
Tamper-Resistant Autonomous Agents-Based
Mobile-Cloud Computing

Pelin Angin, Bharat Bhargava
Department of Computer Science

Purdue University
West Lafayette, IN, USA

Email: {pangin, bb}@cs.purdue.edu

Rohit Ranchal
Watson Health Cloud

IBM
Boston, MA, USA

Email: ranchal@us.ibm.com

Abstract—The rise of the mobile-cloud computing paradigm
has enabled mobile devices with limited processing power and
battery life to achieve complex tasks in real-time. While mobile-
cloud computing is promising to overcome limitations of mobile
devices for real-time computing needs, the reliance of existing
models on strong assumptions such as the availability of a full
clone of the application code and non-standard system environ-
ments in the cloud makes it harder to manage the performance
of mobile-cloud computing based applications. Furthermore,
offloading mobile computation to the cloud entails security
risks associated with sending data and code to an untrusted
platform and perfect security is hard to achieve due to the extra
computational overhead introduced by complex mechanisms. In
this paper, we present a dynamic computation-offloading model
for mobile-cloud computing, based on autonomous agent-based
application partitions. We propose a dynamic tamper-resistance
approach for managing the security of offloaded computation,
by augmenting agents with self-protection capability using a low-
overhead introspection and integrity-preserving communication
mechanism. Experiments with a real-world mobile applica-
tion demonstrates the effectiveness of the approach for high-
performance, tamper-resistant mobile-cloud computing.

I. INTRODUCTION

Mobile computing devices have replaced desktops and
mainframes for daily computing needs during the past decade.
Despite the everyday advances in mobile computing tech-
nology, size restrictions impose limitations on the processing
power and battery life of these devices, which limits their ca-
pabilities for real-time, computing-intensive applications such
as image processing. Cloud computing offers the ability to
fill the gap between the resource needs of mobile devices and
availability of those resources, through the concept of mobile-
cloud computing (MCC), which partitions mobile applications
between mobile and cloud platforms for execution, by dynam-
ically offloading computation to cloud hosts.

Achieving high performance with mobile-cloud computing
requires optimal partitioning of the mobile application com-
ponents between the mobile and cloud platforms based on
dynamic runtime conditions. Recent work on this problem has
resulted in frameworks with various partitioning and optimiza-
tion techniques. However, most of these frameworks impose
strict requirements on the cloud side, such as a full clone of the
application code or special application management software,

hindering wide applicability in public clouds. The other major
obstacle for wider adoption of MCC is the security risks
associated with sending sensitive data and code to an untrusted
platform. In order to provide complete security, the application
should ensure all communication with/execution on the cloud
platforms are trusted. The performance requirements of real-
time MCC call for a generalized computation offloading model
that requires minimal involvement of the mobile platform
for monitoring of offloaded computation, where all decision-
making and integrity checks use lightweight components.

In this paper we present a mobile-cloud computation model
based on autonomous agent-based application modules, which
are augmented with integrity verification units for dynamic
detection and reporting of code tampering. Through exper-
iments with a real-world application, we show that self-
protecting mobile agents are promising tools for performance
and security management in mobile-cloud computing.

II. RELATED WORK

Early work in dynamic mobile-cloud computing models
includes CloneCloud [1] and MAUI [2], both of which par-
tition applications using a framework that combines static
program analysis with dynamic program profiling, and opti-
mizes execution time and energy consumption on the mobile
device. The disadvantage of these approaches is that they
require a copy of the whole application code/virtual machine
at the remote execution site, which is a strict requirement for
public clouds and makes the application code vulnerable to
analysis by malicious parties on the same platform. Lin et
al. [3] present a model for energy-aware task scheduling on
mobile devices, where tasks are assigned to cores on the device
or a cloud resource based on their precedence requirements.
The ThinkAir [4] framework provides better scalability and
parallelism features than its predecessors, however it still
requires the existence of the complete application code on the
cloud server, exhibiting the aforementioned disadvantages. All
these approaches lack a mechanism for integrity protection.

The two main approaches to provide security in MCC are
(a) ensuring the security of the cloud platform on which the
mobile code will execute for all users of that platform and
(b) ensuring the security of the mobile code and data sent
to the cloud platform for execution, without relying on the978-1-5090-0223-8/16/$31.00 c© 2016 IEEE

trustworthiness of the cloud platform. One approach taken
by previous research [5], [6] in mobile code security and
secret program execution is homomorphic encryption, which
operates with encrypted functions obtained by homomorphic
transformations. However this approach was only shown to be
usable for polynomial and rational functions, limiting its use.

Zhang et al. [7] propose an authentication and secure com-
munication framework for elastic applications, which consist
of weblets running on a mobile device and cloud nodes concur-
rently. Their proposed method leverages elasticity managers
on the cloud and the mobile device to establish a shared
secret between weblets, to provide authentication between the
weblets. While this is one of the few models for secure MCC,
the authors do not mention implementation details.

Most of the existing security solutions for mobile-cloud
computing focus on the confidentiality of mobile data of-
floaded to the cloud. Frameworks for protecting the runtime
integrity of code offloaded to the cloud are still at a mostly
immature state. Although not tailored for MCC, one state-of-
the-art approach for protecting the integrity of computation
is the software guards algorithm proposed by Chang and
Atallah [8]. This algorithm is based on the partitioning of
program code into regions, where each region is either user
code, a checker guard that checks the integrity of a code
region/other guard code or a responder guard that replaces
a tampered code region with the original code for that region.
The two main issues with this approach are that integration of
an increased number of guards into the program code results
in increased code size and the integration of guard code into
the program could result in significantly lower performance,
especially if the guard code dominates the program, making
it unfit for real-time MCC.

III. AUTONOMOUS AGENTS-BASED MOBILE-CLOUD
COMPUTING (AAMCC)

In our proposed computation-offloading model, an au-
tonomous application module is a chunk of application code
packed in an autonomous (mobile) agent that is executable on
a cloud virtual machine instance (VMI). Figure 1 shows a high
level view of the agent-based MCC architecture. Each module
of a mobile application in AAMCC is either an agent-based
application module (JADE [9] agents in the prototype) that
is offloadable to the cloud, or a native application component.
When a mobile application is launched, the execution manager
contacts the cloud directory service to get a list of possible
cloud hosts (EC2 [10] machine instances in the prototype) for
offloadable application modules to run on. After this step, an
execution plan containing offloading decisions for the agent-
based modules is created by the execution manager. If the
execution plan requires offloading a particular application
module, a bridge is formed between the caller of that module
and the cloud host selected by the execution manager, through
which the offloaded module migrates to the container in the
host, carrying along its input parameters. Upon migration, the
module starts executing and communicates its output data to
the caller through the same bridge. The details of the execution

manager’s optimization model for migration decisions can be
found at [11] and are omitted here due to space limitations.

Cloud	
Directory	
Service	

Migrate	 M2	

Execu6on	 Manager	

Public	 cloud	

Agent	
contain

ers	

cloud	 servers	 (PaaS)	

Mobile	 App	
Local	 components	

Offloadable	 components	

agent	 m
igra6on	

list	 of	 available	 hosts	

Fig. 1: High level view of AAMCC architecture.

IV. SELF-PROTECTING AGENTS FOR TAMPER RESISTANCE

The approach we propose for tamper-resistant execution
of offloaded code in the cloud is based on augmenting the
mobile agents sent to a cloud platform with self-protection
capability, using aspect-oriented programming (AOP) [12]
based integrity checkpoints distributed throughout the agent
code (placed around every method call using [13]) to ensure
timely detection of tamper. Upon tamper detection, the agent
stops execution, moves to a different platform and resumes
execution from the last integrity-verified checkpoint. The self-
protection method relies on the following two main ideas:

1) Tamper-checking guards: As the agent code is executing
in the cloud, the integrity of the code is checked using
introspection by software guards placed at various in-
tegrity checkpoints, which report to the mobile platform.
The method used for introspection is the augmentation
of the program with code that computes a hash value
over a code region and compares it to the expected value
for that region [14].

2) Guard tamper tracking code: Each time a software guard
checks for tamper, its own hash value is saved in agent
data. The agent accumulates the guard hash values
in a variable, which forms the key for authenticated
encryption [15], [16] (with the Galois/Counter (GCM)
mode of operation [17]) of the computation result sent
to the mobile platform. The mobile platform is capable
of computing the key value independently, therefore it
can decrypt the message received to extract the result
from the autonomous application module.

Using an encryption key formed by the dynamic hash values
of the software guard code in the authenticated encryption –
which provides both integrity and authenticity of the result–
has the following implication: For the correct encryption key
to be formed, the guard hash value at each integrity checkpoint
needs to be integrated into the key and the integrated value

needs to match the true (original) hash value for that guard. If
the result received from the mobile agent cannot be decrypted
by the mobile platform, either the message containing the
result was modified in transit or it was not encrypted with
the correct key on the cloud platform. In either case, the
result cannot be integrated into the program on the mobile
platform. In the proposed security approach, accumulation of
guard hash values during agent code execution is a stealthy
tamper-resistance mechanism in the sense that it does not
involve any checks (conditional expressions) that are prone
to detection by pattern matching methods used by attackers.
This incremental formation of the key serves two purposes:

1) The encryption key is not revealed until the end of
program execution, which makes it harder for an attacker
to dynamically swap the value of the corresponding
variable with the original key value to hide tampering.

2) The mobile platform can ensure that all integrity veri-
fication blocks in the offloaded module were executed
in the case of a correct key value, which allows for
checking the authenticity of the results received.

Let H be a collision-resistant hash function used to cal-
culate the guard hash values. The algorithm to compute the
encryption key is provided in Algorithm 1.

Algorithm 1: Encryption key generation
input : guardCode: guard bytecode array

H: secure hash function
F : guard hash accumulation function

output: encryption key for autonomous application
module result

numBlocks← guardCode.size;
key ← 0;
mostRecentGuard← 0;
while mostRecentGuard < numBlocks do

hashOfGuard←
H(guardCode[mostRecentGuard]);
key ← F(key, hashOfGuard);
mostRecentGuard← mostRecentGuard+ 1;

end

Figure 2 shows the UML activity diagram of the execution
lifecycle of an autonomous agent in the proposed model. The
main steps taken by the agent during execution are as follows:

1) The running guard hash and agent state values for
mobile agent MA are reset.

2) MA is sent to a selected VMI for execution.
3) The integrity of the code and data of the MA is checked

before starting execution on the cloud platform.
4) If the integrity of MA was preserved during the transfer,

MA starts executing the first code block in the appli-
cation module and goes onto Step 5. Otherwise, a new
VMI V is selected, a new MA is sent to V, and execution
restarts from Step 1.

5) The software guard for the most recently executed code
block checks the runtime integrity of the block. If no

tampering is detected, the running guard hash value is
XORed with the hash of the guard code performing the
most recent check and the agent state is updated to the
last integrity checkpoint. Step 5 is repeated until there
are no more code blocks to execute. If tampering is
detected by the guard, a new VMI V is selected, MA
sends a message to the mobile platform including the
tamper report and its new VMI address, moves to V and
resumes execution from the last tamper-free checkpoint.

6) The computation result is encrypted with the guard hash
value and sent to the mobile platform.

7) If the mobile platform is able to successfully decrypt
the result message received from MA, it integrates the
result into the program. If the decryption of the result
message fails on the mobile platform, the whole process
of MA’s execution is repeated starting with Step 1.

Move%MA%to%new%cloud%pla0orm%

Check%integrity%of%MA%

Integrity%preserved?%

Yes% No%

Execute%next%code%block% Report%tamper,%%
reset%AS,GS%

Tamper?%

No% Yes%

Reset%agent%state%(AS)%and%guard%hash%(GH)%

Update%AS,%GH%

More%blocks?%

Yes% No%

Encrypt%result%with%GH,%send%to%mobile%

Yes% No%

Integrate%result%

DecrypLon%successful?%

Report%tamper%

Fig. 2: Activity diagram for tamper-resistance mechanism.

V. SECURITY DISCUSSION

A. Resilience against Application Code Tampering

In the proposed model, the guards detect tampering with
agent code as soon as the code section that was tampered with
is executed, which means the time of detection is dependent
on the location (order) of the tampering in the program. In
a more complex attack scenario, an adversary can tamper
with the guard code protecting a specific code segment in
addition to the code segment itself, in a way that will cause

the application code tampering to go undetected. The resilience
of the approach against kind of attack is discussed below.

B. Resilience against Guard Code Tampering

For this attack, we consider an adversary who modifies
guard code in the agent to prevent the detection of tam-
pering with the application code. If the adversary is able
to successfully suppress the tamper-reporting mechanism, the
agent will continue execution on the platform until program
completion. Modification in the guard code during or before
runtime will however cause an incorrect hash value for the
corresponding guard, which will result in a ciphertext that
cannot be decrypted by the mobile platform, making the
approach resilient against these types of attacks.

C. Resilience against Communication Tampering

According to the authenticated encryption scheme used in
the model, an attacker would need to have knowledge of the
secret shared key of the mobile platform and the autonomous
agent in order to be able to impersonate the agent in a message
sent to the mobile platform. Therefore, the model provides
protection against any tampering with the communication
content between the mobile platform and the agents.

VI. PERFORMANCE EVALUATION

A. Performance of Agent-Based Computation Offloading

To evaluate the performance of the proposed computa-
tion model, we performed experiments with NQueens puzzle,
which is the problem of placing n chess queens on an n x n
chessboard such that no two queens can attack each other. In
these experiments, we used an NQueens solver, which finds
all possible solutions to the puzzle for different number of
queens using a recursive backtracking algorithm and returns
the number of solutions. The experiments were performed
using a Motorola Atrix 4G [18], where the cloud host was
a medium VMI in EC2. Figure 3 provides a comparison
of the device-only vs. offloaded execution times. While the
execution times are close to each other for up to 12 queens,
offloaded execution achieves significantly better performance
than on-device execution for more than 13 queens. Actually,
it outperforms on-device execution by about 15 times when
the number of queens is 15.

B. Tamper Resistance Overhead

We also performed experiments to evaluate the performance
overhead of the proposed tamper-resistance mechanism for
the makespan of the NQueens solver. Figure 4 shows the
comparison of the makespan of the NQueens application with
code offloading in the case of no tamper-resistance mechanism
present and the makespan of the same application with the
proposed tamper-resistance mechanism integrated, for differ-
ent number of queens. As seen in the figure, the difference
between the average makespans for the two cases is always
less than 2.2 sec, which is less than 3.6% of the total execution
time for the case with 15 queens. The average makespan for
on-device execution for the same case is 872 sec, therefore

8 10 12 13 14 15
0

200

400

600

800

number of queens

E
xe

cu
tio

n
tim

e
(s

ec
)

Device-only AAMCC-offloaded

Fig. 3: NQueens makespan with device vs. AAMCC.

AAMCC with tamper detection still outperforms device-only
execution, and the tamper-resistance overhead is negligible.

13 14 15
0

20

40

60

number of queens

E
xe

cu
tio

n
tim

e
(s

ec
) no security tamper-resistant

Fig. 4: Comparison of execution times for the NQueens solver
application with vs. without tamper resistance.

VII. CONCLUSION

In this paper we presented a mobile-cloud computation
model based on autonomous agent-based application modules
using various integrity checkpoints of code introspection to
detect and report tampering. We showed through experiments
with an Android application that autonomous agent-based
computation offloading is an effective tool for MCC, providing
application execution times significantly lower than on-device
execution. The proposed tamper-resistance model was also
shown to incur very low runtime overhead and successfully
detect load-time and runtime code tampering attacks. The
mobile-cloud computation model presented in this paper is
promising to meet high-performance computing and integrity
assurance needs in real-time mobile-cloud computing. The
principles laid out in this work regarding self-protecting mo-
bile agents also provide a basis for simplified performance
and security management of applications and services in cloud
computing, which can utilize an agent-based structure for
migration between platforms and self-performance monitoring.

ACKNOWLEDGMENT

The authors would like to thank Dr. Lotfi ben Othmane for
his valuable comments and discussions.

REFERENCES

[1] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: Elastic
execution between mobile device and cloud,” in Proceedings of the 6th
ACM European Conference on Computer Systems (EuroSys’11), 2011,
pp. 301–314.

[2] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th ACM International Conference
on Mobile Systems, Applications, and Services (MobiSys’10), 2010, pp.
49–62.

[3] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Energy and performance-
aware task scheduling in a mobile cloud computing environment,”
in Proceedings of the 7th IEEE International Conference on Cloud
Computing (CLOUD’14). IEEE, 2014, pp. 192 – 199.

[4] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proceedings of the 31st IEEE International
Conference on Computer Communications (INFOCOM’12), 2012, pp.
945–953.

[5] M. Brenner, J. Wiebelitz, G. von Voigt, and M. Smith, “Secret program
execution in the cloud applying homomorphic encryption,” in Proceed-
ings of the 5th IEEE International Conference on Digital Ecosystems
and Technologies (DEST’11), 2011, pp. 114–119.

[6] T. Sander and C. F. Tschudin, “Protecting mobile agents against mali-
cious hosts,” in Mobile Agents and Security. Springer, 1998, pp. 44–60.

[7] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham, and S. Jeong,
“Securing elastic applications on mobile devices for cloud computing,”
in Proceedings of the ACM Workshop on Cloud Computing Security,
2009, pp. 127–134.

[8] H. Chang and M. J. Atallah, “Protecting software code by guards,” in
Security and Privacy in Digital Rights Management. Springer, 2002,
pp. 160–175.

[9] Telecom Italia Lab. Java agent development framework. http://jade.tilab.
com/. Accessed: 2016-02-10.

[10] Amazon Web Services Inc. Amazon elastic compute cloud. http://aws.
amazon.com/ec2. Accessed: 2016-02-10.

[11] P. Angin and B. Bhargava, “An Agent-based Optimization Framework
for Mobile-Cloud Computing,” Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications, vol. 4, no. 2, pp.
1–17, 2013.

[12] N. Påhlsson. Aspect-oriented programming. http://oberon2005.
oberoncore.ru/paper/np2002.pdf. Accessed: 2016-02-10.

[13] AspectJ. http://eclipse.org/aspectj/. Accessed: 2016-02-10.
[14] C. Collberg and J. Nagra, Surreptitious software: Obfuscation, water-

marking, and tamperproofing for software protection. Addison-Wesley
Professional, 2009.

[15] M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,”
Journal of Cryptology, vol. 21, no. 4, pp. 469–491, 2008.

[16] J. Katz and M. Yung, “Unforgeable encryption and chosen ciphertext
secure modes of operation,” in Fast Software Encryption. Springer,
2001, pp. 284–299.

[17] D. McGrew and J. Viega, “The Galois/Counter mode of operation
(GCM),” NIST Special Publication 800-38D, 2004.

[18] Motorola Mobility LLC. Motorola Atrix 4G. http://www.motorola.com/
us/consumers/Motorola-ATRIX-4G/72112,en US,pd.html. Accessed:
2016-02-10.

