
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 6

The Relational Algebra and
Calculus

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 3

Chapter Outline

 Relational Algebra
 Unary Relational Operations

 Relational Algebra Operations From Set Theory

 Binary Relational Operations

 Additional Relational Operations

 Examples of Queries in Relational Algebra

 Relational Calculus
 Tuple Relational Calculus

 Domain Relational Calculus

 Example Database Application (COMPANY)

 Overview of the QBE language (appendix D)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 4

Relational Algebra Overview

 Relational algebra is the basic set of operations
for the relational model

 These operations enable a user to specify basic

retrieval requests (or queries)

 The result of an operation is a new relation, which
may have been formed from one or more input
relations

 This property makes the algebra “closed” (all
objects in relational algebra are relations)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 5

Relational Algebra Overview (continued)

 The algebra operations thus produce new
relations

 These can be further manipulated using
operations of the same algebra

 A sequence of relational algebra operations
forms a relational algebra expression

 The result of a relational algebra expression is also a
relation that represents the result of a database
query (or retrieval request)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 6

Brief History of Origins of Algebra

 Muhammad ibn Musa al-Khwarizmi (800-847 CE) wrote a
book titled al-jabr about arithmetic of variables
 Book was translated into Latin.
 Its title (al-jabr) gave Algebra its name.

 Al-Khwarizmi called variables “shay”
 “Shay” is Arabic for “thing”.
 Spanish transliterated “shay” as “xay” (“x” was “sh” in Spain).
 In time this word was abbreviated as x.

 Where does the word Algorithm come from?
 Algorithm originates from “al-Khwarizmi"
 Reference: PBS (http://www.pbs.org/empires/islam/innoalgebra.html)

http://www.pbs.org/empires/islam/innoalgebra.html

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 7

Relational Algebra Overview

 Relational Algebra consists of several groups of operations
 Unary Relational Operations

 SELECT (symbol: (sigma))

 PROJECT (symbol: (pi))
 RENAME (symbol: (rho))

 Relational Algebra Operations From Set Theory
 UNION (), INTERSECTION (), DIFFERENCE (or MINUS, –)
 CARTESIAN PRODUCT (x)

 Binary Relational Operations
 JOIN (several variations of JOIN exist)
 DIVISION

 Additional Relational Operations
 OUTER JOINS, OUTER UNION
 AGGREGATE FUNCTIONS (These compute summary of

information: for example, SUM, COUNT, AVG, MIN, MAX)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 8

Database State for COMPANY

 All examples discussed below refer to the COMPANY database
shown here.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 9

Unary Relational Operations: SELECT

 The SELECT operation (denoted by (sigma)) is used to select a
subset of the tuples from a relation based on a selection condition.

 The selection condition acts as a filter

 Keeps only those tuples that satisfy the qualifying condition

 Tuples satisfying the condition are selected whereas the
other tuples are discarded (filtered out)

 Examples:

 Select the EMPLOYEE tuples whose department number is 4:

 DNO = 4 (EMPLOYEE)

 Select the employee tuples whose salary is greater than $30,000:

 SALARY > 30,000 (EMPLOYEE)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 10

Unary Relational Operations: SELECT

 In general, the select operation is denoted by

 <selection condition>(R) where

 the symbol (sigma) is used to denote the select

operator

 the selection condition is a Boolean (conditional)
expression specified on the attributes of relation R

 tuples that make the condition true are selected
 appear in the result of the operation

 tuples that make the condition false are filtered out
 discarded from the result of the operation

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 11

Unary Relational Operations: SELECT
(contd.)

 SELECT Operation Properties
 The SELECT operation <selection condition>(R) produces a relation

S that has the same schema (same attributes) as R
 SELECT is commutative:

 <condition1>(< condition2> (R)) = <condition2> (< condition1> (R))

 Because of commutativity property, a cascade (sequence) of
SELECT operations may be applied in any order:

 <cond1>(<cond2> (<cond3> (R)) = <cond2> (<cond3> (<cond1> (R)))

 A cascade of SELECT operations may be replaced by a single
selection with a conjunction of all the conditions:

 <cond1>(< cond2> (<cond3>(R)) = <cond1> AND < cond2> AND <

cond3>(R)))

 The number of tuples in the result of a SELECT is less than
(or equal to) the number of tuples in the input relation R

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 12

The following query results refer to this
database state

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 13

Unary Relational Operations: PROJECT

 PROJECT Operation is denoted by (pi)

 This operation keeps certain columns (attributes)
from a relation and discards the other columns.

 PROJECT creates a vertical partitioning
 The list of specified columns (attributes) is kept in

each tuple

 The other attributes in each tuple are discarded

 Example: To list each employee’s first and last
name and salary, the following is used:

LNAME, FNAME,SALARY(EMPLOYEE)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 14

Unary Relational Operations: PROJECT
(cont.)

 The general form of the project operation is:

<attribute list>(R)
 (pi) is the symbol used to represent the project

operation
 <attribute list> is the desired list of attributes from

relation R.

 The project operation removes any duplicate
tuples
 This is because the result of the project operation

must be a set of tuples
 Mathematical sets do not allow duplicate elements.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 15

Unary Relational Operations: PROJECT
(contd.)

 PROJECT Operation Properties

 The number of tuples in the result of projection
<list>(R) is always less or equal to the number of
tuples in R

 If the list of attributes includes a key of R, then the
number of tuples in the result of PROJECT is equal
to the number of tuples in R

 PROJECT is not commutative

 <list1> (<list2> (R)) = <list1> (R) as long as <list2>
contains the attributes in <list1>

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 16

Examples of applying SELECT and
PROJECT operations

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 17

Relational Algebra Expressions

 We may want to apply several relational algebra
operations one after the other

 Either we can write the operations as a single
relational algebra expression by nesting the
operations, or

 We can apply one operation at a time and create
intermediate result relations.

 In the latter case, we must give names to the
relations that hold the intermediate results.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 18

Single expression versus sequence of
relational operations (Example)

 To retrieve the first name, last name, and salary of all
employees who work in department number 5, we must
apply a select and a project operation

 We can write a single relational algebra expression as
follows:

 FNAME, LNAME, SALARY(DNO=5(EMPLOYEE))

 OR We can explicitly show the sequence of operations,
giving a name to each intermediate relation:

 DEP5_EMPS DNO=5(EMPLOYEE)

 RESULT FNAME, LNAME, SALARY (DEP5_EMPS)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 19

Unary Relational Operations: RENAME

 The RENAME operator is denoted by (rho)

 In some cases, we may want to rename the
attributes of a relation or the relation name or
both

 Useful when a query requires multiple
operations

 Necessary in some cases (see JOIN operation
later)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 20

Unary Relational Operations: RENAME
(contd.)

 The general RENAME operation can be
expressed by any of the following forms:

 S (B1, B2, …, Bn)(R) changes both:

 the relation name to S, and

 the column (attribute) names to B1, B1, …..Bn

 S(R) changes:

 the relation name only to S

 (B1, B2, …, Bn)(R) changes:

 the column (attribute) names only to B1, B1, …..Bn

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 21

Unary Relational Operations: RENAME
(contd.)

 For convenience, we also use a shorthand for
renaming attributes in an intermediate relation:

 If we write:
• RESULT FNAME, LNAME, SALARY (DEP5_EMPS)
• RESULT will have the same attribute names as

DEP5_EMPS (same attributes as EMPLOYEE)

• If we write:
• RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO)

 FNAME, LNAME, SALARY (DEP5_EMPS)
• The 10 attributes of DEP5_EMPS are renamed to

F, M, L, S, B, A, SX, SAL, SU, DNO, respectively

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 22

Example of applying multiple operations
and RENAME

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 23

Relational Algebra Operations from
Set Theory: UNION

 UNION Operation

 Binary operation, denoted by

 The result of R S, is a relation that includes all
tuples that are either in R or in S or in both R and
S

 Duplicate tuples are eliminated

 The two operand relations R and S must be “type
compatible” (or UNION compatible)

 R and S must have same number of attributes

 Each pair of corresponding attributes must be type
compatible (have same or compatible domains)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 24

Relational Algebra Operations from
Set Theory: UNION

 Example:
 To retrieve the social security numbers of all employees who

either work in department 5 (RESULT1 below) or directly
supervise an employee who works in department 5 (RESULT2
below)

 We can use the UNION operation as follows:

DEP5_EMPS DNO=5 (EMPLOYEE)
RESULT1 SSN(DEP5_EMPS)

RESULT2(SSN) SUPERSSN(DEP5_EMPS)
RESULT RESULT1 RESULT2

 The union operation produces the tuples that are in either
RESULT1 or RESULT2 or both

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 25

Example of the result of a UNION
operation

 UNION Example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 26

Relational Algebra Operations from
Set Theory

 Type Compatibility of operands is required for the binary
set operation UNION , (also for INTERSECTION , and
SET DIFFERENCE –, see next slides)

 R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type
compatible if:

 they have the same number of attributes, and

 the domains of corresponding attributes are type compatible
(i.e. dom(Ai)=dom(Bi) for i=1, 2, ..., n).

 The resulting relation for R1R2 (also for R1R2, or R1–
R2, see next slides) has the same attribute names as the
first operand relation R1 (by convention)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 27

Relational Algebra Operations from Set
Theory: INTERSECTION

 INTERSECTION is denoted by

 The result of the operation R S, is a
relation that includes all tuples that are in
both R and S

 The attribute names in the result will be the
same as the attribute names in R

 The two operand relations R and S must be
“type compatible”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 28

Relational Algebra Operations from Set
Theory: SET DIFFERENCE (cont.)

 SET DIFFERENCE (also called MINUS or
EXCEPT) is denoted by –

 The result of R – S, is a relation that includes all
tuples that are in R but not in S

 The attribute names in the result will be the
same as the attribute names in R

 The two operand relations R and S must be
“type compatible”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 29

Example to illustrate the result of UNION,
INTERSECT, and DIFFERENCE

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 30

Some properties of UNION, INTERSECT,
and DIFFERENCE

 Notice that both union and intersection are commutative
operations; that is

 R S = S R, and R S = S R

 Both union and intersection can be treated as n-ary
operations applicable to any number of relations as both
are associative operations; that is

 R (S T) = (R S) T

 (R S) T = R (S T)

 The minus operation is not commutative; that is, in
general

 R – S ≠ S – R

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 31

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT

 CARTESIAN (or CROSS) PRODUCT Operation

 This operation is used to combine tuples from two relations
in a combinatorial fashion.

 Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)

 Result is a relation Q with degree n + m attributes:

 Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.

 The resulting relation state has one tuple for each
combination of tuples—one from R and one from S.

 Hence, if R has nR tuples (denoted as |R| = nR), and S has
nS tuples, then R x S will have nR * nS tuples.

 The two operands do NOT have to be "type compatible”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 32

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont.)

 Generally, CROSS PRODUCT is not a
meaningful operation

 Can become meaningful when followed by other
operations

 Example (not meaningful):
 FEMALE_EMPS SEX=’F’(EMPLOYEE)

 EMPNAMES FNAME, LNAME, SSN (FEMALE_EMPS)

 EMP_DEPENDENTS EMPNAMES x DEPENDENT

 EMP_DEPENDENTS will contain every combination of
EMPNAMES and DEPENDENT
 whether or not they are actually related

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 33

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont.)

 To keep only combinations where the
DEPENDENT is related to the EMPLOYEE, we
add a SELECT operation as follows

 Example (meaningful):
 FEMALE_EMPS SEX=’F’(EMPLOYEE)

 EMPNAMES FNAME, LNAME, SSN (FEMALE_EMPS)

 EMP_DEPENDENTS EMPNAMES x DEPENDENT

 ACTUAL_DEPS SSN=ESSN(EMP_DEPENDENTS)

 RESULT FNAME, LNAME, DEPENDENT_NAME (ACTUAL_DEPS)

 RESULT will now contain the name of female employees
and their dependents

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 34

Example of applying CARTESIAN
PRODUCT

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 35

Binary Relational Operations: JOIN

 JOIN Operation (denoted by)
 The sequence of CARTESIAN PRODECT followed by

SELECT is used quite commonly to identify and select
related tuples from two relations

 A special operation, called JOIN combines this sequence
into a single operation

 This operation is very important for any relational database
with more than a single relation, because it allows us
combine related tuples from various relations

 The general form of a join operation on two relations R(A1,
A2, . . ., An) and S(B1, B2, . . ., Bm) is:

R <join condition>S
 where R and S can be any relations that result from general

relational algebra expressions.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 36

Binary Relational Operations: JOIN (cont.)

 Example: Suppose that we want to retrieve the name of the
manager of each department.
 To get the manager’s name, we need to combine each

DEPARTMENT tuple with the EMPLOYEE tuple whose SSN
value matches the MGRSSN value in the department tuple.

 We do this by using the join operation.

 DEPT_MGR DEPARTMENT MGRSSN=SSN EMPLOYEE

 MGRSSN=SSN is the join condition
 Combines each department record with the employee who

manages the department
 The join condition can also be specified as

DEPARTMENT.MGRSSN= EMPLOYEE.SSN

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 37

Example of applying the JOIN operation

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 38

Some properties of JOIN

 Consider the following JOIN operation:

 R(A1, A2, . . ., An) S(B1, B2, . . ., Bm)

 R.Ai=S.Bj

 Result is a relation Q with degree n + m attributes:

 Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.

 The resulting relation state has one tuple for each
combination of tuples—r from R and s from S, but only if

they satisfy the join condition r[Ai]=s[Bj]

 Hence, if R has nR tuples, and S has nS tuples, then the join
result will generally have less than nR * nS tuples.

 Only related tuples (based on the join condition) will appear
in the result

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 39

Some properties of JOIN

 The general case of JOIN operation is called a
Theta-join: R S

 theta

 The join condition is called theta

 Theta can be any general boolean expression on
the attributes of R and S; for example:

 R.Ai<S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)

 Most join conditions involve one or more equality
conditions “AND”ed together; for example:
 R.Ai=S.Bj AND R.Ak=S.Bl AND R.Ap=S.Bq

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 40

Binary Relational Operations: EQUIJOIN

 EQUIJOIN Operation

 The most common use of join involves join
conditions with equality comparisons only

 Such a join, where the only comparison operator
used is =, is called an EQUIJOIN.

 In the result of an EQUIJOIN we always have one
or more pairs of attributes (whose names need not
be identical) that have identical values in every
tuple.

 The JOIN seen in the previous example was an
EQUIJOIN.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 41

Binary Relational Operations:
NATURAL JOIN Operation

 NATURAL JOIN Operation

 Another variation of JOIN called NATURAL JOIN —
denoted by * — was created to get rid of the second
(superfluous) attribute in an EQUIJOIN condition.

 because one of each pair of attributes with identical values is
superfluous

 The standard definition of natural join requires that the two
join attributes, or each pair of corresponding join attributes,
have the same name in both relations

 If this is not the case, a renaming operation is applied first.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 42

Binary Relational Operations
NATURAL JOIN (contd.)

 Example: To apply a natural join on the DNUMBER attributes of
DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:

 DEPT_LOCS DEPARTMENT * DEPT_LOCATIONS

 Only attribute with the same name is DNUMBER

 An implicit join condition is created based on this attribute:

DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER

 Another example: Q R(A,B,C,D) * S(C,D,E)

 The implicit join condition includes each pair of attributes with the
same name, “AND”ed together:

 R.C=S.C AND R.D.S.D

 Result keeps only one attribute of each such pair:
 Q(A,B,C,D,E)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 43

Example of NATURAL JOIN operation

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 44

Complete Set of Relational Operations

 The set of operations including SELECT ,
PROJECT , UNION , DIFFERENCE - ,
RENAME , and CARTESIAN PRODUCT X is
called a complete set because any other
relational algebra expression can be expressed
by a combination of these five operations.

 For example:

 R S = (R S) – ((R - S) (S - R))

 R <join condition>S = <join condition> (R X S)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 45

Binary Relational Operations: DIVISION

 DIVISION Operation
 The division operation is applied to two relations

 R(Z) S(X), where X subset Z. Let Y = Z - X (and hence Z
= X Y); that is, let Y be the set of attributes of R that are
not attributes of S.

 The result of DIVISION is a relation T(Y) that includes a

tuple t if tuples tR appear in R with tR [Y] = t, and with
 tR [X] = ts for every tuple ts in S.

 For a tuple t to appear in the result T of the DIVISION, the
values in t must appear in R in combination with every tuple
in S.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 46

Example of DIVISION

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 47

Recap of Relational Algebra Operations

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 48

Additional Relational Operations:
Aggregate Functions and Grouping

 A type of request that cannot be expressed in the basic
relational algebra is to specify mathematical aggregate
functions on collections of values from the database.

 Examples of such functions include retrieving the average
or total salary of all employees or the total number of
employee tuples.
 These functions are used in simple statistical queries that

summarize information from the database tuples.

 Common functions applied to collections of numeric
values include
 SUM, AVERAGE, MAXIMUM, and MINIMUM.

 The COUNT function is used for counting tuples or
values.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 49

Aggregate Function Operation

 Use of the Aggregate Functional operation ℱ

 ℱMAX Salary (EMPLOYEE) retrieves the maximum salary value
from the EMPLOYEE relation

 ℱMIN Salary (EMPLOYEE) retrieves the minimum Salary value
from the EMPLOYEE relation

 ℱSUM Salary (EMPLOYEE) retrieves the sum of the Salary
from the EMPLOYEE relation

 ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE) computes the count
(number) of employees and their average salary

 Note: count just counts the number of rows, without removing
duplicates

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 50

Using Grouping with Aggregation

 The previous examples all summarized one or more
attributes for a set of tuples
 Maximum Salary or Count (number of) Ssn

 Grouping can be combined with Aggregate Functions
 Example: For each department, retrieve the DNO,

COUNT SSN, and AVERAGE SALARY
 A variation of aggregate operation ℱ allows this:

 Grouping attribute placed to left of symbol
 Aggregate functions to right of symbol
 DNO ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE)

 Above operation groups employees by DNO (department
number) and computes the count of employees and
average salary per department

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 51

Examples of applying aggregate functions
and grouping

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 52

Illustrating aggregate functions and
grouping

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 53

Additional Relational Operations (cont.)

 Recursive Closure Operations
 Another type of operation that, in general,

cannot be specified in the basic original
relational algebra is recursive closure.

 This operation is applied to a recursive
relationship.

 An example of a recursive operation is to
retrieve all SUPERVISEES of an EMPLOYEE
e at all levels — that is, all EMPLOYEE e’
directly supervised by e; all employees e’’
directly supervised by each employee e’; all
employees e’’’ directly supervised by each
employee e’’; and so on.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 54

Additional Relational Operations (cont.)

 Although it is possible to retrieve employees at
each level and then take their union, we cannot,
in general, specify a query such as “retrieve the
supervisees of ‘James Borg’ at all levels” without
utilizing a looping mechanism.

 The SQL3 standard includes syntax for recursive
closure.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 55

Additional Relational Operations (cont.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 56

Additional Relational Operations (cont.)

 The OUTER JOIN Operation

 In NATURAL JOIN and EQUIJOIN, tuples without a
matching (or related) tuple are eliminated from the join
result

 Tuples with null in the join attributes are also eliminated

 This amounts to loss of information.

 A set of operations, called OUTER joins, can be used when
we want to keep all the tuples in R, or all those in S, or all
those in both relations in the result of the join, regardless of
whether or not they have matching tuples in the other
relation.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 57

Additional Relational Operations (cont.)

 The left outer join operation keeps every tuple in
the first or left relation R in R S; if no matching
tuple is found in S, then the attributes of S in the
join result are filled or “padded” with null values.

 A similar operation, right outer join, keeps every
tuple in the second or right relation S in the result
of R S.

 A third operation, full outer join, denoted by
keeps all tuples in both the left and the right
relations when no matching tuples are found,
padding them with null values as needed.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 58

Additional Relational Operations (cont.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 59

Additional Relational Operations (cont.)

 OUTER UNION Operations
 The outer union operation was developed to take

the union of tuples from two relations if the
relations are not type compatible.

 This operation will take the union of tuples in two
relations R(X, Y) and S(X, Z) that are partially
compatible, meaning that only some of their
attributes, say X, are type compatible.

 The attributes that are type compatible are
represented only once in the result, and those
attributes that are not type compatible from either
relation are also kept in the result relation T(X, Y,
Z).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 60

Additional Relational Operations (cont.)

 Example: An outer union can be applied to two relations
whose schemas are STUDENT(Name, SSN, Department,
Advisor) and INSTRUCTOR(Name, SSN, Department,
Rank).
 Tuples from the two relations are matched based on having the

same combination of values of the shared attributes— Name,
SSN, Department.

 If a student is also an instructor, both Advisor and Rank will
have a value; otherwise, one of these two attributes will be null.

 The result relation STUDENT_OR_INSTRUCTOR will have the
following attributes:

STUDENT_OR_INSTRUCTOR (Name, SSN, Department,
Advisor, Rank)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 61

Examples of Queries in Relational
Algebra

 Q1: Retrieve the name and address of all employees who work for the

‘Research’ department.
 RESEARCH_DEPT DNAME=’Research’ (DEPARTMENT)

 RESEARCH_EMPS (RESEARCH_DEPT DNUMBER= DNOEMPLOYEEEMPLOYEE)

 RESULT FNAME, LNAME, ADDRESS (RESEARCH_EMPS)

 Q6: Retrieve the names of employees who have no dependents.

 ALL_EMPS SSN(EMPLOYEE)

 EMPS_WITH_DEPS(SSN) ESSN(DEPENDENT)

 EMPS_WITHOUT_DEPS (ALL_EMPS - EMPS_WITH_DEPS)

 RESULT LNAME, FNAME (EMPS_WITHOUT_DEPS * EMPLOYEE)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 62

Relational Calculus

 A relational calculus expression creates a new
relation, which is specified in terms of variables
that range over rows of the stored database
relations (in tuple calculus) or over columns of
the stored relations (in domain calculus).

 In a calculus expression, there is no order of
operations to specify how to retrieve the query
result—a calculus expression specifies only what
information the result should contain.

 This is the main distinguishing feature between
relational algebra and relational calculus.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 63

Relational Calculus

 Relational calculus is considered to be a
nonprocedural language.

 This differs from relational algebra, where we
must write a sequence of operations to specify a
retrieval request; hence relational algebra can be
considered as a procedural way of stating a
query.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 64

Tuple Relational Calculus

 The tuple relational calculus is based on specifying a
number of tuple variables.

 Each tuple variable usually ranges over a particular
database relation, meaning that the variable may take as
its value any individual tuple from that relation.

 A simple tuple relational calculus query is of the form

 {t | COND(t)}

 where t is a tuple variable and COND (t) is a conditional
expression involving t.

 The result of such a query is the set of all tuples t that
satisfy COND (t).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 65

Tuple Relational Calculus

 Example: To find the first and last names of all employees
whose salary is above $50,000, we can write the following
tuple calculus expression:

{t.FNAME, t.LNAME | EMPLOYEE(t) AND
t.SALARY>50000}

 The condition EMPLOYEE(t) specifies that the range
relation of tuple variable t is EMPLOYEE.

 The first and last name (PROJECTION FNAME, LNAME) of
each EMPLOYEE tuple t that satisfies the condition
t.SALARY>50000 (SELECTION SALARY >50000) will be
retrieved.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 66

The Existential and Universal Quantifiers

 Two special symbols called quantifiers can appear in
formulas; these are the universal quantifier () and the
existential quantifier ().

 Informally, a tuple variable t is bound if it is quantified,
meaning that it appears in an (t) or (t) clause;
otherwise, it is free.

 If F is a formula, then so are (t)(F) and (t)(F), where t
is a tuple variable.
 The formula (t)(F) is true if the formula F evaluates to true

for some (at least one) tuple assigned to free occurrences
of t in F; otherwise (t)(F) is false.

 The formula (t)(F) is true if the formula F evaluates to
true for every tuple (in the universe) assigned to free
occurrences of t in F; otherwise (t)(F) is false.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 67

The Existential and Universal Quantifiers

 is called the universal or “for all” quantifier
because every tuple in “the universe of” tuples
must make F true to make the quantified formula
true.

 is called the existential or “there exists”
quantifier because any tuple that exists in “the
universe of” tuples may make F true to make the
quantified formula true.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 68

Example Query Using Existential
Quantifier

 Retrieve the name and address of all employees who work for the
‘Research’ department. The query can be expressed as :

{t.FNAME, t.LNAME, t.ADDRESS | EMPLOYEE(t) and (d)
(DEPARTMENT(d) and d.DNAME=‘Research’ and
d.DNUMBER=t.DNO) }

 The only free tuple variables in a relational calculus expression
should be those that appear to the left of the bar (|).
 In above query, t is the only free variable; it is then bound

successively to each tuple.
 If a tuple satisfies the conditions specified in the query, the attributes

FNAME, LNAME, and ADDRESS are retrieved for each such tuple.
 The conditions EMPLOYEE (t) and DEPARTMENT(d) specify the

range relations for t and d.
 The condition d.DNAME = ‘Research’ is a selection condition and

corresponds to a SELECT operation in the relational algebra,
whereas the condition d.DNUMBER = t.DNO is a JOIN condition.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 69

Example Query Using Universal
Quantifier

 Find the names of employees who work on all the projects controlled by
department number 5. The query can be:

{e.LNAME, e.FNAME | EMPLOYEE(e) and ((x)(not(PROJECT(x)) or
not(x.DNUM=5)

OR ((w)(WORKS_ON(w) and w.ESSN=e.SSN and x.PNUMBER=w.PNO))))}

 Exclude from the universal quantification all tuples that we are not interested
in by making the condition true for all such tuples.
 The first tuples to exclude (by making them evaluate automatically to true) are

those that are not in the relation R of interest.

 In query above, using the expression not(PROJECT(x)) inside the universally
quantified formula evaluates to true all tuples x that are not in the PROJECT
relation.
 Then we exclude the tuples we are not interested in from R itself. The

expression not(x.DNUM=5) evaluates to true all tuples x that are in the project
relation but are not controlled by department 5.

 Finally, we specify a condition that must hold on all the remaining tuples in R.
 ((w)(WORKS_ON(w) and w.ESSN=e.SSN and x.PNUMBER=w.PNO)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 70

Languages Based on Tuple Relational
Calculus

 The language SQL is based on tuple calculus. It uses the
basic block structure to express the queries in tuple
calculus:
 SELECT <list of attributes>

 FROM <list of relations>

 WHERE <conditions>

 SELECT clause mentions the attributes being projected,
the FROM clause mentions the relations needed in the
query, and the WHERE clause mentions the selection as
well as the join conditions.
 SQL syntax is expanded further to accommodate other

operations. (See Chapter 8).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 71

Languages Based on Tuple Relational
Calculus

 Another language which is based on tuple
calculus is QUEL which actually uses the range
variables as in tuple calculus. Its syntax includes:

 RANGE OF <variable name> IS <relation name>

 Then it uses

 RETRIEVE <list of attributes from range variables>

 WHERE <conditions>

 This language was proposed in the relational
DBMS INGRES.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 72

The Domain Relational Calculus

 Another variation of relational calculus called the domain relational
calculus, or simply, domain calculus is equivalent to tuple calculus
and to relational algebra.

 The language called QBE (Query-By-Example) that is related to
domain calculus was developed almost concurrently to SQL at IBM
Research, Yorktown Heights, New York.

 Domain calculus was thought of as a way to explain what QBE
does.

 Domain calculus differs from tuple calculus in the type of variables
used in formulas:

 Rather than having variables range over tuples, the variables
range over single values from domains of attributes.

 To form a relation of degree n for a query result, we must have n of
these domain variables— one for each attribute.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 73

The Domain Relational Calculus

 An expression of the domain calculus is of the
form

{ x1, x2, . . ., xn |

 COND(x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m)}

 where x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m are
domain variables that range over domains (of
attributes)

 and COND is a condition or formula of the domain
relational calculus.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 74

Example Query Using Domain Calculus

 Retrieve the birthdate and address of the employee whose name is
‘John B. Smith’.

 Query :
{uv | (q) (r) (s) (t) (w) (x) (y) (z)

 (EMPLOYEE(qrstuvwxyz) and q=’John’ and r=’B’ and s=’Smith’)}
 Ten variables for the employee relation are needed, one to range

over the domain of each attribute in order.
 Of the ten variables q, r, s, . . ., z, only u and v are free.

 Specify the requested attributes, BDATE and ADDRESS, by the free
domain variables u for BDATE and v for ADDRESS.

 Specify the condition for selecting a tuple following the bar (|)—
 namely, that the sequence of values assigned to the variables

qrstuvwxyz be a tuple of the employee relation and that the values
for q (FNAME), r (MINIT), and s (LNAME) be ‘John’, ‘B’, and
‘Smith’, respectively.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 75

QBE: A Query Language Based on
Domain Calculus (Appendix C)

 This language is based on the idea of giving an example
of a query using example elements.

 An example element stands for a domain variable and is
specified as an example value preceded by the
underscore character.

 P. (called P dot) operator (for “print”) is placed in those
columns which are requested for the result of the query.

 A user may initially start giving actual values as examples,
but later can get used to providing a minimum number of
variables as example elements.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 76

QBE: A Query Language Based on
Domain Calculus (Appendix C)

 The language is very user-friendly, because it
uses minimal syntax.

 QBE was fully developed further with facilities for
grouping, aggregation, updating etc. and is
shown to be equivalent to SQL.

 The language is available under QMF (Query
Management Facility) of DB2 of IBM and has
been used in various ways by other products like
ACCESS of Microsoft, PARADOX.

 For details, see Appendix C in the text.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 77

QBE Examples

 QBE initially presents a relational schema as a
“blank schema” in which the user fills in the query
as an example:

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 78

QBE Examples

 The following domain calculus query can be successively
minimized by the user as shown:

 Query :

{uv | (q) (r) (s) (t) (w) (x) (y) (z)

 (EMPLOYEE(qrstuvwxyz) and q=‘John’ and r=‘B’ and
s=‘Smith’)}

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 79

QBE Examples

 Specifying complex conditions in QBE:

 A technique called the “condition box” is used in
QBE to state more involved Boolean expressions
as conditions.

 The C.4(a) gives employees who work on either
project 1 or 2, whereas the query in C.4(b) gives
those who work on both the projects.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 80

QBE Examples

 Illustrating join in QBE. The join is simple
accomplished by using the same example
element in the columns being joined. Note that
the Result is set us as an independent table.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 81

Chapter Summary

 Relational Algebra

 Unary Relational Operations

 Relational Algebra Operations From Set Theory

 Binary Relational Operations

 Additional Relational Operations

 Examples of Queries in Relational Algebra

 Relational Calculus

 Tuple Relational Calculus

 Domain Relational Calculus

 Overview of the QBE language (appendix C)

