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Background and Motivation
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Background and Motivation

 Close relation between emotion and mental health
1 Changes in emotions over time used for:

* Trigger identification

* Early sign of instability

* Preventive steps

1 Our idea of help:
* Automated emotion recognition which can be used for:
* Automated monitoring
* Advance warning
* Alarm triggering



Emotion Indicators

Emotions can be conveyed through both visual and non-visual
indicators.

Visual Non-visual

U Facial 1 Speech
expression O Text

[ Posture (] Brain scan

d Gait




Challenges in Emotion Recognition

1 Providing high accuracy in
Accuracy emotion recognition

(J Most focused area

U Giving transparent
Explainability explanations of the results

1 Lack of focus

d Detecting and adapting to
novel situations

1 Lack of focus

Novelty
Handling




Existing Works

Face Based

Unimodal/Bimodal

Not Explainable

Novelty

U Heavily focused on facial emotion
recognition (FER)

1 Use only one or two modes

 Not focused on explainable output

1 Not designed to handle novelty



Contributions

SAFER: Improved facial emotion recognition
—

EMERSK: Explainable multimodal emotion recognition

N —

CoNERS: Novelty detection and handling
N ———————————————————————————————




SAFER: Situation Aware Facial Emotion
Recognition



Problem Statement

0 Face: important medium of emotion

QO Subject to bias: need generalization

98.7%

DARKER
MALES

S858

68.6% 100% 92.9%

DARKER LIGHTER LIGHTER
FEMALES MALES FEMALES

Bias in Amazon Al gender classification

Contempt _ Disgust

Facial expression of emotions

Can we improve the facial emotion recognition?




Face feature
extraction

Background
feature
extraction

Place feature
extraction

Classification
network

SAFER Architecture

Face Feature Extraction

Background Feature Extraction

Place Feature Extraction

S; = Streami F; = Feature set from streami F = Final feature set D

Emotion
Output




Face Feature Extraction: Face Detection

/‘

BlazeFace [11] for b O Identifies key points
face detection J Generates face mesh

Face detection



Face Feature Extraction: Feature Types

Face Feature

Types
‘ Visible Feature Generation ‘
Action unit (AU) ‘ ) ‘
features AU Feature Generation
Deep Feature Extractor
Visible features |:|
Convolution | |Max-pooling | |FC layer |:| Face feature set (F,)
Deep features

Face feature extraction module



Face Feature Extraction: Action Unit (AU) Features

L AUs: set of face muscles that corresponds to specific expressions
U BlazePose: computer vision model used to detect the centers of the AUs

AU AU Points

ID Name = :
1 Inner Above inner
brow brow 9
raiser . 6
5 10 12,15
6 Cheek At cheek =>4l
raiser center =
17
24  Lip Bottom lip _ .
pressor  center Action units for “Sadness” Action unit features

generation



Face Feature Extraction: Visible Features

 Reflect
physical
changes of
Visible face parts with
features emotion

 Measure as
width, distance
and angle

Feature Description
type
Width Left eye

Distance Left and right eyes

Angle Left eye with right
eye and mouth

Visible features



Face Feature Extraction: Deep Features

U Deep features: representations from the deeper layers of a CNN

U Transfer learning:

* Knowledge gained in one task applied to improve the performance of a related but
different task

* Resnet-50 pre-trained on ImageNet dataset (14 million samples)

Input

1

Zero Padding

CONV

ResNet50 Model Architecture

Conv Block
ID Block

ConleIock
ID Block
Conv Block
ID Block
Conv Block
ID Block

L J L J L J L J

Stage 1

T T RS T
Stage 2 Stage3 Stage4  Stage 5

Avg Pool

Flattening

FC

Output




Background Feature Extraction

1 Background: source of important contextual information
U Process:

* subject removal

* convolutional feature extractor

Background Module

Feature Extractor

|eAowdy 123lgng

D Convolution D Max-pooling DFC layer D Deep feature set



Place Feature Extraction

1 Places are associated with emotion:
» garden: happiness, cemetery: sadness
dProvides additional information in
emotion recognition and explanation
generation
d Pre-trained Model
e AlexNet
dPlace dataset [23]

1

* 10 million labeled images

» 205 place categories Place category: “Bedroom




Evaluation Setup

a PC:
2.6 GHz 20 Cores Intel Xeon CPU
96 GB of RAM
3 NVIDIA TESLA GPUs with 24 GB of memory each

a0 Dataset preparation

Split into training, validation and test sets 1n an 80:10:10 ratio

Images resized to 224 X 224 pixels

Augmentation: cropping, rotation, brightness, and contrast adjustments
Q Evaluation Metrics

#samples correctly predicted

#total samples x100

Accuracy (%):



Name

Wen et al. [34]

Dhankar et al.
[17]

Renda et al. [35]
Gan et al. [16]

A-C [18]
Lee et al. [6]

Kosti et al. [5]

Li et al. [33]

Evaluation Setup: Related Works

Method
Ensemble CNN
ResNet-50

Ensemble CNN

Soft
Label boosting+ ECNN

Adaptive correlation-based loss

Two stream architecture with adaptive fusion

Dual stream CNN

Relational region-level analysis with Body-
Object and Body-Part attention+ GCN

Limitations
Low accuracy

Low accuracy

Low accuracy

Not emphasized on all face points

Orthogonal work

Not well generalized as mainly
focused on CAER-S dataset

Not well generalized as mainly
focused on EMOTIC dataset

Accuracy can be improved



Evaluation Setup: Dataset

CK+: 593 AffectNets:
FER-2013: posed and 450K C.AER S: 70K RAF DB: 30K FABO: 206
3.2K posed image from diverse face .
" spontaneous spontaneous - posed videos
images . . TV shows images
videos image

Sample images from the datasets



Experimental Results and Findings

Research question: Does safer improve accuracy?

100 100
90

90
80 Test Accuracy 30 Test Accuracy
X 70 ~ 70
(=) (=}
: 60 S 60
Q' 50 7> 50
H 40 g 40
S 30 5 30
< 20 jﬂ’ 20

10 10

0 0

ECNN Dhankhar Renda Gan A-C SAFER Lee et al. Kosti et al. Lietal. SAFER
Method Method
Results on FER-2013 Results on CAER-S

O X axis: Name of the method ; Y axis: Accuracy reported by them in the dataset
 The higher the bar, the better!

Findings: SAFER improves accuracy and outperforms state-of-the-art
methods.



Experimental Results and Findings

Research question: Does Safer Generalizes Result?

120

100
30 Test Accuracy
60
40

20

Accuracy (%)

0
CK+ FER-2013 AffectNet RAF-DB CAER-S FABO

Method
Results on various FER datasets

Findings: SAFER shows high accuracy in all six datasets which proves good
generalization.



Experimental Results and Findings

Research question: Which emotions are easy, and which are difficult to identify

U Lower sample number,
underfitting

Effect of O ‘Happiness’: High
sample accuracy, ‘Disgust : Low
numbers accuracy
U ‘Happiness’: 7000 samples,
‘Disgust’: 436 samples
U Share some of the facial
Effect of expressions
related O :Disg’gust’ a}nd ‘Ang’er’,
o T — Sad’ and ‘Neutral

L Misclassified for each
other

True Label

\\.}\6.2 10 28 39 47 24
&
o 4.@2.3 21 2 | 12 14
o8

%ﬁ\@a 1.7 58 42 65

s 13 46 2@6.1 13 24

& I8 24 92 6.363.5 11
RQ.

+ 59 37 63 48 6.1 11
0;9 e
& Q! 29 E8961 15 'S 1.3
O
@
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Predicted Labe

Confusion Matrix on FER-2013

80
70
-60

- 50

-40
-30

20
-10

Findings: Unbalanced classes and shared facial expressions degrade performance.




Ablation Study

Research question: Which combination offers best results

100
98
96

< 94 Accuracy
i s ™ =
'F: Face S o2
g 90
B: Background = 88
Q 86
_P: Place < 84
82
80
F F+B F+P F+B+P

Mode combinations

Experiments on CAER-S dataset

Findings: Best result is achieved when F,B and P are combined.



Issues with Current Datasets

Q Bias:
gender and racial
0 Quality concern

0 No face mask

Class Sample
with male
subject

Anger 70%

Happy 60%



Proposed Dataset

Research question: How can we improve the FER training?

A new dataset-
] Seven emotion classes
« Balanced
* 3000+ sample each
1 Gender and ethnically diverse
1 Section for masked sample



Research Contribution of SAFER

A novel face feature extraction module

A novel facial emotion recognition system with
background and place features

A detailed evaluation framework to prove the
high accuracy and generalizability

A novel dataset for FER with masked subjects



Contributions

SAFER: Improved facial emotion recognition

A —————————————————————————————

s

EMERSK: Explainable multimodal emotion recognition
—_— =

CoNERS: Novelty detection and handling
N ———————————————————————————————————————




Problem Statement

Issues with
the facial
expression

» Face covering
 Intentional misleading

Use of multiple modalities can help!!



EMERSK

—
(
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Facial Module

Posture
Module

Gait

Module

Background

Modul

EMERSK: Architecture

Place

Extraction

ANP

Extraction

M,

Mode 1
Data

Feature
Extraction

M,

Mode 2
Data

—

Feature

Explanation
Generation

Extraction

4

v

. | Feature
Extraction

Background

Feature
Extraction

Explanation
Output

Emotion

Output

Explanation
Module

|:|-P FC+ Softmax

M; 9 Module formodei F; 4 feature set frommodei F & Final feature set O, #»Emotion from mode i




Two-stream
architecture

Attention
based
CNN encoder-
decoder
network

Face Module

Face Module

- Face |
Detection
i Cropping

=

D Convolution D Max-pooling IFE layer

M

Face deep feature set (F)

I De-convolution . UP'SamP"“El Softmax -+ Copy and concatenate




Posture Module

Body modeling 1 Kinematic representation of human body
and posture * Collection of joints
detection O BlazePose for body point detection

1 : Head

2: Neck

3, 4: Shoulders
5, 6: Elbows

7, B: Hips

9, 10: Knees
11, 12: Feet
13, 14: Wrists
15, 16: Thumbs
17, 18: Indexes
19, 20: Pinkies

Posture example Body points



Posture Module

Visible feature . Calculated from. the body points Visible Description
: in the form of distance, angle, feature
generation area etc
' Type
Deep feature » Deep representation using Angle At neck by
generation convolutional network both
shoulders
Distance Between
Visible Feature Generation I'ight hand
and hips
Deep Feature Extractor joint
H - Area Triangle
between
Convolution I:lMax-ponling FC layer bOth handS
Deep feature set (D) Visible feature set (V) D Final feature set (F_) and neCk




Two-stream
architecture

Upper Lower
stream: @ sStream:
LSTM 3D CNN

Gait Module

LSTM Feature Extractor

Deep Feature Extractor

Convolution | Max-pooling | |LSTM layer

FC layer

|:| Deep feature set (D) I:l LSTM feature set (L) H Final feature set (F)




Background Module

Subject removal Deep feature extraction

Context Module

Feature Extractor

lenoway 123lgns

D Convolution [] Max-pooling FC layer D Deep feature set (Fg)




Place
dataset

Pre-
trained
AlexNet

Place Module

Place category: “Bedroom”



Adjective-Noun Pair (ANP) Module

Emotion Top ANPs
joy happy smile, innocent smile, happy christmas
SentiBank trust christian faith, rich history, nutritious food
2.0: CNN fear dangerous road, scary spider, scary ghost
e surprise pleasant surprise, nice surprise, precious gift
based ANP sadness sad goodbye, sad scene, sad eyes
classifier disgust nasty bugs, dirty feet, ugly bug
anger angry bull, angry chicken, angry eyes

anticipation magical garden, tame bird, curious bird

Trained on
one million

images from
Flickr

o - o)
|

Colorful butterfly Crying baby




Evaluation Setup

a PC:
2.6 GHz 20 Cores Intel Xeon CPU
96 GB of RAM
3 NVIDIA TESLA GPUs with 24 GB of memory each

0 Dataset preparation

Split into training, validation and test sets in an 80:10:10 ratio

Images resized to 224 X 224

Augmentation: cropping, rotation, brightness, and contrast adjustments
0 Evaluation Metrics

#samples correctly predicted

#total samples x100

Accuracy (%):



Evaluation Setup: Similar Works

Name
CMEFA [52]

Bhatia et al. [57]
Kosti et al. [5]

Lee et al. [6]

Santosh et al. [63]

Tahghighi et al. [47]

Method

Broad deep learning
fusion network (BDFN)
on Face and Posture

Layered LSTM on gait

Dual stream CNN on
body and background

Two stream CNN with
adaptive fusion on face
and background

ConvLSTM

HOG-KLT+ SVM

Limitations Explainable?
Limited evaluation No
Gait mode only No

Considers whole body as No
a single mode

Posture and gait not No
considered

Not modular, treats the No
video as a single mode

Considers whole body as No
a single mode



Experimental Results and Findings: Face Module

Research question: Can face module perform standalone?

80 100
78 90

74
70

72

Test Accuracy

Test Accuracy

-~ ~ 60
S~ 70 X
~ ~ 50
> 08 >
§ 66 g 40
B 64 § 30
Q Q
< 62 20
60 <: 10
%
C%% ’ggs\‘b"g %‘;’Q&b G(D,Q v:C/ Q;;%' 0
9 Q&& & Lee et al. Kosti et al. Li et al. EMERSK-f
Results on FER-2013 Results on CAER-S

Findings: Face module provide superior standalone performance.



Experimental Results and Findings: Posture Module
Research question: Can posture module perform standalone?

100 81.5

81
90 Test Accuracy

80 80.5

60

S -~ 79.5
é 50 S N Test Accuracy
40 ~
§ 30 Q>)) 78.5
& &
5 20 5 78
o 10 3]
S 775
< o0 . \ N . <
& < & N2 X2 S 76.5
G&@% o > > > (ng‘% FABO EMOTIC CAER-S
Method MethOd
Results on FABQO dataset Results on various datasets

Findings: Posture module provide comparable and generalized
standalone performance.



Experimental Results and Findings: Gait Module

Research question: Can gait module perform standalone?

90
80
70

60 Test Accuracy

~
Q\c, 50
> 40
9
S 30
=
S 20
< 10

0

Daoudi et al. Lietal. Bhatia et al. Tanmay et al. EMERSK-g
Method
Results on FABO dataset

Findings: Gait module provide superior standalone performance.



Experimental Results and Findings: Multimodal Operation

Research question: Does multimodal improve performance?

90 99.5
30 99
70 Test Accuracy 78
98
-~ 60 97.5 Test Accuracy
SN =
- 0 °\° 97
§ 40 E: 96.5
§ 30 g 96
S B 955
< < %
10 94.5
0 94
Kosti et al. Lee et al. Mital et al. EMERSK Santosh et al. Tahghighi et al. EMERSK
Method Method
Experiments on GroupWalk dataset Experiments on GEMEP dataset

Findings: Multimodal provides superior performance than state-of-the-arts.



Ablation Study

Research question: What is the best combination of the modes?

80
75
70

65 Accuracy
X
N 55
2 50
§ 45
8 40
< 35
30
F P G F+P F+G F+P+G

Mode combination

Experiments on GroupWalk dataset

Findings: Face is the most expressive mode and multimodal beats
standalone methods.



Computational Cost
Research question: What is the computational cost of going multimodal?

170
160
150
140 Accuracy
130
120
110
100
90
80

Time (0/0)

Face Posture Gait

Method

Results on EWALK dataset

Findings: Face is the fastest mode and gait is the slowest.



Explanation Generation

Research question: How do we explain the output?

Individual
mode result

Place type

Adjective-Noun

pair
Average Explanation: “Emotion output is “happiness”. The place
emotion 1s “nursery_classroom”, it is “positive” environment, with

“creative_work” and “smiling_kid”. Subject face is:

N

“happy”,and posture 1s: “happy””.




Research Contribution of EMERSK

A modular architecture for emotion recognition
from multiple modes

A novel approach for situational
knowledge generation

A novel approach for explanation generation



Contributions

SAFER: Improved facial emotion recognition

N ———————————————————————————

EMERSK: Explainable multimodal emotion recognition

N ————————————————————————————

CoNERS: Novelty detection and handling
-~




What About Novelty?

Research question: What happens with frequent novel or unexpected samples?

Novelty is defined as a new or unusual instance that deviate from the expected norm!

Woiiar

Example of Novelty: A
rhino freely roaming the
streets of west Lafayette

s
- — =

Need to detect and handle novelty



CoNERS: Continuous Learning Based
Novelty Aware Emotion Recognition System

(

Emotion
Recognition




'AV‘ Classification
(\ 4 engine

Novelty
detector

e Re-labeler

||
— Re-trainer
| N N

CoNERS: Architecture

Input

.. New Model | IClassification
Retraining fpr=====-= >
Old Model
S T
' Novelty Detector
Relabeling |
:_% é i Novelty Detected
s 4
Human |:
Inthe |:storagerur | Novelty Sample
Loop Storage

Explanation

Output




Classification Engine

Recognizes emotion and generates
explanation

Any multimodal classification model
such as EMERSK can be used



GateKeeper

Regenerator

Discriminator

Novelty Detector

Model
Output

Mode2
Output

Novelty Detector

Regenerator

Discriminator

Detector
Output




GateKeeper

GateKeeper

Receives modular
outputs

Marks novelty




Regenerator and Discriminator

Autoencoder based ' |—| N X gsome I
regenerator and CNN based | X=X+n ‘
discriminator '
Encoder compresses the 5 o > S o
sample and Decoder * B v Z n =
reconstructs the sample z o E,f =

X >Z + ! —— [0, 1]

Reconstruction training

with reconstruction loss ‘ : ‘

Adversarial training of . ,
R+D with minimax loss Reconstruction Loss: [|X — R(X)]|

function Minimax Loss: E[log(D(X))| + E[1 — log(D(R(Z))]




Novelty Handling

1 Periodic
Relabeling O Label correction
(1 New class creation

1 Periodic

Retraining 0 Human in the loop



Evaluation Setup: Similar works

Name

Pix CNN [64]

AnoGAN [65]

DSVDD [66]

Method

Gated Pixel CNN

GAN+ coupled
mapping

Kernel-based one-
class classification
+ minimum

volume estimation

Limitations

Low accuracy

Inefficient

Limited
generalization

Continuous
learning loop?

No

No

No



Experimental Results and Findings: Novelty Detection

Research question: Is our detector reliable?

1 Trained in MINIST dataset 100
O 50% samples of the test set are novelty 90
0 Example: Digit “1”’ to “8” inliers and “9” novelty 80 Accuracy
70
0 OO0 L0002 pOOOY 0OD o o
' U T Y A B N R Y A R < 50
2421232202222 222 & 10
2232348339533 23333 5 30
Her Y49 Y9 f9dqq4¥4 gzo
FHSITISSSFHTSLSLIFS 10
b G bbb LEbLobac ¢ édb6b el 0
T7237IHTAIN]TPRY 7T Pix CNN AnoGAN DSVDD CoNERS
¥y 3 iBE S PP EPITTEYLC B Method
?999499%949494499 9
MNIST samples Results on MNIST dataset

Findings: Our novelty detector offers superior detection capability.



Experimental Results and Findings: Retraining

Research question: Does our system improves performance?

U First cycle (no novelty):

Regular model with 20% 9
novelty samples in the test Ry
set---—> Degraded accuracy!! < o
d Samples detected using the g 40
detector and model retrained %
O Second cycle (with novelty): < 10
Updated model---> Improvement!! 0 No Novelty With Novelty

Method

Results on FER-2013 dataset with 20%
Novelty samples

Findings: In situations with frequent novel samples, our method can adapt and
offer improved performance!



Research Contribution of CoNERS

Formalization of the novelty in
the automatic emotion recognition task

An adversarially trained auto-encoder based detector for
novelty detection

A system that addresses novelty in a continuous learning
manner for emotion recognition



Conclusions and Future Works



Conclusion

Proposed SAFER, a novel system for emotion recognition from facial
expressions

Proposed EMERSK, a multimodal emotion recognition for additional
reliability and explainable output

Proposed CoNERS, a novelty-aware emotion recognition system for real
world situation



Future Works

Enhanced multimodal fusion

Anxiety and depression detection

Fast and light-weight system building for real time
operation

Addressing the ethical, security and privacy issues
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Data Bias

@ How do we deal with bias

& Machine learning algorithms can discriminate based on classes
like race and gender

& A good model is dependent on a good dataset and without proper
care a dataset can lack diversity

¢ Biased dataset will perform poorly with minority:

& If most of the samples are white males, the model will fail for
women and people of color

& Researchers (Buolamwini et. al.) showed:

& Three commercially released facial-analysis programs from
major technology companies demonstrate both skin-type and
gender biases

@ Error rates in determining the gender of light-skinned men
were never worse than 0.8 percent

@ For darker-skinned women, more than 20 percent in one case
and more than 34 percent in the other two




Data Bias

@ How bias is introduced in ER

©

©

Keyword searching in google is a popular method of collecting
visual (image and video) data

In our search with keyword “angry face”- 85% of the
acceptable images appeared are male

This pattern holds for other generic keywords like ”sad
people”, "happy human” etc.

Therefore, a dataset prepared by collecting results from these
types of keyword search results in bias

Same applies to the volunteer choice for creating an acted
dataset

Without careful selection of people from multiple genders
and ethnic backgrounds, dataset bias can be easily
incorporated into the model




Data Bias

@ Bias reduction plan

¢ Better representation of minority groups by using
specific keywords:

& Using both “happy man face” and “happy woman
face” instead of “happy face” keyword

& Choosing volunteers from diverse background

¢ To produce new ML models which provide higher
importance on less represented data samples

¢ Data augmentation
¢ Data cleaning algorithms

¢ Transfer learning
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Data Bias

@ Bias in the ER datasets

¢ Widely usqd ER dataset TABLE VII: Gender bias- number of images with male
FER-2013 is an example

of keyword search bias

subjects per 100 images returned from gender neutral-keyword

searches on Google and number of images with male subjects
per 100 images on FER-2013 dataset.

Keyword # Male in Google(%) | # Male in FER-2013
“Angry people” 84.7 70
“Fear face: 60.1 52
“"Happy human face™ 55.8 58
“"Sad human face™ 40.0 45




Input Image: 226x226x3

Convolutional Layer 1:
Filter Size: 2x2 CM

Stride: 1

Padding: 0

Output Dimension: 225x225x3
Activation: ReLU

Max Pooling Layer 1:

Pooling Size: 2x2

Output Dimension: 112x112x3

Convolutional Layer 2:

Filter Size: 2x2

Stride: 1

Padding: 0

Output Dimension: 111x111x3
Activation: ReLU

Max Pooling Layer 2:

Pooling Size: 2x2

Output Dimension: 55x55x3
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@ Convolutional Layer 3:

Filter Size: 2x2 C]WV

Stride: 1

Padding: 0

Output Dimension: 54x54x3
Activation: ReLU

Max Pooling Layer 3:
Pooling Size: 2x2

Output Dimension: 27x27x3

Fully Connected Layer:
Input Dimension: 27x27x3
Output Dimension: 256
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Emotion Recognition Use Cases

. » Identify mental health issue to prevent
Public S afety school shooting

Law « Identify suspicious behavior and criminal
Enforcement intent
» Detect medical conditions such as
Healthcare Feedcmt

» Trigger alarm for extreme emotional state
(anger, fear etc.) of the driver

Autonomous Car

Interactive « Adjust the gameplay based on the
Gaming comfort level of the player
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