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Motivation

Offensive discourse: racism, 
sexism, cyberbullying, 

radicalization, religious hate.

Growing problem on online 
platforms: harms individuals & 

communities.

Current models: lack of context, 
dataset bias, limited 

multimodality.
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State-of-the-Art

• Feature Extraction: Earlier with machine-learning models (TF-IDF, n-grams), with 
deep learning (Word2Vec, contextual embeddings (BERT, mBERT, XLM-R)).

• Models: SVM, RF, CNN, LSTM, transformer-based approaches (e.g., BERT).

• Trend: shift to pre-trained transformers + hybrid models.
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Research Gaps

• Narrow scope: misses subtlety, implicit bias

• Dataset issues: outdated, biased, English-only, Static

• Lack of multimodal dataset and approaches

• Lacks culturally sensitive approaches

• Low explainability → black-box transformers
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Contributions of the Paper

• 13 structured research questions (RQ1–RQ13)

• Solutions in 4 thematic clusters

• Proposed Knowledge-infused framework: cultural knowledge graphs + 
explainability
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Research Questions 
(RQ1–RQ13)

RQ1: What is the scope of automatic offensive language identification?

RQ2: What proportion of work is done per subcategory of offensive 
language detection?

RQ3: What are the challenges while handling multi-modal data?

RQ4: What is the state of offensive language identification work based on 
language?

RQ5: What can be introduced in the approaches to make models 
understand variations in language and terms used while conversing?

RQ6: What is the state of non-English in offensive language identification?

RQ7: What is the state of the datasets that are available in the domain of 
offensive language identification?

RQ8: How can annotation bias be avoided?

RQ9: What is the state of machine/deep learning models for offensive 
language identification?

RQ10: How are current systems performing on various datasets?

RQ11: How do knowledge representations like knowledge graphs help in 
the improvement of offensive language identification?

RQ12: How can the models be made so that they can perform in a 
contextually and culturally rich manner?

RQ13: What are the venues that evaluate contributions in the domain of 
offensive language identification?
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Solutions and Research Directions (Thematic 
Clusters)

Scope & Subcategories (RQ1–RQ2)

Datasets, Multimodality, Multilinguality (RQ3–RQ8)

Models & Approaches (RQ9–RQ10)

Cultural Knowledge & Evaluation (RQ11–RQ13)
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Scope & Subcategories 
(RQ1–RQ2)

Problem: 
Existing definitions of offensive language are narrow (e.g., focusing 
on explicit hate or abuse), missing subtleties such as implicit bias, 
microaggressions, and culturally specific interpretations. 

Solutions: 
• Broader taxonomies of offensive language, covering categories 

like sexism, religious hate, radicalization, cyberbullying, and 
multimodal toxicity (text + memes, voice).

• Integration of ontology-based approaches to formalize 
definitions and subcategories.
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Problem: The learning models are required to understand all sorts of input data apart from the text for bridging the gap 
between the computer's understanding and human-level understanding of the context. Along with the benefits that the 
multi-modal datasets bring, there comes a fair share of challenges that pose barriers in development. Rahate, A. et al. [2] 
have categorized these challenges into six categories as listed here:

• Available multi-modal representations are domain-specific, which limits their use across different tasks.

• Datasets are small in size, contain bias, and are unbalanced.

• Limited multimodal data (text + image/audio/video).

• The current datasets are either missing data about real-life conditions or have noisy representations.

• The missing and noisy dataset sources and the contextually unaware models used impact the interpretability, 
explainability, and fairness.

• English dominates (≈51\% of research), while low-resource languages (Hindi, Arabic, Tamil, Bengali, etc.) remain 
underrepresented. 

Solutions:
• Dynamic Dataset Updates: Maintain living datasets that adapt to evolving slang and cultural terms.

• Crowdsourced Multilingual Annotation: Leverage diverse annotators to reduce cultural bias.

• Multimodal Corpora: Curate datasets combining text, memes, voice (intonation), and video.

• Bias-Aware Annotation: Consensus-based methods and calibration with cultural guidelines [3].

Datasets, Multimodality, Multilinguality (RQ3–RQ8)
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Models & Approaches 
(RQ9–RQ10)

Problems:
• Over-reliance on supervised methods (≈73%).
• Limited exploration of semi-supervised and 

unsupervised approaches.
• Transformer models dominate but remain black boxes 

(low explainability).

Solutions:
• Hybrid Neuro-Symbolic Architectures: Integrating 

BERT/transformers with knowledge graphs for context 
preservation.

• Semi-supervised & self-supervised learning: Reduce 
dependency on labeled data.

• Explainable AI (XAI): Use attention visualization and 
post-hoc knowledge graph reasoning to explain 
classifications.
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Cultural Knowledge & Evaluation (RQ11–
RQ13)

Problems:
• Offensive language meaning varies by culture and context (e.g., the “N-word” in US vs Africa).

• Lack of structured cultural knowledge graphs.

• Evaluation mostly focuses on datasets/competitions; little emphasis on cultural/contextual 
performance.

Solutions:
• Cultural Knowledge Graphs: Encode cultural norms and contextual markers.

• Neuro-Symbolic Integration: Train models on cultural knowledge + domain knowledge for contextual 
awareness.
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Proposed Framework

• Inputs: multimodal (text, memes, audio, video)

• Infusion: domain + cultural knowledge graphs

• Classifier: hybrid neural + symbolic embeddings

• Explainability: transparency + post-hoc reasoning

• Continuous enrichment of knowledge graphs
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Conclusion & Future Directions

Insights:
• Offensive language is culturally and contextually dynamic

• Static models fail with evolving slang & cultural nuances

• Knowledge-infused learning bridges statistical + contextual reasoning

• Explainability builds trust for real-world deployment

Directions:
• Broader taxonomies and ontology-based definitions

• Dynamic dataset updates, multilingual/multimodal corpora, bias-aware annotation

• Hybrid neuro-symbolic models, semi/self-supervised learning

• Cultural knowledge graphs and context-aware embeddings

The proposed framework presents a high-level overview of a system that incorporates all the proposed 
solutions into consideration which can be further extended and modified based on problem requirements.
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