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ABSTRACT

This paper presents the design and implementation of the O-Raid system which has been
developed by extending an existing distributed database system called Raid. The system design encom-
passes the simplicity of the relational model, the extensibility of the object-oriented model, and the
interactive aspects of language-oriented editors. The resulﬁng system has several novel 'properties.
Objects, classes, and inheritance are supported together with a predicate-based relational query language.
A hierarchy of column protocols define the common properties of objects in a particular relation column.
Relations may contain heterogeneous objects that can individually evolve by being reclassified. Special
facilities are provided to reduce the data search in a relation containing complex objects. A structure-
editing interface integrated with the query language allows the editing of complex objects. A special
query supports continuous display of objects in the database.

"This research is supported by NASA and AIRMICS under grant pumber NAG-1-676, and UNISYS.



1. INTRODUCTION

To deal with complex database applications such as those requiring design databases used in
manufacturing, and geometric, geographical and image databases, there is a need to extend the relational
database model and its implementation. Several research efforts are working to develop an independent
model based on the concept of objects. The object-oriented model does not support many of the time
tested facilities offered by the relational model such as queries for projecting and joining relations. Since
much research has been done on both the theory and implementation of the relational model, we extend
this research to implement a hybrid object-relation model. Our design ideas draw upon the research in
object-oriented systems and language oriented editors. This approach is of interest to venders of existing

relational implementations.

We have engincered this model in the O-Raid system by extending an existing relational database
system called Raid [3]. Raid is a distributed database system that provides complete support for transac-
tion processing, including transparency to concurrent access, crash recovery, distribution of data, and
atomicity. Database sites communicate over an Ethernet network. More details of Raid are given in sec-
tion 3 under implementation of O-Raid. Other systems supporting this model include Postgres [24, 31],
Exodus [7], and DSM [3]. In O-Raid, we take the Postgres approach of extending a relational model with
object-oriented features. Unique features of our approach include a hierarchy of column protocols, facili-
ties to reduce the data search for complex objects, relations containing heterogeneous objects that can
individually evolve by being reclassified, an integrated query and structure editing language, and continu-
ous display of objects.

In O-Raid, we support the object-relation model by allowing relation attributes to be arbitrary
objects. Each object is associated with an instance protocol describing its individual behavior and a
column protocol describing its collective behavior as part of a relation column. These behaviors are

defined by classes and column classes respectively, which are arranged in parallel inheritance hierarchies.

O-Raid provides an SQL-like query language for creating, viewing, and modifying objects. A
query language, however, is insufficient for manipulating complex objects, since new users of such object
have to leam their elaborate protocol and structure. Therefore, O-Raid also provides a structure-editing
language allowing the user to see both the structure and protocol of the objects being edited. Both
languages are useful for manipulating objects: The query language provides a way to make a set of
changes in “‘batch’’, modify an object without going through the overhead of displaying it, and select a
set of objects for editing, while the structure-editing language provides an interactive and visual interface
for making incremental changes. The query and structure-editing languages are ‘‘integrated’’ in the sense

that queries can be used as structure-editing commands.

O-Raid allows a user to enter the editor in the ‘‘readonly’’ mode to display a set of objects. The
visual representations of these objects are kept consistent with their values in the database. As a result a
user can continuously monitor the values of objects without going through the overhead of ““polling’” the

System.

In the rest of this introduction, we present our understanding of the limitations of the relational

and object models. We motivate the reader towards the object-relation model. In section 2, we present



our perception of this model in the context of the O-Raid system. In section 3, we present the software
changes that are necessary to engineer O-Raid from the existing Raid system. In appendix A, we explain
how we accomplish the implementation of O-Raid. In section 4, we outline the directions for further
research that will make the relational database systems more responsive to new applications.

1.1. Motivation for the Object-Relation Data Model

In the following discussion we motivate the object-relation model by discussing the limitations of
the relational and object-oriented model.

Limitations of the Relational Model

The relational model [8] represents real-world entities and their relationships in sets or relations.
A relation can be considered as a two-dimensional table where each row represents a different entity, and
each column represents a common property of the entities in the relation. In relational model terminology,
the rows and columns are called tuples and attributes respectively. Relational database provides query
languages based on alebraic and predicate calculus languages.

While the relational model is simple, it has several limitations that are well documented in the
database literature (recently in {4, 24,26] and {29] ). These limitations include lack of support for:

. Complex Structures: Typically, a relational database restricts attributes to integers, reals, and
fixed-length strings. As a result, complex data structures such as nested records, unions, and
sequences need to be flattened into these simpler values. This limitation results in both awkward-
ness of use and inefficiency, as several relations may have to be joined to retrieve the flattened

representation of a complex entity.

. Semantic Checks: A relational database cannot ensure that only semantically correct modifications
are made to the database. For instance, it cannot ensure that an attribute is readonly or that
modifications to it are consistent with values of other related attributes. As a result, the database
may be left in an inconsistent state unless a separate subsystem to enforce integrity assertions is
invoked.

U Semantic Actions: Often a user may desire that an update to an entity result in certain side effects
or semantic actions. For instance, a user viewing an entity may wish to display its new value
whenever the entity is updated. Similarly, a system administrator may want a report printed when-
ever a new bug is reported by a user. In the absence of support for such actions, each user who
updates the entity has to ensure that the appropriate semantic action occurs. As a result, the sys-

tem is less automated and prone to missed actions.

. Generalization: A user cannot create new entities as special cases of existing entities. As a result,
information has to be duplicated in all specializations of a generic structure. Changes to the
definition of the generic structure require changes to all its specializations.

Several solutions have been proposed to overcome these limitations. These include the logical
relational design methodology [32), alerters, triggers, and constraints [5,6,24) and the object-oriented
data model [11, 15,18,26].



The Object-Oriented Model and Its Limitations

The object-oriented model was motivated initially by the Smalltalk programming language [13].
In Smalltalk, information is encapsulated in objects, which respond to messages from other objects. In
response to a message, an object executes a method which can manipulate the state of the object stored in
the instance variables of the object. Each object is an instance of a class, which describes the instance
variables and methods of the object. A class can be a subclass of another class, in which case it inherits

the instance variables and methods of its superclass.

‘While the object-oriented model uses a terminology distinct from the one used in the relational
model, components of it have direct counterparts in the relational model. Classes corresponds to rela-
tions, objects corresponds to tuples, instance variables correspond to attributes, and messages correspond
to relational queries. However, the notions of user-defined classes and subclassing have no counterparts
in the relational model. These features allow the object-oriented model to overcome the limitations of the

relational model, as shown below:

. Complex Data Structures: Smalltalk class declarations can be used to describe complex structures
such as nested records, arrays, sequences (called collections), and unions (simulated by subclass-
ing).

. Semantic Checks and Actions: An object cannot directly manipulate the instance variables of
another object. Instead, it needs to execute the methods of the object, which in turn can change
the state of the object. These methods can ensure that only semantically correct changes are made

to the object. Moreover, they can send messages to other objects to perform semantic actions.

. Generalization: Subclassing allows new classes to be created as specializations of existing classes.

The Smalltalk version of the object-oriented model, however has several limitations of its own

(see [17] for a related discussion of this topic ):

. Limited Object Space: The original Smalltalk-80 system required that all objects fit in a single
physical address space. Later implementations, such as LOOM [14], expanded the object space to
a single virtual address space, which is still fairly small.

. Lack of Sharing and Protection: Smalltalk is a single user system and thus does not support shar-
ing or protection.

. Lack of Transactions: Smalltalk does not support the notion of a transaction. As a result, data
may be left in an inconsistent state if the system crashes while a method is executing.

. Programmer Overhead: For each class, a programmer has to explicitly provide methods for read-
ing and writing its instance variables. Thus definition of a new class incurs more overhead than

definition of a new relation, even when no special semantic checks or actions are necessary.

. Lack of Predicate-Based Query Language: Unlike a relation, a class can be queried only for all its
instances. It does not support predicate-based selections, projections, and joins provided by rela-
tional databases.



Some of these limitations are not inherent to the general notion of objects, and have been over-
come in subsequent object-oriented systems designed specifically to meet-these needs. The limited object
space problem has been reduced in GemStone [17], Eden [1], Clouds [30], and Argus[16], by letting
objects occupy a large number of independent address spaces instead of a single contiguous address
space. Sharing and protection are supported by Eden, Clouds and GemStone by allowing only objects
with appropriate access rights to send messages to an object. (The access rights are stored in capability
lists in Eden and Clouds and in access lists in GemStone). Transactions are supported in GemStone,
Clouds, and Argus by ensuring that certain sequences of actions occur atomically.

The Orion [2] system illustrates how the problem of programmer overhead and lack of support for
a predicate-based selection can be reduced. For each instance variable declared in a class, the system
antomatically provides a message (with the same name) that can be used to read that variable in each
instance of the class. Orion also embellishes the class protocol with the message select which may be
used to perform predicate-based selections on members of the class. However, Orion, like other object-
oriented systems, does not provide messages supporting projections or joins. The reason for this limita-
tion is that object-oriented systems require that messages return objects of existing classes. Therefore
‘‘projection’” messages cannot be supported since no existing class may define the subset of the instance
variables of an object projected out by the message. Similarly, *‘join’” messages cannot be supported
since no existing class may define (a subset) of the union of the instance variables of two objects.
Perhaps appropriate classes can be dynamically created when such messages are sent. However, it is not
clear what protocol they should define. Moreover, the overhead of creating a new class at query-
resolution time may be unacceptible. Therefore, the inability to support projections and joins seems a
fundamental property of the object-oriented model.

Steps Towards the Object-Relation Model

The above discussion shows that both the relational and object-oriented models have inherent limi-
tations. The former does not support complex data, semantic checks and actions, and generalization,
while the latter does not support projections and joins. We explore the notion of a hybrid object-relation
model. This model supports objects, classes, and inheritance (object-oriented features, as defined in [33]
) and predicate-based selections, joins, and projections. Our definition is consistent with the usage of this

term in [25). In section 2, we present our interpretation of this model in detail.

Several systems currently support this model uvsing different approaches. Postgres [24, 313, sup-
ports it by extending the Ingres relational model with object-like entities. Like Ingres, Postigres supports
relations with attributes. However, each tuple in a relation essentially forms an object consisting of data
attributes (instance variables) and procedures (methods). A new relation can be specified as a ‘‘sub-
relation’” of an existing relation, in which case it inherits the attributes of the ““super-relation”’. Postgres
extends the QUEL query language to allow execution of procedure attributes and specify inheritance
among relations.

Data atiributes in Postgres are restricted to simple values and arrays. Thus tuples cannot store

complex structures such as hierarchical records and unions. Postgres requires that these and other com-
plex structures be accessed via procedures responsible for extracting the flattened representation of these



structures stored in multiple relations. The inefficiency of joining these relations is reduced by precom-
puting or caching the results of a procedure attribute in the field itself (for small answers) or in a separate

relation (for large answers).

Exodus [7}, and DSM use the converse approach of extending an object-oriented system with
relation-like entities. Exodus provides sets of object values and references, and supports queries for
predicate-based selections, joins, and projections. However, the results of projections and joins cannot in

general be stored in new sets since sets need to contain objects of existing types.

DSM provides a special class called relation, which is a subclass of unordered collection, and pro-
vides the functionality of binary and qualified relations, which are stored as hash tables in virtual
memory. Currently, it does not support joins among these relations, or relations of degree greater than
three. Projection messages are provided that can dynamically create relations of degree one, two or three.

An extension of DSM supporting relations of arbitrary degree will be reported soon.

The following section describes how we have engineered this model in O-Raid.

2. OBJECT-RELATION MODEL IN O-RAID

In O-Raid, we support the object-relation model by extending the Raid relational model. The

main components of O-Raid include:

Relations with objects as attribute values.

. Class declarations, used for defining instance and column protocols.
. Basic SQL-like queries for creating, viewing, and modifying objects.
. Heterogeneous objects in a relation.

. Structure-editing of objects selected by an EDIT query.

. Integration of structure-editing and query languages by allowing manipulation of window rela-
tions.

. Continuous display of objects selected by a DISPLAY query.

These components are discussed below.

2.1. Relations

O-Raid relations are like Raid relations except that attributes can be objects described by user-
defined classes. These objects can be composite and have attributes of their own. A tuple, however, is
not an object, that is, it is not described by an existing class. This feature allows us to dynamically create
relations containing elements that do not belong to existing classes. A single-attribute tuple may, how-
ever, be considered an object since there is no distinction between the tuple and its unique attribute. A
composite attribute may be used as a key if its class has defined comparison operators obeying transtivity

and other rules described in [31] that are necessary for using that attribute as an index.

Each column of a relation is represented by a column object which is an instance of a column
class. This object contains the common properties of the objects in that column such as font, indentation,



access list, title of the column, and common state shared by all objects in the column.

2.2. Class Declarations

An O-Raid class declaration defines the individual and collective behavior of instances of the
class. These behaviors are defined by the instance protocol and column protocol parts respectively of the

class declaration.
Instance Protocol

The instance protocol defines the instance variables, attributes, and methods of the object. The
instance variables, like their Smalltalk counterparts, keep the private state of the object, while the instance
attributes keep the public state of the object. An instance attribute may be declared as readonly, in which
case it can be examined by an external object but may be modified only by the instance methods of the
object. The instance methods define the set of messages to which instances of the class respond, and are

compiled into machine code.

Dividing the state of an object into instance variables, and readonly and modifiable attributes
serves the following purpose: It relieves the programmer from the overhead of defining trivial methods
that simply read and write its state, while allowing him to support data abstraction, semantic checks, and
semantic actions when necessary. Instance variables can be used to keep implementation«iependeni data
of the object. Readonly attributes can be used to keep public data associated with semantic checks and
actions. Modifiable attributes can be used to keep public data that does not need such protection. Thus a
user can use the power of the object-oriented model without sacrificing the simplicity of the relational

- model.
Column Protocol

The column protocol part of an O-Raid class declaration corresponds to the class protocol part of a
Smalltalk class declaration. Like the latter, it defines the collective behavior of instances of the class.
The main difference is that the class protocol defines a single class object representing all instances of the
class while the column protocol defines several column objects, each one of representing a column in
which objects of that class have been put.

A column object, is like an ordinary object, has a private, public readable, and public medifiable
state (defined by the column variables, readonly attributes, and modifiable attributes respectively), and can
respond to messages by executing column methods. The state of a column object is accessible to all
members of the column it represents, just as the state of a Smalltalk class object is accessible to all

members of the class.

The class of a column object is called a column class, and corresponds to a Smalltalk metaclass.
Each (non-column) class, C, is associated with a unique column class, C column. These two classes are
defined by the instance and column protocols respectively of the class declaration associated with C.
Like Smalltalk metaclasses, column classes are placed in an inheritance hierarchy of their own. This
hierarchy parallels the inberitance hierarchy of the member classes. That is, if class A is a subclass of

class B, then A column is a subclass of B column.



The column class object column, is the superclass of all column classes, and defines properties
common to all columns such as time of last modification, number of elements in the column, title of the
column, window in which the objects are displayed, shared state, access list, etc. These properties can be
overriddenfaugmented in each column class. (The class object is .lhe superclass of all non-column

classes.)

Note that column classes do not compete with the notion of Smalltalk metaclasses. In O-Raid
metaclasses can also be supported by adding a class protocol part to a class description. This protocol
would define the collective behavior of all instances of the class instead of the instances in a certain
column of a relation. In a later version of O-Raid, we plan to explore support for Smalltalk-like metac-

lasses.

The following cxample illustrates class declarations in O-Raid for classes shape, rectangle, and

triangle.

class shape
superclass object
column attributes

int Max_x, Min_x, Max_y, Min_y;
instance attributes

int x_coord, y_coord; /* coordinates of the centroid of the object */
instance methods

int distance (other_shape)

shape other_shape
{..}

bool "<" (other_shape)
shape other_shape
{...}

The instance attributes x_coord, and y coord are kept in each instance of a shape and contain the coordi-
nates of its centroid. The instance method distance, calculates the distance between an instance and the
object other shape. The instance method “<” compares the object with another object. The column
attributes Max_x, Min_x, Max_y, and Min_y are kept in each relation column in which shapes are stored,

and defines the area to which these objects are confined.

Class rectangle, defining rectangles, can be created as subclass of shape:



class rectangle
superclass shape
instance variables
int lower_left_x, lower_left_y, upper_right_x, upper_right_y;
instance methods
void init(...)

int area()

void magnify(...)

In a similar manner class triangle can be created to describe triangles:

class triangle
superclass shape
instance variables
int x1, y1, x2, y2, x3, y3;
instance methods
void init(...)

int area()

void magnify (...)

These classes embellish the instance protocol of shape with the messages init, area, and magnify. The
descriptions of instances of these objects are stored in variables instead of attributes to allow the imple-
mentation of these objects to be changed without affecting their interface.

Predicate Methods

O-Raid supports predicate methods to provide efficient search of complex structures. We
motivate this concept through an example. Assume that a boolean method, overlap, is defined in class
rectangle:

bool overlap (rect)

rectangle rect;

{ return( (lower_left_x <= rect.upper_right_x) & (lower_left_y <= rect.upper_right_y) & ...))}
This method determines if the current object overlaps with its argument. Now assume that the method is
used to select from a set of rectangles all those that overlap a particular rectangle. O-Raid has no choice
but to invoke the compiled method on all members of the relation and return those that satisfy the condi-
tion. The search could be made more, efficient, however, if the variables lower left x, lower left y, etc
that are used in the expression had been defined as keys in the relation containing these rectangles. The
system could then use a suitable physical representation of the relation such as a multi-index K-D-B
tree [22] to reduce the search space at query resolution. However, the query processor would need to

interpret this expression in order to perform the comparisons.

O-Raid supports interpretation of methods by allowing an instance method to be made a predicate
method. Such a method contains a boolean expression that is interpreted by the query processor at run
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time. The query processor uses the expression to determine its search path through a B-Tree or K-D-B
tree created to store the relation. The user can indicate the keys of this relation at relation-creation time,
as described in section 2.3, or at class creation time by using an indices declaration. For instance, in the
above example, the user may specify upper right x, and upper left y as keys at class creation time by
declaring:

indices upper_right_x, upper_left_y;

Any relation containing rectangles will then use upper _right x, and upper left y as keys.

2.3. Queries

O-Raid provides SQL-like queries for creating relations, inserting and deleting tuples in a relation,
reading and writing attributes, and sending messages to objects. The syntax for the query language is
given in appendix B. We illustrate its use by the following examples.

A user may create a new relation called triangles
CREATE INDEX ON (obj) triangles (name: char{20], obj: triangle)

with attributes name and obj and key obj, and then add a particular element to it
INSERT INTO triangles
VALUES (name = "T1", obj = (x_coord: 0, y_coord: 0), obj init(...))
sending it the appropriate initializing message. In the above example, *‘(x_coord: 0, y_coord: 0)’’ is an
aggregate describing a constant object. Notice that only the modifiable instance attributes x_coord, and
¥_coord can be initialized directly. The instance variables xI, yl, ...., ¥3 have to be initialized by sending
the init message. The relation can be updated by either assigning new values 1o its objects or sending
them messages as illustrated below:
UPDATE INTO triangles __
SET (obj = (x_coord: 1, y_coord: 1), obj magnify(...))
WHERE ((obj < (x_coord: 0, y_coord:0)) & ((obj area()) <= 9))
The predicates involved in a WHERE clause can use results of method invocations, as illustrated by the
above example. Since tuples in O-Raid are not objects, they can be projected and stored in new relations,
as shown below:
SELECT (name) INTO temp FROM triangles WHERE ((obj.x_coord > 0) & (obj.y_coord > 0))

Queries are also provided to manipulate the column objects associated with the columns of the
relation. For instance, a user may update the column attributes of the obj column of triangles by invok-
ing

UPDATE INTO triangles
SET (obj = (Max_x: 100, ..., Min_y: 0, title: "Object™))
The query updates the attributes Max_x, Max y, Min_x, Min_y, which are declared in class shape column,
and title, which is inherited from class object column. The column name obj can be used to specify both
an individual object and the relation object since names in the column protocol do not conflict with

names in the instance protocol.
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2.4. Support for Heterogeneous Objects

0O-Raid relation columns can contain heterogeneous objects, that is, instances of different classes.
One way to create such a column is to specify a common superclass of the valid objects in the column.
Any object that has that class in its superclass chain may be put in that column. Such a column is
specified by putting a "*" after the name of the common superclass. For instance, the relation shapes
containing any shape may be created as follows: '

CREATE INDEX ON (obj.x_coord, obj.y_coord)
shapes (name: char[20], obj: shape*)

Only attributes of the named superclass can be used as keys, even if the current objects in the column
have a more specialized common superclass. This technique for supporting heterogeneous objects is
derived from object-oriented systems such as GemStone that allow elements in a collection to belong to
any subclass of a given class.

Another way to create a heterogeneous column is to enumerate the various classes to which
objects in the column can belong. This feature may be useful if a user wants to prevent the relation from
containing objects of any current or future subclass. For instance, a user may want to create a relation
containing rectangles and triangles but not all their specializations such as windows. Such a relation may
be created in O-Raid by executing the query

CREATE INDEX ON (obj.x_coord, obj.y_coord)
triangles_or_rectangles (name: char[20], obj: (triangle + rectangle)
Only attributes defined in the common superclasses of the enumerated classes can be used as keys.

The system keeps with each object in a heterogeneous column a tag indicating its class so that it
may be accessed in a type-safe manner. This class is specified when the object is inserted into the rela-
tion, as shown below:

INSERT INTO triangles_or_rectangles
VALUES (name = "T1", (triangle) obj = (x_coord: 0, y_coord: 0), obj init(...))

Objects often evolve and change their characteristics. For instance, a person object may become a
student object, and later an employee object. Similarly, the shape of an object may change from a trian-
gle object to a rectangle object. O-Raid supports such evolution by allowing the class of an object in a
heterogeneous column to be changed to one of the valid classes for that column. Appropriate fields are
added and deleted in the tuple for that object while the values of common ficlds are left unchanged. A
special reclassify message may be sent to an object to change its class. Thus the query

UPDATE INTO triangles_or_rectangles VALUES (obj reclassify (rectangle), obj init(...))
WHERE (name == "T1")
changes a triangle to a rectangle while maintaining its position.

This technique of reclassifying individual objects complements the work done in GemStone [21]
and Orion [15] to allow evolution of all objects in a class by supporting changes to the class definition.

We plan to explore such evolution in the next version of O-Raid.
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2.5. Structure Editing

The query interface requires the user to know the names and types of the instance and column
attributes of the objects in a relation and the messages that can be send to them. For instance, a user who
enters the query

UPDATE INTO rel SET (obj = (f1: (f11: 3, £12: true), £2 = "foo", obj.f1 m1(3, true))
WHERE (0bj.f3 = 3.0)
needs to know that f1 and f2 are modifiable attributes of obj, obj.f1 refers to a structured object consisting
of modifiable attributes f77 and f12, and responding to the message ml, and so on.

Relational databases supporting form-interfaces [23] have illustrated how the problem of
remembering attribute names can be eliminated. These systems display tuples in forms, which contain
slots for the names and values of the attributes. For instance, a tuple with attributes fI and f2 may be
displayed in the form

f1: 5
f2: "a string”
which may be edited to modify the attributes.

The form interface model cannot be directly applied to O-Raid since it assumes that the structure
of a tuple is fixed, and that the attributes of a relation are simple values. However, in O-Raid, tuples can
have a variable structure, and objects can be arbitrarily nested. Therefore, we have developed a more
sophisticated model of interaction based on the notion of structure-editing [19] that is suitable for systems
supporting complex objects.

We illustrate this interaction model with the following example:
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class person

superclass object

instance attributes
char[20] name;
int age;
char[20] address;
char[20] e_mail;
char [20] tel_no;

class student

superclass person

instance readonly attributes
char[20] major;
char[20] minor;
float gpa;

class db_student
superclass student
column attributes
real A_cutoff, B_cutoff, C_cutoff, D_cutoff;
instance readonly attributes
enum {A, B, C, D} grade;
instance attributes
db_scores scores;

instance methods
calc_new_db_grade () {...};
Assume that the following relation is defined
CREATE INDEX ON (std.name) std_rel (std: student®)

and populated with appropriate students. A user may now edit selected tuples from this relation by using
a special EDIT query:
EDIT (std) INTO windowl FROM std_rel WHERE (std.gpa < 3.5)

This query acquires write locks on all the selected objects, retrieves them into a window relation (essen-
tially an editor buffer) and displays the relation in a separate window supporting structure-editing. This
window contains visual representations of the column attributes and methods of the selected columns and
the instance attributes and methods of the selected objects. All information, except the key fields is ini-
tially elided, as shown below:
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<std column ..>

name: Joe Doe
<object..>
<person...>
<student..>
<db_student...>

name: Henry Smith
<object...>
<person...>
<student..>

In this display, the (non-key) attributes and methods declared in a class are grouped together. Thus the
placeholder “‘<student...>"" stands for all attributes and methods of the student that are declared in the

class student.

A user may execute the expand editor command to display elided information. For instance, he

2 ¢

may expand the placeholders “*<std column..>"’, “‘<db_student..>"" (in Joe Doe’s entry), and ‘‘<per-

son...>”” (in Henry Smith’s entry), to change the display to:

A_cutoff: 80 B_cutoff: 70 C_cutoff: 55 D_cutoff: 40

name: Joe Doe
<object...>
<person...>
<student..>
grade: B
<scores...>
calc_new_db_grade():

name: Henry Smith
<object..>
age: 21
address: 101 Shaded Lane, Paradise, IN 47900
e_mail: smith@paradise.cty
tel_no: 743-1234
<student..>

The user may now make Henry Smith a db_student by executing the reclassify command and

choosing the new class from a menu of valid classes. The system responds with a template:
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name: Henry Smith
<object...>
age: 21
address: 101 Shaded Lane, Paradise, IN 47900
e_mail: smith@paradise.edu
tel_no: 743-1234
<student..>
grade: 7
hw: <int>
lab: <int>
exam: <int>
calc_new_db_grade():
containing placeholders for all the uninitialized modifiable attributes, which may be replaced with valid

values.

O-Raid also provides commands to update the modifiable attributes of the displayed objects,
invoke a method after filling its argument slots, delete an object to remove it from the database, fill a
template to add a new object, commit the editing changes in the database, and erase the display and
release write locks to the objects that were displayed.

We have illustrated above the default interface for editing objects. A user can customize this
interface by specifying the values of display attributes of the objects displayed. These attributes are simi-
lar to Dost [10] attributes for displaying Mesa data structures, and determine the alignment, elided
representation, prompt, etc of the displayed objects.

The notion of structure-editing has been mainly explored in the context of programming
languages. Several researchers have argued, however, for using it as a general paradigm for interac-
tion [9, 12,20,28]. We believe it is particularly suitable in our environment since we expect to support
objects with complex structure and semantics.

The EDIT query for loading objects in a relation window has some similarity to a Postgres
FETCH command loading a set of tuples in a portal. The difference between the two is that a relation
window forms a buffer for a system-provided structure editor while a portal forms a buffer for some
application program, which is responsible for providing a user interface for manipulating the data. We
have decided to automatically provide such an interface because it is hard to generate manually, and can

form, together with the query language, a standard default interface for interaction.

2.6. Integration of Structure Editing and Query Language

A user can modify an object in two ways: She can compose an appropriate SQL-like query or edit
its visual representation. We support both interfaces because neither interface, individually, is suitable for
all interaction. The query interface provides a way to (a) make a set of changes in “‘batch’’, (b) modify
an object without going through the overhead of displaying it, and (c) select a set of objects for editing.
On the other hand the editing interface provides an interactive and visual interface to make individual

changes.

In O-Raid, we have ‘‘integrated’’ the two interfaces by allowing the query language to be used for

manipulating window relations, which store the information buffered in an edit window. For instance, a
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user can execute the query
UPDATE INTO window1 SET (std.scores.hw += 3, std calc_new_db_grade())
WHERE (std.scores.hw <= 25);
to increment the Aw fields of all the displayed students, and calculate and display their new grades. A
this point, only the window relation is modified. The database is modified later when the write command

is executed.

The query language can also be used to invoke arbitrary editing commands such as elide, and
expand. For instance, a user can invoke the query
EXPAND (std.scores) FROM windowl
WHERE (std.grade = A)
to expand the score attribute of all students who have received the A grade.

A query language component of a structure-editor corresponds essentially to pattern-based com-
ponent of a text editor. For instance, the UPDATE query corresponds to a ‘‘substitute-pattern’” text edit-
ing command and the SELECT query corresponds to a “‘find pattern’ command. Unlike, the pattern-
based text editing language, the query language understands the structure and semantics of the objects
being edited. For instance, it allows a user expand the contents of structured objects and send messages

to them, as illustrated by the above examples.

2.7. The Display Query

Often a user wishes to continuously view a set of objects. For instance, a system administrator
may want to continuously monitor the current status of bugs, and a manager may wish to continuously
monitor the status of various projects. In the absence of a facility toa support this task, a user needs to
““poll”’ the system by continuously querying the state of objects. Therefore, in O-Raid we provide a
DISPLAY query for continuously displaying the state of a set of objects in a display window. For
instance a user may execute the query

DISPLAY (proj) INTO window2 FROM proj_rel WHERE (proj.status == incomplete)

to display all projects whose status is incomplete. The window is updated whenever a displayed object is
changed. All editor commands and queries that do not update values.or send messages can be invoked on
the objects displayed in the window. Thus the user essentially invokes the structure editor in a

‘‘readonly” mode.

The DISPLAY query corresponds to an alerter in Postgres. The difference between the two is that
the former continuously informs the user about changes to objects while the latter informs some applica-
tion program about these changes, which can then communicate them to the user. We believe that the
usefulness and generality of this feature justifies its inclusion in the set of default facilities, which needs
to also contain an alerter-like mechanism for building application-specific displays.

3. IMPLEMENTATION OF THE O-RAID MODEL

We are implementing O-Raid by extending the Raid implementation. The Raid system is built on
top of UNIX, and it runs on Sun workstations and VAXen. The complete system is implemented in 20K
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lines of C code.
Overview of Raid

Figure 1 depicts the six major subsystems in Raid that reside on each site: User Interface (UI),
Action Driver (AD), Atomicity Controller (AC), Concurrency Controller (CC), Access Manager (AM)
and Replication Controller (RC). Each subsystem has been implemented as a server, and provides a very
general interface. Ul is a front-end invoked by a user to process queries on a database. It parses the
queries and passes them to AD, which executes them and puts the updated data into a differential file.
The transaction history, composed of timestamps of different actions, is sent to AC for validation. AC
ensures global atomicity among all sites using a two-phase commit protocol. It sends the transaction his-
tory to all other ACs and its local CC for timestamp validation. CC provides different kinds of con-
currency control methods, e.g. simple locking, read/write locking, timestamping, and conflict graph cycle
detection. After the transaction is globally committed, the originating AD sends the differential file to
AM’s in other sites, which merge the differential file to the databases in a recoverable manner. RC is
responsible for replication control. It allows continuing processing on an operational site while other sites
are failing or recovering, or when the site’s connections to a subset of sites is lost or restored due to a
network partitioning. It uses the read-one/write-all-available strategy [3] for updating replicated copies
of data.

remote AMs

RC

local
database AM AC

cc

ul = AD remote ACs
user 2

Yy
remote AMs

Figure 1: Raid Site Architecture
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Implementation of O-Raid

To implement O-Raid, are only modifying UI, AD, and AM. Other subsystems are not affected at
this stage and execute as in Raid. The granularity of concurrency control remains at the tuple level and
the original method of assigning a unique tuple identifier based on database identifier, relation identifier,
and tuple logical address is used. Transaction processing facilities of Raid remain the same; atomicity
control, concurrency control, and replication conirol are also unchanged since the contents of the transac-
tion history remain the same. The history contains read/write timestamps of tuples as before. Communica-
tion facilities also remain unchanged. Raid provides a Long Datagram (1.LDG) protocol which, can be
used for communication of large objects. LDG is identical to the Arpanet UDP protocol except that it
places no restriction on packet sizes. It has been built on top of UDP; each LDG packet is fragmented if
necessary, and then sent using UDP. At the destination, fragments are collected and reassembled. The
Raid message format is very general. It consists of a header composed of a message type, and sender
address followed by a sequence of ASCII bytes describing the text of the message. Servers are free to

interpret the message text in their own ways, and hence the message format is unchanged in O-Raid.

A new parser has been built to recognize the new query syntax. A precompiler is being developed
to translate class declarations into C code and to produce tables describing the class schema. These tables
are used by both the new Ul and the new AD. The new Ul supports the extended SQL query language
and structure-editing interface. It maintains in memory hierarchical representations of objects displayed in
the window, which, together with the class and relational schema descriptions, are used to support the
structure-editing commands. As before, it passes the parsed query to AD, which is the heart of the sys-
tem, and is organized as six components: Query Processor (QP), Simple Query Processor (SQP), Data-
base Access System (DAS), Object Manager (OM), Buffer System (BS), and UNIX File System (FS).

OM is the major new component added to the existing AD. It is a collection of subroutines
responsible for accessing objects and executing operations on them. It includes functions to return run-
time addresses of methods, size of an object, offset of an object within a tuple, etc. QP and SQP process
queries, which may invoke methods in objects. These methods are loaded if necessary from the database.
A cache of most frequently methods is kept in virtual memory and methods defined in commonly used
classes are preloaded. A Class Control Block table maps method names to their addresses.

DAS has been extended to provide more appropriate indexing methods including K-D-B-Trees.
K-D-B-Tree indexing has been built to provide multi-key indexing which is useful for relriéving complex
structures such as geometric objects For example, if we have a relation consisting of instances of rectan-
gles we could use lower left x, lower left y, upper_right x, and upper right y as indices to efficiently
search for rectangles, as discussed in section 2.2. In this case, the K-D-B-Tree used to store the relation
becomes a 4-D-B-Tree. All 4 attributes are utilized in the search algorithm and the tree is kept well bal-

anced in all four dimensions.

In appendix A we give details and problems of extending AD to support the features of O-Raid.
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4. FUTURE WORK
Planned Work in O-Raid

We plan to extend the design in several ways. Currently, we do not allow sharing of objects, or
nested relations. We plan to support these features in the next version of O-Raid. We also plan to pro-
vide facilities to convert between database objects and the data structures of popular programming
languages in order to reduce the ‘‘impedance mismatch;’ problem. Finally, we plan to pursue the con-
cepts of class evolution, generating ‘‘friendly’” textual displays for complex objects, supporting alerters
and triggers, strategies for caching objects, classes, and method results, and support fbr Smalltalk-like

metaclasses.

Our immediate goal is to complete the implementation of the current design. This will provide an
estimate of the effort required to extend a relational model with objéct-orientcd features. We will use the
system to store geometric objects being developed as part of the CAPO (Computing About Physical
Objects) project at Purdue, and Corporate Army databases containing geographical data. We also plan to
use our implementation to test ideas about using the semantics of objects to increase concurrency during

partitioning of a replicated database.
Future Directions for Research

Defining tuples and relations as special entities distinct from objects allows the use of a relational
query language in an object-oriented world, but makes these non-objects ‘‘second-class citizens™ that
cannot be associated with user-defined protocols. This problem is reduced in O-Raid by making tuple -
fields and relation columns as first-class objects. A one-column relation is represented by its column
object, and tuples in it are represented by their singleton fields. Nevertheless, it would be useful to pro-
vide relation and tuple protocols defining the behavior of multi-column relations. Providing this facility
without sacrificing the relational query language requires a way of defining and efficiently creating rela-
tion classes at query-resolution time. The work being done in extending DSM is expected to shed some
light on possible solutions to this problem.

The default query/structure-editing interface described here allows display and editing of only tex-
tual representations of objects. It would be useful if it could be extended to support graphical presenta-
tions of objects. One approach to support this facility is to let each object provide a description of its
graphical/textual presentation, which is shown whenever the object is displayed in an edit or query win-
dow. A problem with this approach is that the editor cannot support modification of this presentation
since it does not know the mapping between the values of an object and its presentations. For example, if
an instance of rectangle displayed itself as a rectangle on the screen, then the editor would not know how
to change the variables lower left x, lower_left_y, etc in response to editing of the rectangle. We are
currently exploring a method that lets the object provide the system with a high-level description of the
mapping between its presentations and its values, which is used by the editor to display and modify the
object. An alternate approach is to let each object implement its editing interface, using perhaps a tech-
nique derived from the Smalltalk Model-View-Controller concept [27].

Finally, for the success of the object-relation model, it would be useful to build a programming

environment around it that replaces or augments text files, hierarchical directories, command interpreters,
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and text editors of current environments with relations of objects, hierarchical relations, query inter-

preters, and graphical/structure-editors respectively.

5. SUMMARY

An object-relation model offers benefits of object-oriented programming without sacrificing the
facilities of the current relational model. In O-Raid we have engineered this model by allowing objects to
be atiributes of relations. Novel features of O-Raid include a hierarchy of column protocols, relations
with heterogeneous objects that can be individually reclassified, facilities to reduce the data search for
complex objects, a structure-editing interface integrated with a relational query language, and support for
continuous display of objects. We are implementing O-Raid by extending the Raid implementation. The
tmplementation will be used to support geometric and geographic databases, and to test algorithms that
use semantics of objects to increase concurrency in a partitioned database. We plan to extend the design
to support shared objects, integration with popular programming languages, class evolution, and other
features that would increase its usefulness.

Further research is needed to define relation and tuple objects, a default structure-editing/graphical
interface, and a programming environment based on the object-relation model.
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Appendix A: Implementation of O-Raid Action Driver (AD)

In this appendix we give details and problems of extending AD to support the objeci-relation
model of O-Raid. Action driver (AD of Raid) has been modified to adapt the object/relation model. 1t
contains six components - Query Processor (QP), Simple Query Processor (SQP), Database Access Sys-
tem (DAS), Object Manager (OM), Buffer System (BS), and UNIX File System (FS). OM is the only
major new component added to the system, as discussed in section 4. ’

QP is responsible for global optimization of the query execution. lIts strategies are: (1) perform
selection and projection as early as possible (2) preprocess file appropriately (3) evaluate options before
computing (4) look for common subexpression in an expression. After the preprocessing and substitu-
tion, QP calls SQP to retrieve/update tuples involving only single relation. Qualification part of a query
is stored as a parsed tree format for efficient access. Target list of a query is stored as a linked list. Each
query has a gquery structure which has pointers to target list and qualification part.

SQP receives the single-relation query from QP; then it looks up the qualification part of the query
and decides the retrieving/ update method. The routine SeleRetrMetd() is used to select the access
method. It takes the qualification part of query as an argument, and returns a method identifier (mid)
which specify the access method to execute the query. SQP retrieves/updates tuples using the method
and evaluates them against the qualification of the query. Also proper target list is built.

DAS provides different kinds of access methods for retrieving tuples. It provides hashing, ISAM,
B-tree, and K-D-B-tree. In addition, it provides three general routines for accessing the methods. The
routines are StartScan(), Scan(), and EndScan(). StartScan() sets up the subsequent scan of tuples. It
takes mid as an argument and sets up the storage structures and information needed for the access method
corresponding to that mid. Scan() does the actual search for tuples using the access method set up by
StartScan(). EndScan() releases the storages allocated by StartScan().

BS is for managing the working buffer space. It is a collection of subroutines to perform different
functions related to internal working space. It includes functions to allocate and release working space for
relations, provide services to other components of AD such that contents of working relations always
appear in the working buffer for them. A new storage structure of relations/objects is designed, and a
new buffer system is written which allow objects to cross over physical pages. Flags are set in a page to
indicate an object continuing in another page. Page size is currently set to 1024 bytes. Each working
relation has a inode structure which has an array of pointers pointing to the working buffer pages. If the
page is not in the main memory, the pointer points to null. The arrays are searched for releasing storage,
if pages are required for other relations.

Two of the major problems of extending Raid to O-Raid are the structures of its QP and storage
structure. In Raid, QP translates a query statement to several relational algebra statements (e.g. select,
project, and cross-product). Join statement is translated to a cross- product statement followed by a
select/project statement. In O-Raid, cross-product is avoided, and tuple substitution is used instead. Tuple
substitution saves execution time and spaces. In Raid, storage structure of relations is organized as a
fixed-size two dimensional table. It allocates fixed-size storage for each attribute and tuple. Also, there is
no facility of allowing indexing in Raid. In O-Raid, each attribute could be a nested object; size of the
attribute could be arbitrary large. A paging storage structure is designed. Also, indexing facility is pro-
vided in O-Raid (e.g. K-D-B-Tree). An access methods interface is built, so that it provides a general
interface for different access methods. Since query processor and storage strctures are the most impor-
tant things in a DBMS, a lot of code has to be rewritten
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Appendix B: Syntax of O-Raid Queries

This appendix summarizes the general syntax of basic queries. For detail discussion of the usage
of each query the reader is referred to section 2 of the paper. The basic queries could be classified into
four categories - data definition, data manipulation, EDIT and DISPLAY queries, and structure-editing
queries.

(1) Data Definition Command - CREATE.
CREATE { index_method ON ( attribute(s) ) ] relation(s) ( attribute_definition(s) )
(2) Data Manipulation Commands - SELECT, INSERT, UPDATE, and DELETE.

SELECT ( attribute(s) ) [ INTO relation(s) ] FROM relation(s)
[ WHERE predicate ]

INSERT INTO relation(s) VALUES ( expression(s) );
INSERT INTO relation(s) SELECT ...

UPDATE INTO relation(s) SET ( expression(s) )
[ WHERE predicate ]

DELETE FROM relation(s)
[ WHERE predicate ]

(3) EDIT and DISPLAY queries

EDIT ( attribute (s) ) INTO window_relation FROM relation
[WHERE predicate ]

DISPLAY ( attribute (s) ) INTO window_relation FROM relation
[WHERE predicate |

(4) Structure Editing Commands - ELIDE, EXPAND, elc.

command ( attribute(s) ) FROM relation { WHERE predicate ]



