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● Economic Significance of Consumer Sentiment:
○ Reflects public perception of the economy’s health.
○ Influences market trends and informs policy decisions.

● Limitations of Traditional Surveys:
○ Resource-intensive (time and cost).
○ Collected infrequently, missing real-time dynamics.

● Need for a Dynamic Approach:
○ Real-time, cost-effective sentiment analysis is essential.
○ Supports and complements traditional survey methods.



Background
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● Leveraging Language Models with Continual Learning:
○ Uses timestamped data (e.g., news and S&P 500) for dynamic sentiment tracking.

Captures fluctuations in sentiment over time efficiently.
● Overcoming Limitations of Foundation Models:

○ Foundation models are trained on unspecific internet corpora without time stamps.
○ Our model is specifically tailored to handle time-sensitive economic data.

● Innovative Contribution:
○ First application of a language model focused on economic consumer sentiment 

analysis.
○ Designed to work without depending on large-scale foundation models.
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Consumer Sentiment:

● Kaur & Sharma (2023):
○ LSTM-based model with hybrid feature extraction.
○ Transforms pre-processed reviews into feature vectors for sentiment analysis 

and summarization.
● Han et al. (2023):

○ Predicts consumer confidence index using machine learning.
○ Leverages web search keywords and Chinese consumer confidence data.
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Multiple Choice QA Methodology:

● Transformer & CNN Approaches:
○ Huang et al. (2022): Transformer encoder-decoder generates clue text for 

MCQA.
○ Chaturvedi et al. (2018): CNN captures embeddings, with attention layers 

scoring answer options.
● Two-Stage & Hybrid Models:

○ Jin et al. (2019): Combines coarse tuning (via NLI) with multi-task 
fine-tuning.

○ Chen et al. (2019): Uses Bi-LSTM and convolutional spatial attention for 
enriched representations.

● Retriever-Reader Framework & LLM Studies:
○ Huang et al. (2021): Employs a retriever (with novel word weighting) and 

reader fusion for scenario-based QA.
○ Robinson et al. (2022): Demonstrates LLMs' competitiveness in MCQA 

across 20 datasets with answer order-insensitive prompting.



Proposed Model Framework
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Data
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Pre-training Dataset:

● Sources:
○ New York Times News API (e.g., Politics, 

Economy, Business Day, etc.)
○ Guardian News API (e.g., Money, Politics, 

Business, Society under USA-News)
○ S&P 500 data

● Key Features:
○ Filtered by economic categories and divided 

by timestamp (e.g., January 2014 snippet)
○ Custom pre-training ensures inclusion of 

timestamp details missing in existing 
encoders

Fine-tuning Dataset – UMCSI Survey:

● Source:

University of Michigan Consumer Sentiment 
Index (since 1978, monthly reports)

● Components:
○ 5 survey questions addressing personal 

finances, business conditions, and 
buying power

○ Demographic details (income, residence, 
political affiliation, education, household 
composition)



Continual Pretraining + SFT
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Pretraining Loss

Number of Parameters: 732 million; 
Attention block dimension: 160; Max 
input token allowed: 150; Batch size: 16

Pretraining loss vs. number of iterations between the training set and validation set with 
two different parameter settings of the encoder

Number of Parameters: 369 million; 
Attention block dimension: 80; Max input 
token allowed: 150; Batch size: 16



Different Finetuning Strategies
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 Test Accuracy Using Different Training Strategies

4 Finetuning Strategies:

● Supervised Classification (SC)
● Upper Confidence Bound (UCB)
● Epsilon Greedy (EG)
● Adaptive Greedy (AG)



Accuracy Variance of Finetuning Methods 
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Accuracy variance of four different fine-tuning methods across five survey questions



GPTs Answers Accuracy on Five Survey Questions 
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Comparison with GPT3.5 and GPT4 



Summary
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Model & Data Scale:

● Custom model with 732M parameters—small compared to modern GPTs
● Trained on a relatively small news dataset and S&P500 data

Contribution:
● A custom, temporally-trained language model outperforms GPT-3.5-Turbo and GPT-4 in 

real-time consumer sentiment prediction
● Demonstrates that cost-effective, small-scale models can achieve fine-grained performance 

improvements via continual learning
● Establishes a strong baseline for future research in economic sentiment analysis
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