legitimate
link information.
Defense Effectiveness. Figure 4 (for MNIST-CNN study) and
Table IV (for other studies) present comprehensive evaluation
results across different datasets and attack scenarios. Bold
numbers in Table IV indicate the best performance in each
setting. When STARFed achieves the best performance, 1
shows its improvement over the second-best defense; when
another method performs better, | indicates STARFed’s gap
from the best performance. From the plots and the table,
we can see that STARFed is the only robust scheme against
all types of attacks on evaluated datasets, while maintaining
high accuracies in benign settings. In the EuroSAT-ResNet18
study under the backdoor attack, it outperforms the best link-
unaware aggregation (FLGuardian) by 15.6%. While in the
worst case, it only falls behind the best defense by 5.5% as
under the untargeted label-flipping attack in the same study.

While FLAME matches STARFed’s performance in the
MNIST-CNN study, it shows vulnerability in more challeng-
ing scenarios: targeted label-flipping and backdoor attacks in
CIFAR-10 and the two EuroSAT studies, and untargeted label-
flipping attacks in CIFAR-10 and EuroS AT-EfficientNet stud-
ies. This degradation occurs because non-IID data distribution
in complex tasks increases model diversity, making it harder
to distinguish between benign and poisoned models as detailed
in Section V-B.

Moreover, the clustering-based approaches (i.e., Krum
across all studies and FLAME in EuroSAT-ResNet18) achieve
only ~10% accuracy under targeted label-flipping and back-
door attacks. This again validates the majority attack vulner-
ability discussed earlier in the paper (Section V-B) that these
methods can mistakenly aggregate poisoned models when
they form the majority, causing all predictions to follow the
adversary’s targeted class.

Besides, we notice that the link-aware baseline (LinkInd)
stands under various attacks, however, it’s accuracies drop
~ 10% compares with STARFed. This is due to its conserva-
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Fig. 4: Comparative results on MNIST dataset using CNN.
TABLE IV: Overall Comparison Results
Def.\Atk. Benign | PF MPAF ULF TLF Backdoor Benign | PF MPAF ULF TLF Backdoor
MNIST - MLP CIFAR-10 - ResNet50
FedAvg 899 105 85 632 66.7 878 647 131 10.0 50.4 269 304
Krum 85.6 87.0 84.8 83.8 10.3 10.3 39.0 376 52.8 6.3 10.0 10.0
Med 84.1 80.5 77.0 712 542 67.5 63.4 64.6 10.0 483 10.0 10.0
TrMean 920.3 10.6 10.7 79.5 70.6 88.3 65.1 37 10.0 47.8 17.8 19.9
FLAME 86.1 81.8 89.2 89.4 88.7 89.6 66.7 64.0 65.1 44.0 242 18.0
FLGuardian 84.4 90.4 88.7 89.1 87.9 90.7 62.2 66.5 66.5 40.5 64.3 65.5
LinkInd 83.7 90.4 89.1 90.1 87.2 81.3 63.2 64.7 65.2 62.7 65.1 63.6
STARFed 90.7(10.4) | 89.9(J0.5) 88.3(J0.9) 90.2(10.1) 90.5(711.8) 9LI(TL5) | 68.3(13.6) | 655(J1) 64.6(J19) 64.2(1L.5) 641(J1) 638(1.7)
EuroSAT - ResNet18 EuroSAT - EfficientNet-Light
FedAvg 729 249 1.6 766 6.9 292 648 136 103 5338 332 299
Krum 49.1 56.0 512 585 10.4 10.5 479 50.4 359 232 112 10.4
Med 57.2 62.2 132 46.9 23.0 10.8 61.9 61.4 11.0 517 18.6 30.9
TrMean 65.1 222 115 46.4 18.6 18.2 67.0 213 119 49.1 219 36.4
FLAME 69.8 71.0 69.2 73.0 10.8 112 67.5 64.3 65.5 514 203 295
FLGuardian 67.2 67.6 725 74.6 719 574 59.6 63.7 714 53.0 65.5 67.5
LinkInd 63.2 65.4 68.0 65.2 65.1 74.1 66.8 65.7 683 64.9 66.1 63.6
STARFed 741(71.2) | 722(11.2) 674(}5.1) 69.1155)  689(13) 730 1.01) | 70.0(12.5) | 68.3(12.6) 642(J41) 69.3(14d) 67.2(7L1) 6552

tive strategy that discards models with ind < 1, potentially
missing benign ones. We emphasize that our primary objective
is to develop a robust defense against attacks rather than
surpassing standard FL performance benchmarks.

C. Component Evaluation

We analyze STARFed’s filtering components through the
MNIST-CNN study across three representative scenarios: be-
nign setting, MPAF, and backdoor attacks. Figure 5 visualizes
the performance of both filters, where counts above the x-
axis represent accepted benign models and below represent
accepted poisoned models. The legend uses prefixes ‘B_’ for
benign and ‘P_’ for poisoned models, with suffixes indicating
acceptance by: ‘Both_’ (both filters), ‘LC_" (link-clustering
filter only), or ‘RP_’ (reputation-based progressive filter only).

In the benign setting (Figure 5a), with no link indicators
showing potential attacks, the link-clustering filter remains
inactive. The reputation-based progressive filter initially ac-
cepts fewer models by missing clients with a reputation below

the threshold due to dropout but stabilizes after 20 epochs to
consistently accept all 20 models, demonstrating its resilience
to intermittent connectivity described in Section V-C.

Under MPAF attacks (Figure 5b), where adversaries add
noise to corrupt models, the link-clustering filter successfully
identifies and accepts all 13 benign models while reject-
ing most poisoned ones. Besides, the reputation-based filter
maintains steady acceptance of approximately 10 models per
iteration, with most of these models (shown in green) being
accepted by both filters, indicating the agreement between the
two filters.

Similarity for backdoor attacks (Figure 5c), both filters
effectively separate benign from poisoned models. This is par-
ticularly evident in the EuroSAT-ResNet18 case (Figure 5d),
where STARFed maintains robust performance while other
clustering-based defenses (Krum and FLAME) fail to detect
the attack, as shown in Table IV. This matches our design
idea: when models are similar, such as all models are benign,
the framework relies less on clustering since the separation
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threshold becomes less effective in this case and relies more
on relay’s reputation. When models are diverse, the clustering
filter becomes dominant in the decision process, while the
reputation penalty factor and progression factor keep tracking
relay’s behaviors. In iterations where the models are not
diverse, the reputation system takes over and filter models,
as shown in the sporadic purple bars in Figure Sc.

We next evaluate the effectiveness of STARFed’s crowd-
sourced link authentication module under different privacy
constraints. Figure 6 shows the centralized spoofing detec-
tor’s accuracy in classifying reported link samples across
100 epochs, with varying differential privacy budgets (e).
The detector maintains robust performance with high privacy
protection: accuracy consistently exceeds 98% for e values of
1.0, 0.8, and 0.6. Even under stricter privacy settings with
€ reduced to 0.4 and 0.2, the detector’s accuracy remains
above 96%, demonstrating the module’s resilience to privacy-
preserving noise.

D. Impact of Training Heterogeneity and Adversarial Settings

We evaluate STARFed’s robustness under varying degrees
of data heterogeneity and adversarial presence using the
MNIST-CNN study.

Impact of non-IID degree. We investigate STARFed’s perfor-
mance under increasing non-IID data distribution by adjusting
the shard size from 240 (baseline) to 300 and 400, restricting
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Fig. 7: Last epoch accuracies of compared defenses in
various non-IID settings under different attacks.

each client to receive at most 5, 4, or 3 different labels
respectively. A smaller number of unique labels for each client
indicates a higher degree of non-IID distribution. As shown in
Figure 7, STARFed (green) maintains consistent performance
across all non-IID settings under various attacks. While other
defenses experience performance degradation with increasing
non-I1ID degrees, STARFed demonstrates stable performance
across all attack scenarios.

Impact of dropout and adversarial intensity. Based on
the parameters introduced in Section IV-C, we define the
number of corrupt relays as the ones sending either poisoned
models or forged link status, minus the ones sending both.
Thus, the adversarial ratio is computed as (PLK_O). We
examine STARFed’s resilience by increasing both dropout
rates and adversary proportions from the baseline (P-M-O/K
= 7-7-4/20, 50% adversaries) to medium (9-9-6/20, 60%)
and high (11-11-8/20, 70%) intensity. Figure 8 shows that
under baseline and medium adversarial intensities, STARFed
(green) maintains robust performance across all attack types.
Under high intensity, STARFed demonstrates varied resilience.
It maintains stable performance against parameter-flipping,
targeted label-flipping, and backdoor attacks (Figures 8a, 8d,
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Fig. 8: Last epoch accuracies of compared defenses in
various dropout and adversarial settings under different
attacks.

and 8e) while showing some degradation in MPAF and untar-
geted label-flipping scenarios (Figures 8b and 8c). However,
it still achieves the best or second-best performance among all
defenses. FLAME, the only defense comparable to STARFed
under baseline and medium settings, exhibits significant per-
formance deterioration under high adversarial intensity.

E. Overhead Evaluation

We next evaluate the communication and privacy overhead
of STARFed.
Communication Overhead. STARFed integrates S-T link
information transmission with model updates, requiring no
additional communication rounds between relays and the
server. The only overhead comes from transmitting link in-
formation consisting of m S-T link feature vectors as lists
of float numbers and one binary flag (clean_flag) per
model. Following the overhead evaluation method applied in
communication-efficient FL research [83, 84], Figure 9a com-
pares this overhead across different settings, with bars showing
model sizes in the number of parameters on a logarithmic
scale (left y-axis) and stars indicating the link information
to model size ratio in percentage (right y-axis). The results
demonstrate that STARFed achieves enhanced robustness with
minimal communication overhead—Iess than 1%o across all
model architectures.
Privacy Analysis. We evaluate privacy overhead using dis-
tinctiveness as a metric, calculated as the mean pairwise
Euclidean distance between normalized samples. For both link
information and models, we first perform normalization: link
samples across features and models coordinate-wise. Higher
distinctiveness indicates greater potential for sample identifica-
tion, thus higher privacy risk. Figure 9b presents these results
on a logarithmic scale, with link information distinctiveness
(shown as stars) collected from MNIST-CNN serving as a
representative case. The distinctiveness correlates with content
size—larger models (shown with different colors and markers)
exhibit higher distinctiveness by orders of magnitude. Link
information is significantly smaller than model parameters,
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Fig. 9: Communication and privacy overhead of link
information compared with model updates.

introducing minimal additional privacy risk compared to the
inherent exposure from model transmission.

VIII. CONCLUSION

This paper presents STARFed, a novel framework that
rethinks FL security in satellite-based contexts by focusing
on the unique vulnerabilities of S-T communication links.
Unlike existing FL systems that assume compromised clients,
STARFed addresses the more realistic threat model where
launched satellites remain secure while S-T links become the
primary vulnerability. STARFed uses (1) a crowdsourced link
authentication system that leverages physical characteristics
from multiple ground relays to detect spoofing attacks, (2)
a hybrid link-clustering model filter that identifies poisoned
models through both link indicators and model characteristic
analysis and (3) a reputation-based progressive filter that
imposes penalties on malicious relays attempting to inject
poisoned models while rewarding honest behavior, effec-
tively deterring sustained attacks. Our experimental results
demonstrate that STARFed significantly enhances accuracies
in practical satellite-based training scenarios while introducing
minimal overhead. The framework’s ability to distinguish
between benign and poisoned models, even in the presence of
sophisticated poisoning attacks and malicious ground relays,
represents a significant advance in secure satellite-based FL.
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