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Agenda
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Background and Motivation

Contribution 1: SAFER (Emotion 
Recognition From Face)

Contribution 2: EMERSK 
(Multimodal Emotion Recognition)

Contribution 3: CoNERS (Novelty 
Aware Emotion Recognition)

Question & Answer



Background and Motivation
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How can 
we help??

The USA: in a mental 
health crisis

Mental health: influences gun violence, 
school shooting, suicide etc. 



Background and Motivation

4

❑ Close relation between emotion and mental health

❑ Changes in emotions over time used for: 

• Trigger identification

• Early sign of  instability

• Preventive steps

❑ Our idea of help:

• Automated emotion recognition which can be used for:

• Automated monitoring

• Advance warning

• Alarm triggering



Emotion Indicators
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Visual

❑ Facial 
expression

❑ Posture

❑ Gait

Non-visual

❑ Speech

❑ Text

❑ Brain scan

Emotions can be conveyed through both visual and non-visual 
indicators.



Challenges in Emotion Recognition
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❑ Providing high accuracy in 
emotion recognition

❑Most focused area
Accuracy

❑ Giving transparent 
explanations of  the results

❑ Lack of  focus
Explainability

❑ Detecting and adapting to 
novel situations

❑ Lack of  focus

Novelty 
Handling



Existing Works
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❑ Heavily focused on facial emotion 
recognition (FER)

Face Based

❑ Use only one or two modesUnimodal/Bimodal

❑ Not focused on explainable outputNot Explainable

❑ Not designed to handle noveltyNovelty



Contributions
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SAFER: Improved facial emotion recognition

EMERSK: Explainable multimodal emotion recognition

CoNERS: Novelty detection and handling
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SAFER: Situation Aware Facial Emotion 

Recognition



Problem Statement
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Can we improve the facial emotion recognition?

Bias in Amazon AI gender classification

Facial expression of  emotions

Face: important medium of emotion

Subject to bias: need generalization



SAFER Architecture
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11

Face feature 

extraction

Background 

feature 

extraction

Place feature 

extraction

Classification 

network



Face Feature Extraction: Face Detection
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BlazeFace [11] for 
face detection

❑ Identifies key points

❑ Generates face mesh

Face detection



Face Feature Extraction: Feature Types
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Face Feature 
Types

Action unit (AU) 
features

Visible features

Deep features

Face feature extraction module



Face Feature Extraction: Action Unit (AU) Features
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AU 

ID

AU 

Name

Points

1 Inner 

brow 

raiser

Above inner 

brow

6 Cheek 

raiser

At cheek 

center

24 Lip 

pressor

Bottom lip 

center Action units for “Sadness” Action unit  features 

generation

❑ AUs: set of  face muscles that corresponds to specific expressions 

❑ BlazePose: computer vision model used to detect the centers of  the AUs



Face Feature Extraction: Visible Features

15

Feature 

type

Description

Width Left eye

Distance Left and right eyes

Angle Left eye with right 

eye and mouth

Visible 
features

❑ Reflect 
physical 
changes of  
face parts with 
emotion

❑Measure as 
width, distance 
and angle

Visible features



Face Feature Extraction: Deep Features 
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❑Deep features: representations from the deeper layers of  a CNN

❑ Transfer learning:

• Knowledge gained in one task applied to improve the performance of  a related but 

different task

• Resnet-50 pre-trained on ImageNet dataset (14 million samples)



Background Feature Extraction
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❑ Background: source of  important contextual information

❑ Process:

• subject removal

• convolutional feature extractor



Place Feature Extraction
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❑Places are associated with emotion:

• garden: happiness, cemetery: sadness

❑Provides additional information in 

emotion recognition and  explanation 

generation

❑Pre-trained Model

• AlexNet

❑Place dataset [23]

• 10 million labeled images

• 205 place categories
Place category: “Bedroom”



Evaluation Setup
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PC: 

2.6 GHz 20 Cores Intel Xeon CPU

96 GB of  RAM

3 NVIDIA TESLA GPUs with 24 GB of  memory each

Dataset preparation

Split into training, validation and test sets in an 80:10:10 ratio

Images resized to 224 × 224 pixels

Augmentation: cropping, rotation, brightness, and contrast adjustments

Evaluation Metrics

Accuracy (%): 
#samples correctly predicted

#total samples
x100



Evaluation Setup: Related Works
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Name Method Limitations

Wen et al. [34] Ensemble CNN Low accuracy

Dhankar et al. 

[17]

ResNet-50 Low accuracy

Renda et al. [35] Ensemble CNN Low accuracy

Gan et al. [16] Soft

Label boosting+ ECNN

Not emphasized on all face points

A-C [18] Adaptive correlation-based loss Orthogonal work

Lee et al. [6] Two stream architecture with adaptive fusion Not well generalized as mainly 

focused on CAER-S dataset

Kosti et al. [5] Dual stream CNN Not well generalized as mainly 

focused on EMOTIC dataset

Li et al. [33] Relational region-level analysis with Body-

Object and Body-Part attention+ GCN

Accuracy can be improved



Evaluation Setup: Dataset
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FER-2013: 
3.2K posed 

images

CK+: 593 
posed and 

spontaneous 
videos

AffectNets: 
450K 

spontaneous 
image

CAER-S: 70K 
image from 
TV shows

RAF-DB: 30K 
diverse face 

images

FABO: 206 
posed videos

Sample images from the datasets



Experimental Results and Findings
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Research question: Does safer improve accuracy?

22

❑ X axis: Name of  the method ; Y axis: Accuracy reported by them in the dataset

❑ The higher the bar, the better!
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Findings: SAFER improves accuracy and outperforms state-of-the-art 

methods.



Experimental Results and Findings
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Research question: Does Safer Generalizes Result?

23
23Findings: SAFER shows high accuracy in all six datasets which proves good 

generalization.
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Experimental Results and Findings
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Research question: Which emotions are easy, and which are difficult to identify

Findings: Unbalanced classes and shared facial expressions degrade performance.

❑ Lower sample number, 
underfitting

❑ ‘Happiness’: High 
accuracy, ‘Disgust : Low 
accuracy

❑ ‘Happiness’: 7000 samples, 
‘Disgust’: 436 samples 

Effect of 
sample 

numbers

❑ Share some of  the facial 
expressions

❑ ‘Disgust’ and ‘Anger’, 
‘Sad’ and ‘Neutral’

❑ Misclassified for each 
other

Effect of 
related 
classes

Confusion Matrix on FER-2013



Ablation Study
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Research question: Which combination offers best results

25
25
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F: Face

B: Background

P: Place



Issues with Current Datasets
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26

26

Bias:

gender and racial

Quality concern

No face mask

Class Sample 

with male 

subject

Anger 70%

Happy 60%

Gender bias in 

FER-2013

Example of  bad samples 



Proposed Dataset
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Research question: How can we improve the FER training?

27

A new dataset-

❑ Seven emotion classes

• Balanced

• 3000+ sample each

❑  Gender and ethnically diverse

❑  Section for masked sample



Research Contribution of SAFER
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A novel face feature extraction module

A novel facial emotion recognition system with 
background and place features

A detailed evaluation framework to prove the 
high accuracy and generalizability

A novel dataset for FER with masked subjects



Contributions
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SAFER: Improved facial emotion recognition

EMERSK: Explainable multimodal emotion recognition

CoNERS: Novelty detection and handling



Problem Statement
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Issues with 
the facial 

expression

• Face covering

• Intentional misleading

Use of multiple modalities can help!!



EMERSK

31

EMERSK

Explainable

Multimodal
Situational 
Knowledge



EMERSK: Architecture
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Facial Module

Posture 

Module

Gait 

Module

Background 

Modul

Explanation 

Module



Face Module
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Two-stream 
architecture

CNN

Attention 
based 

encoder-
decoder 
network



Posture Module
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Body modeling 
and posture 

detection

❑ Kinematic representation of human body

• Collection  of  joints

❑ BlazePose for body point detection 

Posture example Body points



Posture Module
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• Calculated from the body points 
in the form of  distance, angle, 
area etc.

Visible feature

generation 

• Deep representation using 
convolutional network 

Deep feature 
generation

Visible 

feature 

Type

Description

Angle At neck by 

both 

shoulders

Distance Between 

right hand 

and hips 

joint

Area Triangle 

between 

both hands 

and neck



Gait Module
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Two-stream 
architecture

Upper 
stream: 
LSTM 

Lower 
stream: 

3D CNN



Background Module
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Subject removal Deep feature extraction



Place Module
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Place 
dataset

Pre-
trained 

AlexNet

Place category: “Bedroom”



Adjective-Noun Pair (ANP) Module
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39

SentiBank 
2.0: CNN 

based ANP 
classifier

Trained on 
one million 
images from 

Flickr

Crying babyColorful butterfly



Evaluation Setup
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PC:

2.6 GHz 20 Cores Intel Xeon CPU

96 GB of  RAM

3 NVIDIA TESLA GPUs with 24 GB of  memory each

Dataset preparation

Split into training, validation and test sets in an 80:10:10 ratio

Images resized to 224 × 224

Augmentation: cropping, rotation, brightness, and contrast adjustments

Evaluation Metrics

Accuracy (%): 
#samples correctly predicted

#total samples
x100



Evaluation Setup: Similar Works
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Name Method Limitations Explainable?

CMEFA [52] Broad deep learning 

fusion network (BDFN) 

on Face and Posture

Limited evaluation No

Bhatia et al. [57] Layered LSTM on gait Gait mode only No

Kosti et al. [5] Dual stream CNN on 

body and background

Considers whole body as 

a single mode

No

Lee et al. [6] Two stream CNN with 

adaptive fusion on face 

and background

Posture and gait not 

considered

No

Santosh et al. [63] ConvLSTM Not modular, treats the 

video as a single mode

No

Tahghighi et al. [47] HOG-KLT+ SVM Considers whole body as 

a single mode

No



Experimental Results and Findings: Face Module
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42

Research question: Can face module perform standalone?

42Findings: Face module provide superior standalone performance.
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Experimental Results and Findings: Posture Module
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Research question: Can posture module perform standalone?

43
Findings: Posture module provide comparable and generalized 

standalone performance.
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Experimental Results and Findings: Gait Module
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Research question: Can gait module perform standalone?

44

Findings: Gait module provide superior standalone performance.
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Experimental Results and Findings: Multimodal Operation
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Research question: Does multimodal improve performance?

45

Findings: Multimodal provides superior performance than state-of-the-arts.

0

10

20

30

40

50

60

70

80

90

Kosti et al. Lee et al. Mital et al. EMERSK

A
cc

u
ra

c
y

 (
%

)

Method

Test Accuracy

Experiments on GroupWalk dataset

94

94.5

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

Santosh et al. Tahghighi et al. EMERSK

A
cc

u
ra

c
y

 (
%

)

Method

Test Accuracy

Experiments on GEMEP dataset



Ablation Study
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Research question: What is the best combination of the modes?

46
Findings: Face is the most expressive mode and multimodal beats 

standalone methods.
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Computational Cost
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Research question: What is the computational cost of going multimodal?

47

Findings: Face is the fastest mode and gait is the slowest.
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Explanation Generation
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Research question: How do we explain the output?

48

Individual 
mode result

Place type

Adjective-Noun 
pair

Average 
emotion

Explanation: “Emotion output  is “happiness”. The place 
is “nursery_classroom”, it is  “positive” environment, with 

“creative_work” and “smiling_kid”. Subject face is: 
“happy”,and posture is: “happy””. 



Research Contribution of EMERSK
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A modular architecture for emotion recognition 
from multiple modes

A novel approach for situational

knowledge generation

A novel approach for explanation generation 



Contributions
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SAFER: Improved facial emotion recognition

EMERSK: Explainable multimodal emotion recognition

CoNERS: Novelty detection and handling



What About Novelty?
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Research question: What happens with frequent novel or unexpected samples? 

51

Need to detect and handle novelty

Novelty is defined as a new or unusual instance that deviate from the expected norm!

Example of Novelty: A 

rhino freely roaming the 

streets of west Lafayette



CoNERS: Continuous Learning Based 

Novelty Aware Emotion Recognition System

Continuous 
Learning 

Loop

Emotion 
Recognition

Novelty 
Detection

Novelty 
Handling

Retraining

52

52



CoNERS: Architecture
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Classification    

engine

Novelty 

detector

Re-labeler

Re-trainer



Classification Engine
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Recognizes emotion and generates 
explanation

Any multimodal classification model 
such as EMERSK can be used



Novelty Detector
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GateKeeper

Regenerator

Discriminator



GateKeeper
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GateKeeper

Receives modular 
outputs

Marks novelty



Regenerator and Discriminator
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Autoencoder based 
regenerator and CNN based 

discriminator

Encoder compresses the 
sample and Decoder 

reconstructs the sample 

Reconstruction training 
with reconstruction loss

Adversarial training of 
R+D with  minimax loss 

function

Reconstruction Loss: | 𝑋 − 𝑅 𝑋 |2

Minimax Loss: 𝐸 log 𝐷 𝑋 + 𝐸[1 − log(𝐷 𝑅 𝑍 ]



Novelty Handling
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❑ Periodic

❑ Label correction

❑ New class creation
Relabeling

❑ Periodic

❑ Human in the loop
Retraining



Evaluation Setup: Similar works
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Name Method Limitations
Continuous 

learning loop?

Pix CNN [64] Gated PixelCNN Low accuracy No

AnoGAN [65]
GAN+ coupled 

mapping
Inefficient No

DSVDD  [66]

Kernel-based one-

class classification 

+ minimum 

volume estimation

Limited 

generalization No



Experimental Results and Findings: Novelty Detection
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60

Research question: Is our detector reliable?

60

Findings: Our novelty detector offers superior detection capability.
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Experimental Results and Findings: Retraining
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Research question: Does our system improves performance?

61
Findings: In situations with frequent novel samples, our method can adapt and 

offer improved performance!
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Research Contribution of CoNERS

62

Formalization of the novelty in

the automatic emotion recognition task

An adversarially trained auto-encoder based detector for 
novelty detection 

A system that addresses novelty in a continuous learning 
manner for emotion recognition



Conclusions and Future Works
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Conclusion

64

Proposed SAFER, a novel system for emotion recognition from facial 
expressions

Proposed EMERSK, a multimodal emotion recognition for additional 
reliability and explainable output

Proposed CoNERS, a novelty-aware emotion recognition system for real 
world situation



Future Works
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Enhanced multimodal fusion

Anxiety and depression detection

Fast and light-weight system building for real time 
operation

Addressing the ethical, security and privacy issues
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Data Bias

How do we deal with bias

Machine  learning algorithms  can  discriminate  based  on  classes  
like  race  and gender

A good model is dependent on a good dataset and without proper 
care a dataset can lack diversity

Biased dataset will perform poorly with minority:

If  most of  the samples are white males, the model will fail for 
women and  people of  color

Researchers (Buolamwini et. al.) showed:

Three commercially released facial-analysis programs from 
major technology companies demonstrate both skin-type and 
gender biases

Error rates in determining the gender of  light-skinned men 
were never worse than 0.8 percent

For darker-skinned women, more than 20 percent in one case 
and more than 34 percent in the other two
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Data Bias

How bias is introduced in ER

Keyword searching in google is a popular method of  collecting 
visual (image and video) data

In our search with keyword “angry face”- 85% of  the 
acceptable images appeared are male

This pattern holds for other generic keywords like ”sad 
people”,  ”happy  human”  etc.

Therefore, a dataset  prepared by collecting results from these 
types of  keyword search results in bias

Same  applies to  the volunteer  choice  for  creating  an  acted  
dataset

Without  careful  selection  of   people  from  multiple  genders  
and  ethnic backgrounds, dataset bias can be easily 
incorporated into the model
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Data Bias

Bias reduction plan

Better representation of  minority groups by using 
specific keywords:

Using both “happy man face” and “happy woman 
face” instead of  “happy face” keyword

Choosing volunteers from diverse background

To produce new ML models which provide higher 
importance on less represented data samples

Data augmentation

Data cleaning algorithms

Transfer learning

76



Data Bias

Bias in the ER datasets

Widely used ER dataset 

FER-2013 is an example 

of  keyword search bias 
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CNN 

Input Image: 226x226x3

Convolutional Layer 1:

Filter Size: 2x2

Stride: 1

Padding: 0

Output Dimension: 225x225x3

Activation: ReLU

Max Pooling Layer 1:

Pooling Size: 2x2

Output Dimension: 112x112x3

Convolutional Layer 2:

Filter Size: 2x2

Stride: 1

Padding: 0

Output Dimension: 111x111x3

Activation: ReLU

Max Pooling Layer 2:

Pooling Size: 2x2

Output Dimension: 55x55x3
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CNN 
Convolutional Layer 3:

Filter Size: 2x2

Stride: 1

Padding: 0

Output Dimension: 54x54x3

Activation: ReLU

Max Pooling Layer 3:

Pooling Size: 2x2

Output Dimension: 27x27x3

Fully Connected Layer:

Input Dimension: 27x27x3

Output Dimension: 256
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Emotion Recognition Use Cases

80

• Identify mental health issue to prevent 
school shootingPublic Safety

• Identify suspicious behavior and criminal 
intent 

Law 
Enforcement 

• Detect medical conditions such as 
depressionHealthcare

• Trigger alarm for extreme emotional state 
(anger, fear etc.) of  the driverAutonomous Car

• Adjust the gameplay based on the 
comfort level of  the player 

Interactive 
Gaming
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