
Trading Privacy for Trust in Online Interactions 
Leszek Lilien1,3 and Bharat Bhargava2,3 

1 WiSe (Wireless Sensornets) Lab, Department of Computer Science 
Western Michigan University, Kalamazoo, MI 49008, U.S.A. 

2 RAID Lab, Department of Computer Science 
Purdue University, West Lafayette, IN 47907, U.S.A. 

3 Center for Education and Research in Information Assurance and Security (CERIAS) 
Purdue University, West Lafayette, IN 47907, U.S.A. 

 

1. INTRODUCTION 

Any interaction—from a simple transaction to a complex collaboration—can start only after an adequate level of 
trust exists between interacting entities. One of the more important components of trust of an entity E in its interaction 
partner is its reliance that the partner is both willing and able to protect E’s privacy. This is true both in social systems 
and in the cyberspace.  

The need for privacy is broadly recognized by individuals, businesses, the government, the computer industry, and 
academic researchers. Examples are shown in Figure 1. The growing recognition of the importance of privacy is 
motivated not only by users’ sensitivity about their personal data. Other factors include business losses due to privacy 
violations, and enactments of federal and state privacy laws. 

The role of trust and privacy is fundamental in social systems as well as in computing environments. The objective 
of this chapter is presenting this role in online interactions, emphasizing the close relationship between trust and 
privacy. In particular, we show how one’s degree of privacy can be traded for a gain in the level of trust perceived by 
one’s interaction partner.  

We begin with a brief overview of these two basic notions in Section 2, presenting the background for research on 
trust, privacy, and related issues. First, we define trust and privacy, and then discuss their fundamental characteristics. 
Selecting the most relevant aspects of trust and privacy for a given computing environment and application is in and by 
itself a significant challenge (since both trust and privacy are very complex, multi-faceted concepts). 

Privacy and trust in computing environments are as closely related and as interesting in various aspects of their 
interplay as they are in social systems (Bhargava et al., 2004) --[6]. On the one hand, a high level of trust can be very 
advantageous. For example, an online seller might reward a highly trusted customer with special benefits, such as 
discounted prices and better quality of services. To gain trust, she can reveal private digital credentials—certificates, 
recommendations, or past interaction histories. On the other hand, a mere perception of a threat to users’ privacy from 
a collaborator may result in substantial lowering of trust, again in both computing and social settings. In particular, 
any sharing of an entity’s private information depends on satisfactory limits on its further dissemination, such as a 
partner’s solid privacy policies. Just a potential for a privacy violation by an interaction partner impedes sharing of 
sensitive data among the interacting entities, which results in reduced effectiveness of the interaction and, in the 
extreme cases, even in the termination of the interaction.  For instance, a user who learns that an ISP has carelessly 
revealed any customer’s email will look for another ISP.  

The possibility of trading privacy for trust, the main topic of this chapter, is explored in some depth in Section 3.  
It categorizes types of privacy-for-trust tradeoff, and shows how entities can trade their privacy for trust in an optimal 
way. 

The remaining sections conclude this chapter, look into the future, and provide references and additional reading 
suggestions. Section 4 presents our view of future trends in research on privacy and trust. Section 5 includes 
conclusions, and Section 6 presents future research directions for privacy and trust in computing. Section 7 includes 
references, and Section 8 suggests additional reading material. 
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Recognition of the need for privacy by individuals (Cranor et al., 1999) 
• 99% unwilling to reveal their SSN 
• 18% unwilling to reveal their favorite TV show 
 

Recognition of the need for privacy by businesses 
• Online consumers worrying about revealing personal data held back $15 billion in online 

revenue in 2001 (Kelley 2001) 

Recognition of the need for privacy by the Federal Government 
• Privacy Act of 1974 for federal agencies (Privacy Act, 2004)=[44] 
• Health Insurance Portability and Accountability Act of 1996 (HIPAA) (HIPAA Summary, 

2003), (Mercuri, 2004) 

Recognition of the need for privacy by computer industry research (examples) 
• IBM—incl. Privacy Research Institute (IBM Privacy, 2007) 
§ Topics include: pseudonymity for e-commerce, EPA and EPAL—enterprise privacy 

architecture and language, RFID privacy, privacy-preserving video surveillance, 
federated identity management (for enterprise federations), privacy-preserving data 
mining and privacy-preserving mining of association rules, Hippocratic (privacy-
preserving) databases, online privacy monitoring 

• Microsoft Research—incl. Trustworthy Computing Initiative (Trustworthy Computing, 2003) 
§ The biggest research challenges: Reliability / Security / Privacy / Business Integrity 
§ Topics include: DRM—digital rights management (incl. watermarking surviving photo 

editing attacks), software rights protection, intellectual property and content protection, 
database privacy and privacy-preserving  data mining, anonymous e-cash, anti-spyware  

Recognition of the need for privacy by academic researchers (examples) 
• Trust negotiation with controlled release of private credentials, privacy-trust tradeoff 
• Trust negotiation  languages 
• Privacy metrics 
• Anonymity and k-anonymity 
• Privacy-preserving data mining and privacy-preserving database testing 
• Privacy-preserving data dissemination 
• Preserving location privacy in pervasive computing, and privacy-preserving location-based 

routing and services in networks,  
• Trust negotiation with controlled release of private credentials 
• Genomic privacy 

Figure 1. Recognition of the need for privacy by different entities. 

 
 

2.  BACKGROUND: TRUST, PRIVACY, AND RELATED WORK 

The notions of trust and privacy require an in-depth discussion of their background. It is provided in this section. 
 

2.1.  Trust and Its Characteristics 

2.1.1.   Definition of Trust      

We define trust as as “reliance on the integrity, ability, or character of a person or thing” (American Heritage, 
2000)--[1]. Use of trust is often implicit. Quite frequently it is gained  offline (Bhargava et al., 2004) --[6]. A user, 
who downloads a file from an unfamiliar Web site, trusts it implicitly by not even considering trust in a conscious way. 
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A user who decides to buy an Internet service from an Internet service provider may build her trust offline by asking 
her friends for recommendations. 

An entity E expects that its interaction partner is both willing and able to protect E’s privacy. This indicates that 
dimensions of trust include: integrity and competence of a trustee. That is, the integrity dimension of trust is a belief 
that a trustee is honest and acts in favor of the truster, and the competence dimension of trust is a belief in a trustee's 
ability or expertise to perform certain tasks in a specific situation. Predictability can be attached as a secondary 
measure to both an integrity belief and a competence belief (Zhong et al., 2006). 
 

2.1.2.   Implicit and Explicit Trust      

Trust is truly ubiquitous and beneficial in social systems. The need for trust in one’s interaction partner exists in 
all social interactions, irrespective of the fact whether the partner is an individual, an institution (e.g., a bank, 
a hospital, a used car dealer), or an artifact (e.g., a car, an Internet browser, a software house).  

Trust is a powerful paradigm that enables smooth operation of social systems, also under conditions of uncertainty 
or incomplete information. It has been comprehensively used and well tested in social interactions and systems. For 
example, trust is constantly—if often unconsciously—applied in interactions between: people, businesses, institutions, 
animals (e.g., a guide dog) or artifacts (e.g., “Can I rely on my car for this long trip?”). 

Trust has to be approached differently in closed and open systems. In the former, trustworthiness of interaction 
partners is known to an initiator of interaction before the interaction starts, and in the latter it is not known. An 
example of a closed social system is a small village where people know each other  (or at least know each other’s 
reputations). Trust is used implicitly since each villager knows what to expect of everybody else. In short, “Mr. X 
‘feels’ how much to trust Ms. Y.” An example of an open social system is a large city where trust must be used 
explicitly to avoid unpleasant surprises (such as being harmed by a dishonest or incompetent car mechanic or dentist). 
A city dweller needs to ask around to find a trusted entity she needs (such as a trustworthy car mechanic or dentist), 
inquiring friends, office mates, etc. She can inquire among friends, office mates, etc., or check professional „reputation 
databases,” such as AAA's Approved Auto Repair Network, or the Better Business Bureau (BBB). 

Trust has proven its usefulness in social systems. We need similarly ubiquitous, efficient and effective trust 
mechanisms in the cyberspace. We have both closed systems—such as a LAN serving a research lab—and opened 
environments—such as the World Wide Web or WiFi networks. Only the latter include users who are not known in 
advance to their interaction partners.  An access control system for a WiFi hot spot is an example of such a partner in 
an open system that must determine the permitted actions of each unknown user before an interaction can start. 

We believe that many users or computer systems err by not considering trust issue at all. They do not assume trust 
implicitly. They simply ignore the issue of trust.  Without even knowing it, they trust blindly (i.e., trust without 
evidence or verification). For example, this error is made by any operating system that trusts all application programs, 
allowing any program to run. As another example, too many users do not even know that they show a naïve trust by 
accessing unknown web site, which can harm them or their computers. 

Still, closed computing environments systems (analogous to a small village) have been working well without 
applying the notion of trust, at least explicitly. However, it becomes more and more difficult to handle open computing 
systems (analogous to a big city) without the assistance from the powerful trust paradigm. In the security area, for 
example, the confidentiality-integrity-availability (CIA) paradigm has served sufficiently well in closed systems but it 
has to be replaced or augmented with trust-based solutions in open environments (such as the Web). Using the trust 
paradigm simplifies security problems by reducing complexity of interactions among system components, both human 
and artificial ones. 

Summarizing, an adequate degree of trust is required to enable interaction, from a simple transaction to a complex 
collaboration, in social or computer systems. Parties to an interaction must build up trust in each other, irrespective of 
the fact whether these are human or artificial partners, and whether the interaction is offline or online. 
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2.1.3.   Selected Trust Characteristics 

Trust is a very complex and multi-faceted notion. A researcher wishing to use trust in computing systems must 
cope with the challenging choice of the optimal subset of trust characteristics. A vast variety of different trust-based 
systems can result from selecting different subsets. Some of the choices will make systems based on them ineffective or 
inefficient. 

Some of the choices for trust characteristics include the following: 

1.  Symmetric and asymmetric trust. 
The former assumes that “A trusts B” implies “B trusts A,” which in general is not true. Therefore, 
asymmetric trust is more general. Symmetric trust can be viewed as its special case, which can be assumed 
only in very special circumstances or applications. 

2. Degrees of trust vs. binary trust 
The former is more precise, allowing for degrees of trust (from multi-level to continuous trust), while the 
latter, is all-or-nothing trust, which forces to specify a single trust threshold above which full trust can be 
assumed. Binary trust is insufficient in general, and can be assumed only for very special and limited settings. 

3. Explicit or implicit trust 
Implicit trust is used by either ignorant or naïve interaction parties. For instance, a user, who downloads a file 
from an unfamiliar Web site, trusts it implicitly by not even considering trust in a conscious way. The 
consequences might include penetration by malware. 

Explicit trust allows for its clear specification, assuring that trust considerations are not ignored. Given A’s 
need for determining trustworthiness of B, only explicit trust allows for determination of the party that vouches 
for trustworthiness of B, and assumes  risks when this trust is breached. It may, but does not have to be the 
case, that B vouches for its own trustworthiness (e.g., via its behavior in earlier interactions with A). 

Explicit trust might be gained  offline. For instance, a person who decides to buy an Internet service from an 
Internet service provider (ISP) may build her trust offline by asking her friends for trustworthy ISPs. 

4. Direct or indirect trust. 
Direct trust between A and B (as in: “A trusts B”) is limited to cases when A has gained a degree of trust in B 
from previous interactions. (This may, but does not have to, mean that B gained any degree of trust in A.)  

It is obvious that the domain of trust can be significantly extended by relying not only on direct trust but also 
on indirect trust. For indirect trust, A does not need to trust B to be willing to interact with it. It is sufficient 
that A finds an intermediary C such that A has a sufficient degree of trust in C and C trusts B. (To be more 
precise, in this case A needs to trust to a sufficient degree in C’s recommendations about trustworthiness of 
B).  

C becomes a trusted third party (TTP). A TTP can be any entity accepted by Entity A, in particular, it can be 
an institution set up to provide indirect trust, also on a commercial basis. 

5. Type of trusted entities. 
Should trust be lavished only on humans? The answer is clearly ”no.” We trust our refrigerators, cars, 
cellphones, PDAs, or  RIF tags in stores. As is the case with humans, this trust can be breached if the devices 
are loyal to other parties than their owners or primary users (such as a leaseholders of a sensor-rich 
apartment). Loyalty decides who the entrusted party works for. For example, sensors and recorders in a car 
can work not for the driver but for an insurer, a browser can work for a commercial advertiser, and a sensor 
network in one’s home can be hijacked by a nosy neighbor or—in the worst case—by the Big Brother. 

6. Number of trusted entities. 
The most critical distinction is between trusting somebody or trusting nobody. The latter leads to paranoid 
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behavior, with extremely negative consequences on system performance (inclusing costs). We believe that 
“You can’t trust everybody but you have to trust somebody.” 

Trusting more partners improve performance as long as trust is not abused. Any breach of trust causes 
performance penalties. An optimal number of trusted entities should be determined. 

7. Responsibility for breaches of trust. 
If no TTP is involved, is the trustor or the trustee responsible for deciding on the degree of trust required to 
offer  or accept a service? As a consequence, is the trustor or the trustee ultimately for possible breaches of 
trust? 

In commercial relationships, most often a buyer determines whether the seller is trustworthy enough and 
then—at least once the warranty period is over—bears the costs of broken trust. There are, however, cases 
when it is the seller pays for abuses by the buyer (as in the case when terrorists are not prevented from 
boarding a plane). 

If a TTP is involved in a trust relationship, it may be held responsible for to the extent allowed by its legal 
obligations. 

 

2.1.4.   Caveats  

A few words of caution are in order (Bhargava et al., 2004). First, using a trust model too complex for an 
application domain (i.e., including superfluous trust aspects) hurt  flexibility or performance. Second, excessive 
demands for evidence or credentials result in laborious and uncomfortable trust-based interactions, while insufficient 
requirements make them too lax. (In the latter case, who wants to be friends with someone who befriends crooks and 
thieves?) Third, exaggerating the need for explicit trust relationships hurts performance. For example, modules in 
a well-integrated (hence, closed) system should rely on implicit trust, just as villagers do. Also, in a crowd of entities, 
only some communicate directly, so only they need to use trust. But even not all of them need to use trust explicitly. 
 
 

2.2.  Privacy and Its Characteristics 

2.2.1.   Definition of Privacy 

We define privacy as “the right of an entity (normally a person), acting in its own behalf, to determine the degree 
to which it will interact with its environment, including the degree to which the entity is willing to share information 
about itself with others” (Internet Society, 2007)--[13]. We fully embrace the possibility—indicated by the words “an 
entity (normally a person)”—to extend the scope of the notion of privacy from a person to an entity. The latter may be 
an organization, an artifact (software in particular), etc. The extension is consistent with the use of the notion of trust” 
also in relationship to artifacts (American Heritage, 2000)--[1], and with the common practice of antropomorphization 
of intelligent system components (such as objects and agents) in computer science. The extension is useful for 
discussion of privacy not only for humans but also for artificial entities (acting, more or less directly, on behalf of 
humans). 

 

2.2.2.   Selected Privacy Characteristics 

Privacy has 3 dimensions: (a) personal privacy of an entity—demanding protecting an entity against undue 
interference (such as physical searches) and information that violates moral sense of the entity; (b) territorial 
privacy—calling for protection of the area surrounding the entity (such as laws on trespassing); and (c) informational 
privacy—requiring protection of gathering, compilation and dissemination of information (Fischer-Hübner, 2001). 

Any interaction involves exchange of data. It is hard to find any data that (at least in conjunction with other data, 
also offline data) does not carry any private information on its sender. Hence, informational privacy is endangered 
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since each interaction involves release or dissemination of such private information. 

The release of private data can be controlled in various degrees: from none to full control. It can also be 
categorized as voluntary, “pseudo-voluntary,” or mandatory (incl. the case of information release as required by law). 
The pseudo-voluntary data dissemination is particularly deceitful since it appears to give a user a freedom to decline 
sharing his private information but only at the cost of denying the user an access to a desirable service.   As a simple 
example, a person who refuses for privacy reasons (including fears of more spam) to enter the email address on a web 
site can be denied the site’s services. Quite often, in the name of a real need or just a convenience the user is forced or 
pressured to provide private data. (This tradeoff between privacy and convenience should be studied.) 

The amount or degree of privacy lost by disclosing a piece of information is affected by the identity of the 
recipients of this information, possible uses of this information, and related private information disclosed in the past. 
First, the recipients of private information include not only direct but also all indirect recipients, who receive some of 
this private information from entities other than the user. For example, a doctor, the direct recipient of private patient’s 
information, passes some of this information to the insurer, an indirect recipient. Any indirect recipient can disseminate 
information further. In our example, the insurer can pass some information to user’s employer. Second, possible uses 
of information vary from completely benevolent to the most malicious ones, with the latter including identity theft. 
Third, related private information disclosed in the past has a life of its own, like a genie out of the bottle. At best it is 
limited only by the controls that its owner was able to impose on its dissemination (e.g., asking a company not to sell to 
or share it with other businesses). At worst, it can be retrieved and combined with all pieces of information about the 
owner, destroying much of owner’s privacy. 

 

2.2.3.   Threats to Privacy 
 

Threats to privacy can be classified into four categories (Fischer-Hübner, 2003): 
1. Threats to privacy at application level 
2. Threats to privacy at communication level 
3. Threats to privacy at system level 
4. Threats to privacy in audit trails 

In the first category, threats to privacy at the application level are due to collection and transmission of large 
quantities of personal data. Prominent examples of these types of threats are projects for new applications on the 
information highway, e.g.: public administration networks, health networks,  research networks, electronic commerce, 
teleworking, distance learning, and private use. 

In the second category, threats to privacy at the communication level include risks to anonymity of communication, 
such as: (a) threats to anonymity of sender, forwarder, or receiver; (b) threats to anonymity of service provider; and (c) 
threats to privacy of communication (e.g., via monitoring, logging, and storage of transactional data). 

In the third category, threats to privacy at the system level are due to attacks on the system I order to gain access 
to its data. For example, attacks on system access level can allow the attacker access to confidential databases. 

In the fourth category, threats to privacy in audit trails are due to wealth of information included in system logs or 
audit trails. A special attention should be directed to consider logs and trails that gained an independent life, away from 
the system from which they were derived. 

Another view of threats to privacy (Fischer-Hübner, 2003) categorizes the threats as: 

1. Threats to aggregation and data mining. 

2. Threats due to poor system security. 

3. Government-related threats due, for example, to the facts that: (a) the government has a lot of people’s most 
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private data (incl. data on taxes / homeland security / etc.; (b) it is difficult to find the right balance between 
people’s privacy on the one hand and homeland security concerns on the other hand. 

4. Threats due to use of  Internet, e.g., intercepting of unencrypted e-mail, recording of visited web site, and 
attacks via Internet. 

5. Threats due to corporate rights and business practices since, for instance, companies may collect data that 
even the U.S. government is not allowed to gather. 

6. Threats due to many traps of “privacy for sale,” that is, temptations to sell out one’s privacy. Too often online 
offers that seem to be “free” are not really free since they require providing the “benefactor” with one’s private 
data (e.g., providing one’s data for a “free” frequent-buyer card) 

 

2.2.4.   Escalation of Threats to Privacy in Pervasive Computing 

Pervasive computing will exacerbate the privacy problem (cf. Bhargava et al., 2004). Unless privacy is adequately 
protected, the progress of pervasive computing  will be slowed down or derailed altogether. People will be surrounded 
by zillions of computing devices of all kinds, sizes, and aptitudes (Sensor Nation, 2004). Most of them will have 
limited or even rudimentary capabilities and will be quite small, such as radio frequency identification tags and smart 
dust. Most will be embedded in artifacts for everyday use, or even human bodies (with possibilities for both beneficial 
and apocalyptic consequences). 

Pervasive devices with inherent communication capabilities might even self-organize into huge, opportunistic 
sensor networks (Lilien et al., 2006), (Lilien et al., 2007) able to spy anywhere, anytime, on everybody and everything 
within their midst. Without proper means of detection and neutralization, no one will be able to tell which and how 
many snoops are active, what data they collect, and who they work for. Questions such as “Can I trust my 
refrigerator?” will not be jokes—the refrigerator will be able to snitch on its owner’s dietary misbehavior to the 
owner’s doctor. 

Will pervasive computing force us to abandon all hope for privacy? Will a cyberfly, with high-resolution camera 
eyes and supersensitive microphone ears, end privacy as we know it? Should a cyberfly1 be too clever to end up in the 
soup, the only hope might be to develop cyberspiders. But cyberbirds might eat those up. So, we’ll build a cybercat. 
And so on and so forth … 

Radically changed reality demands new approaches to computer security and privacy. Will a new privacy category 
appear—namely, protecting artificial entities’ privacy? We believe that socially based paradigms, such as trust-based 
approaches, will play a big role in pervasive computing. As in social settings, solutions will vary from heavyweight 
ones for entities of high intelligence and capabilities (such as humans and intelligent systems) interacting in complex 
and important matters, to lightweight ones for less intelligent and capable entities interacting in simpler matters of 
lesser consequence. 
 

 
2.3.  Interplay of Privacy and Trust 

Privacy and trust can be in a symbiotic or in an adversarial relationship. We concentrate here on the latter, when 
users in interactions with businesses and institutions face tradeoffs between a loss of their privacy and the 
corresponding gain of trust by their partners. (An example of the former is the situation when a better privacy provided 
by a commercial web site results in its customers’ higher degree of trust.) 

Users entering an online interaction want to gain a certain level of trust with the least loss of their privacy. This is 
the level of trust that is required by her interaction partner, e.g. a Web site, to provide a needed service, e.g., an online 
purchase of a gift. The interaction partner will asks for certain private information, such as certain credentials, e.g., her 
card and cardholder information. These credentials, when provided online, are indeed digital credentials—despite the 
 
1  A successful construction of a cyberfly  or  “the first robot to achieve liftoff that’s modeled on a fly and built on such a small scale” was 

just reported ((Ross, 2007). 
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fact that non-digital credentials, such as a credit card, are their basis. 

This simple scenario shows how privacy and trust are intertwined. The digital credentials are used to build trust, 
while providing the credentials reduces user’s degree of privacy. It should be noted that in a closed environment, a user 
could receive certain service with revealing much less private information. For example, a student can order free 
educational software  just by logging into a password-protected account, without any need for providing his credit card 
information. Obviously, entering only one’s login and password is less revealing than providing one’s credit card 
information. 

All elements system “elements” that affect trust, affect also the interplay of privacy and trust. Trust is affected by 
a large number of system elements, including: (a) quality and integrity data; (b) trustworthiness of end-to-end 
communication, including sender authentication, message integrity, etc.; and (c) security of network routing 
algorithms, including dealing with malicious peers, intruders, security attacks, etc. 

Privacy and trust can not be provided for free or traded for free (under any cost measures). Only in an ideal world 
we would never loose our privacy in any interaction, would be fully trusted at the same time, and would be provided 
these benefits at no cost. In reality, we can only approach this optimum by providing minimal privacy disclosures—
ones that are absolutely necessary to gain a level of trust required by the interaction partners. The mechanisms 
providing minimal privacy disclosures and trust carry costs (incl. costs of computation, communication, storage, extra 
traffic, additional delays, etc).  

It is obvious that gaining a higher level of trust may require a larger loss of privacy. It should also be obvious that 
revealing more private information beyond certain point will produce no more trust gains, or at least, no more useful 
trust gains. For example, a student wishing to enter a tavern must show a proof of his age (a loss of privacy for trust 
gain). Showing his driver’s license is entirely sufficient, and showing his passport, his tax statements, etc. would 
produce no more trust gains. 

It should also be obvious that for each required level of trust we can determine (at least in theory) the minimal loss 
of privacy required to produce this level of trust. This means that users can (and usually want) to build a certain level 
of trust with this minimal loss of privacy. We want to automate the process of finding this optimal privacy-for-trust 
tradeoff, including automatic evaluation of a privacy loss and a trust gain. To this end, we must first provide 
appropriate measures of privacy and trust, and then quantify the tradeoff between privacy and trust. This 
quantification will assist a user in deciding whether or not to trade her privacy for the potential benefits gained from 
trust establishment. A number of questions, including the following, must be answered. How much privacy is lost by 
disclosing a specific piece of information? How much trust is gained by disclosing given data? How much does a user 
benefit by having a given trust gain? How much privacy a user is willing to sacrifice for a certain amount of trust 
gain? Only after answering these questions, we can design algorithms and mechanisms that will assist users in making 
rational privacy-for-trust decisions. Developed mechanisms can empower a user’s decision making process, or even 
automate it based on policies or preferences predefined by the user. In the latter case, user provides only her policies or 
preferences to the system and then accepts system’s decisions. 

 
 

2.4.  Related Work 

2.4.1.  Related Work on Privacy 

Many conferences and journals, not only in the area of computer science or other technical disciplines, focus on 
privacy. We can mention only a few publications that affected our search for a privacy-for-trade solution presented in 
this chapter.  

Reiter and Rubin (Reiter and Rubin, 1999)=[48] use the size of the anonymity set to measure the degree of  
anonymity. The anonymity set contains all the potential subjects that might have sent/received data. The size of the 
anonymity set does not capture the fact that not all senders in the set have an equal probability of sending a message. 
This may help the attacker in reducing the size of the set of potential senders. Therefore, the size of the anonymity set 
may be a misleading measure, showing a higher degree of privacy than it really is.  
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Another approach (Diaz et al., 2002)-=[23], (Serjantove and G. Danezis, 2002)=[56] uses entropy to measure the 
level of privacy that a system achieves. Differential entropy is used in (Agrawal and C. Aggarwal, 2001)=[5] to 
quantify the closeness of an attribute value estimated by an attacker to its original value. These papers assume a static 
model of the attacker, in the sense that the attacker does not accumulate information by watching the system over the 
time. 

The Scrub system (Sweeney, 1996)=[59] can be used to de-identify personal patient’s information. Privacy is 
ensured by filtering identifying information out of data exchanged between applications. The system searches through 
prescriptions, physician letters, and notes written by clinicians to replace with generic data information identifying 
patients, such as their names, phone numbers, and addresses. A database of personally-identifying information is used 
to detect the occurrences of such information. The database contains data such as first and last names, addresses, 
phones, social security numbers, employers, and birth dates. In addition, the system constructs templates for different 
information formats (e.g., different formats for writing phone numbers and dates). These templates are used to detect 
variants of personal information. 

Collecting pieces of information from different sources and putting them together to reveal personal information is 
termed data fusion (Sweeney, 2001a)=[61]. Data fusion is more and more invasive due to the tremendous growth of 
information being electronically gathered on individuals (Sweeney, 2001b)=[62]. The Scrub system does not provide a 
sufficient protection against data fusion, that is, it does not assure complete anonymity. The Datafly system (Sweeney, 
1998)=[60], (Sweeney, 2002b=[64] maintains anonymity, even if data are linked with other sources. While maintaining 
a practical use of data, Datafly automatically aggregates, substitutes, and removes information to maintain data 
privacy. Datafly achieves data privacy by employing the k- anonymity algorithm (Sweeney, 2002b)=[64], which 
provides a formal guarantee that an individual can not be distinguished from at least k - 1 other individuals. 

Platform for Privacy Preferences (P3P) is the best-known protocol and a suite of tools for specifying privacy 
policies of a Web site, and preferences of Web users (Cranor , 2003)=[Cran03]. P3P is not intended to be 
a comprehensive privacy “solution” that would address all principles of Fair Information Practices (Trade 
Commission, 1998)=[UFTC98]. AT&T Privacy Bird is a prominent implementation of P3P (Privacy Bird, 
2004)=[APBT04]. It is a tool that can be added to a web browser to keep its user aware of web site privacy policies. It 
can be used as a part of the proposed metadata-based privacy scheme. 

We do not discuss here general security solutions which contribute to privacy protection. Examples include 
protecting software, mobile objects or agents from many types of attacks by either: (i) running them only on dedicated 
and tamper-resistant platforms—e.g., on secure coprocessors (Tygar & Yee, 1994)=[TyYe94]=[22]=68]; or (ii) by 
providing security on commodity hardware—e.g., a single partitioning a hardware platform into many isolated virtual 
machines or “closed boxes” (Garfinkel, 2003)=[ GPCR03]=[12]; hardware and the closed box mechanism together 
form a trusted party.  Examples include also protection of a software client (code) from a malicious host by 
obfuscating, tamper-proofing, or watermarking the code (Collberg & Thomborson, 2000)=[ CoTh00]=19]. 

 
 

2.4.2. Related Work on Trust 

The problem of establishing and maintaining trust in dynamic settings has attracted many researchers. One of the 
first formalized models of trust in computer science (Marsh, 1994)=[11] introduced the concepts widely used by other 
researchers, such as context and situational trust. 

A comprehensive social trust model, based on surveying more than 60 papers across a wide range of disciplines, 
has been proposed by McKnight & Chervany (McKnight & Chervany, 2001) =[13c]. It has been validated via 
empirical experimental study (McKnight et al., 2002) =[12c]. The model defines five conceptual trust elements (cf. 
Cofta, 2006): trusting behavior, trusting intention, trusting belief, institution-based trust, and disposition to trust. First, 
trusting behavior is an action that increases a truster's risk or makes the truster vulnerable to the trustee.  

Second, trusting intention indicates that a truster is willing to engage in trusting behaviors with the trustee. 
A trusting intention implies a trust decision and leads to a trusting behaviors. Two subtypes of trusting intention are: 
(i) willingness to depend: the volitional preparedness to make oneself vulnerable to the trustee; and (ii) subjective 
probability of depending: the likelihood that a truster will depend on a trustee.  
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Third, trusting belief is a truster's subjective belief in the fact that a trustee has attributes beneficial to the truster. 
The followings are the four attributes used most often: (i) competence: a trustee has the ability or expertness to 
perform certain tasks; (ii) benevolence: a trustee cares about a truster's interests; (iii) integrity: a trustee is honest and 
keeps commitments; and (iv) predictability: a trustee's actions are sufficiently consistent (so future action can be 
predicated based on the knowledge of previous behavior). 

Fourth, institution-based trust is the belief that proper structural conditions are in place to enhance the probability 
of achieving a successful outcome. Two subtypes of institution-based trust are: (i) structural assurance: the belief that 
structures deployed promote positive outcomes, where structures include guarantees, regulations, promises etc.; and 
(ii) situational normality: the belief that the properly ordered environments facilitate successful outcomes. 

Finally, disposition to trust characterizes a truster's general propensity to depend on others across a broad 
spectrum of situations. Two subtypes of disposition to trust are: (i) faith in humanity: the general assumptions about 
trustees’ integrity, competence, and benevolence (i.e.. a priori trusting beliefs); and (ii) trusting stance: a preference for 
the default trust-based strategy in relationships. 

Zacharia and Maes proposed two reputation systems, SPORAS and HISTOS (Zacharia & Maes, 2000)=[24]. 
Reputations in SPORAS are global, i.e., a principal's reputation is the same from the perspective of any querier. 
HISTOS has the notion of personalized reputation, i.e. different queriers may get different reputation values about the 
same principal. In addition to the reputation value, a reputation deviation is provided to measure the reliability of the 
value. Discarding notorious identity is unprofitable in SPORAS and HISTOS, because a newcomer starts with the 
lowest reputation value. Carbo et al. propose a trust management approach using fuzzy reputation (Carbo et al., 
2003)=[5]. The basic idea is similar to that of SPORAS. 

A distributed personalized reputation management approach for e-commerce is proposed by Yu et al. (Yu & 
Singh, 2002a)=[22], (Yu & Singh, 2002b)=[23]. The authors adopt the ideas from Dampster-Shafer theory of evidence 
to represent and evaluate reputation. If two principals a and b have direct interactions, b evaluates a's reputation based 
on the ratings of these interactions. This reputation is called local belief. Otherwise, b queries on TrustNet for other 
principals' local beliefs about a. The reputation of  a is computed based on the gathered local beliefs using Dampster-
Shafer theory. How to build and maintain TrustNet is not mentioned in the paper. Aberer and Despotovic simplify this 
model and apply it to manage trust in a P2P system (Aberer & Despotovic, 2001)=[1]. 

Sabater and Sierra propose a reputation model for gregarious societies called Regret system (Sabater & Sierra, 
2002)=[20]. The authors assume that a principal owns a set of sociograms describing the social relations in the 
environment. The Regret system structure has three dimensions. The individual dimension models the direct experience 
between two principals. The social dimension models the information coming from other principals. The ontology 
dimension models how to combine reputations on different aspects. Witness reputation, neighborhood reputation, and 
system reputation are defined. The performance of this approach highly depends on the underlying sociograms. The 
paper does not discuss how to build sociograms. 

Lik Mui et al. uses Bayesian analysis approach to model reputation and trust (Mui, 2002)=[16], (Mui et 
al., 2002)=[17]. Many reputation models and security mechanisms assume the existence of a social network (Barnes & 
Cerrito, 1998)=[2]. The idea of evaluating reputation based on implicit feedbacks has been investigated. Pujol et al. 
propose an approach to extract reputation from the social network topology that encodes reputation information (Pujol 
et al., 2002)=[18]. Morinaga et al. propose an approach to mining product reputations on the web (Morinaga et al., 
2002)=[15]]. 
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2.4.3. Related Work on Privacy-trust  Optimization 

The research on automated trust negotiation (ATN) investigates the issues of iteratively exchanging credentials 
between two entities to incrementally establish trust (Yu, Winslett, and Seamons, 2003)=[73]. This approach considers 
the tradeoff between the length of the negotiation, the amount of information disclosed, and the computation effort. The 
major difference between ATN and the proposed research is that we focus on the tradeoff between privacy and trust. 
Our research leads to an elaborate method for estimating the privacy loss, due to disclosing a piece of information, and 
for making rational decisions.  

Wegella et al. present a formal model for trust-based decision making ( Wegella et al., 2003)=[71]. An approach 
is provided to manage trust lifecycle with considerations of both trust and risk assessments. This approach and our 
research on trust and evidence formalization  (Bhargava and Y. Zhong, 2002)=[13] can be extended to use the 
trustworthiness of an information receiver to decide whether or not to disclose private information to him. 

Seigneur and Jensen propose an approach to trade minimal privacy for the required trust (Seigneur & Jensen, 
2004)=[55]. Privacy is based on a multiple-to-one linkability of pieces of evidence to a pseudonym. It is measured by 
nymity (Goldberg, 2000)=[31]. The authors assume the presence of a partial order of nymity levels for the 
measurement of privacy. Our proposed research considers multiple-to-multiple relationships between pieces of 
evidence and private attributes. 
 
 

3.  TRADING PRIVACY FOR TRUST  

3.1.  Problems in Trading Privacy for Trust 

To gain trust, a customer must reveal private digital credentials—certificates, recommendations, or past interaction 
histories. He is faced with a number of tough questions:  

• How much privacy is lost by disclosing a specific credential? (To make the answer even more difficult, the amount 
of privacy loss is affected by credentials and information disclosed in the past.) 

• How many credentials should a user reveal? If alternative credentials are available (e.g., either a driver license or a 
passport indicates birth data), which ones should be revealed?  

• How much trust is gained by disclosing a given credential? This is referred to as the trust gain. Also, what is the 
minimal degree of privacy that must be sacrificed to obtain a required amount of trust gain? Which credentials 
should be presented to satisfy this minimum requirement? 

• How much does a user benefit by having a given trust gain? 

• How much privacy a user is willing to sacrifice for a certain amount of trust gain? 

These questions alone show how complex and difficult is optimization of the privacy-for-trust exchange. Obtaining 
an optimal solution without a technical support is practically impossible. There is only a small chance that intuitive 
approaches to this process will result in outcomes close to the optimal ones. 

 

3.2.  A Solution for Trading Privacy for Trust 

This  section presents our proposed solution facilitating privacy-for-trust trading and enabling optimal outcomes of 
this process. It discusses in turn proposed approaches for: building and verifying trust, protecting privacy, and trading 
privacy for trust. 
 

3.2.1.  Building and Verifying Trust 

We focus on methods of building trust in opened and dynamic computing environments, which are more 
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challenging than the closed ands static settings. 

Digital credentials are common means of building trust in open environments. Credentials include certificates 
(Farrell & Housley, 2002)=[26], recommendations, or past transaction histories (Fujimura & Nishihara, 2003)=[28]. 
Since credentials contain private information (e.g., user’s identity and shopping preferences), their use involves on 
“trading” privacy for trust. We need to consider problems with credentials, including their imperfect and non-uniform 
trustworthiness. Since no credentials are perfect, means to verify trust are necessary. We present basic ways of 
verifying trust. 

 

A.   Trust Metrics      

Trust cannot be built or verified without having measures of trust, which can be determined in many ways. We 
propose a three-step method for defining a trust gain metric. 

In the first step, we need to determine multilevel trust metrics with n trust levels, measured on a numeric scale 
from 1- n,  where n could be an arbitrarily large number. Such metric is generic, applicable to a broad range of 
applications, with the value of n determined for a particular application or a set of applications. The case of n = 2 
reduces multilevel trust to the simplistic case of binary trust (it might still be useful in simple trust-based applications), 
with trust levels named, perhaps, full_service and no_service. Selecting n = 5 results in having 5 trust levels that could 
be named: no_service, minimal_service,  limited_service, full_service, and privileged_service going from the lowest 
to the highest level. 

Trust levels could be defined by a service provider, the owner of a Web site on which it resides (which might be 
different from the service provider), or any other entity that is an intermediary between the service provider and the 
customer or end user. The number of levels n could be increased when the site outgrows its old trust metric, or when 
the user becomes more sophisticated and needs or wants to use more trust levels. 

In the second step, a trust benefit function B(ti), associated with each trust level ti, needs be defined. The default 
trust benefit function for a service  can be defined  by the same party that defined test levels in the preceding step (i.e., 
by a service provider, by the owner of a Web site on which it, or intermediary). An optional trust benefit function, 
overriding the default one, can also be defined by an individual customer, allowing for more user-specific benefit 
metric. 

In order to compute the trust gain, a trust benefit function B(ti) is associated with each trust level ti,. The value of 
the benefit function can either be provided by the service provider (the owner of a Web site), or be evaluated by an 
individual user using her own utility function.  

In the third step, trust gain, denoted by G(t2, t1), can be calculated based on the benefit function. G(t2, t1), indicates 
how much a user gains if the user’s trust level, as seen by the user’s interaction partner, increases from t1 to t2. The 
following simple formula is used to compute the trust gain: 

trust gain = G(new_trust_level, old_trust_level) = B(new_trust_level) - B(old_trust_level) 

 

B.   Methods for Building Trust     

Some of the many generic means of building trust are listed in Figure 2. They include familiarity with the entity to 
be trusted or its affiliation with a familiar entity, as well as building trust by first-hand experience or second-hand 
reputation. 



 

 - 13 - 

Building trust by familiarity with X 
• Person:  face, voice, handwriting, etc. 
• Institution:   company name, image, good will, etc. 
• Artifact:  manufacturer name, perceived quality, etc. 

Building trust by affiliation of X with person/institution/artifact Y 
• Trust or distrust  towards Y rubs off on X 

Building trust by first-hand experience with X’s activities/performance 
• Good or bad experience (trust or distrust grows) 

Building trust by second-hand reputation of X determined by evidence or credentials 
• Reputation databases (e.g., BBB, industry organizations, etc.) with „good” evidence or 

lack of „bad” evidence) 
• Credentials: X’s driver license, library card, credit card 

Figure 2. Basic means of building trust among partners. 

Rather than looking at ways of building trust in general, we differentiate them depending on the relative strengths 
of the interacting parties. The strength of a party P1 participating in an interaction with another party, P2, is defined 
by P1’s capability to demand private information from P2, and P1’s means available in case when P2 refuses to 
comply. As a simple example, a bank is stronger than a customer requesting a mortgage loan. As another example, two 
small businesses negotiating a contract are, in most cases, equally strong.  

We concentrate on asymmetric trust relationships, in which one party is stronger and another weaker, for example, 
trust relationships between individuals and institutions, or between small business and large businesses. We ignore trust 
relationships with “same-strength” partners, such as individual-to-individual interactions and most B2B interactions. 
We will interchangeably use the terms: “a weaker partner”  and “a customer,” as well as  “a stronger partner” and “a 
company.” 

Example means of building trust by a company in a customer include receiving a cash payment for a service 
provided, or checking partner’s records in the e-Bay reputation databases. Example means of building trust by 
a customer in a company include asking friends about company’s reputation, or checking its reputation in Better 
Business Bureau databases.  

Multiple means of building trust by a stronger partner in the weaker partner are shown in Figure 3. They can assist 
a company  in a fight against fraud attempts by a customer. All these means can be divided into privacy-preserving 
means of the weaker partner, and the means not preserving privacy. Only the first item listed in Figure 3 (“Ask partner 
for an anonymous payment for goods or services”), belongs to the privacy-preserving means (by the virtue of 
preserving customer’s anonymity). All others compromise customer’s privacy and result in disclosing private 
information. This indicates that much more often than not successful interactions with the stronger party require that 
a weaker party trade its privacy loss for a trust gain required by this stronger party. 

There are also multiple means of building trust by a weaker partner in the stronger partner, with some of them 
shown in Figure 4. All these means can assist a customer in a fight against fraud attempts by a company. It is clear 
that customer’s major weapon is information on the company and its reputation. 

 

C.   Methods for Verifying Trust      

Since no credentials are perfect, means to verify trust are necessary. This as true in computing as in social life.2 
The basic ways of verifying trust are shown in Figure 5. 

Verification must be careful, not based on mere appearances of trustworthiness (which could be exploited by 

 
2  This includes politics. A Russian proverb „Trust but verify” was made famous in the mid 1980’s by President  Reagan, at the start of the historic negotiations with 

the General Secretary Gorbachev. 
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fraudsters). The cyberspace can facilitate more careful verification than is the case in the offline world, in which 
a careful verification might be too costly or too inconvenient. 

Quite often a business order sent from Company A to Company B is processed without a careful verification. The 
reasons include the following factors: (a) verification is expensive, (b) implicit trust prevails in business, (c) risk of 
fraud or swindle is low among reputable businesses, and (d) Company B might be „insured” against being cheated by 
its business partners (that is, a trusted third-party intermediary assumes transaction risk; for example a buyer’s bank 
could guarantee a transaction). 

Ask partner for an anonymous payment for goods or services 
• Cash / Digital cash / Other 

--------------- above this line – privacy-preserving, below – privacy-revealing --------------- 

Ask partner for a non-anonymous payment for goods or services 
• Credit card / Traveler’s Checks / Other  

Ask partner for specific private information  

Checks partner’s credit history  

Computer authorization subsystem observes partner’s behavior 
• Trustworthy or not, stable or not, … 
• Problem: Needs time for a fair judgment 

Computerized trading system checks partner’s records in reputation databases 
• e-Bay, PayPal, … 

Computer system verifies partner’s digital credentials 
• Passwords, magnetic and chip cards, biometrics, … 

Business protects itself against partner’s misbehavior 
• Trusted third-party, security deposit, prepayment, buying insurance, … 

Figure 3. Means of building trust by a stronger partner in her weaker partner. 

 

3.2.2.   Protecting Privacy      

Protecting privacy requires defining privacy metrics as a prerequisite. Privacy measures are discussed first. 
Methods for protecting privacy, relying on metrics, are presented next. 

 

A.   Privacy Metrics      

We cannot protect privacy if we do not know how to measure it. This indicates the importance of privacy metrics. 
More specifically, we need privacy metric to determine what degree of data and communication privacy is provided by 
privacy protection methods. The metric has to work in any existing or future combination of users, techniques, and 
systems. It has to support or deny claims made by any such combination that a certain level for privacy will be 
maintained by it. 
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Ask around 
• Family, friends, co-workers, … 

Check partner’s history and stated philosophy 
• Accomplishments, failures and associated recoveries, … 
• Mission, goals, policies (incl. privacy policies), … 

Observe partner’s behavior 
• Trustworthy or not, stable or not, … 
• Problem: Needs time for a fair judgment 

Check reputation databases 
• Better Business Bureau, consumer advocacy groups, … 

Verify partner’s credentials 
• Certificates and awards, memberships in trust-building organizations (e.g., BBB), … 

Protect yourself against partner’s misbehavior 
• Trusted third-party, security deposit, prepayment,, buying insurance, … 

Figure 4. Means of building trust by a weaker partner in his stronger partner. 

Verify one’s experience 
• Check own notes about X’s activities/performance 

Verify reputation evidence / credentials 
• Call back to verify phone number 
• Check user feedback about quality of artifact (online) 
• Check reputation DB (e.g., consumer reports, BBB) for data 

Verify affiliation 
• Check with employer if X still employed 
• Check reputation of Y with which X is affiliated 

Figure 5.  Basic ways of verifying trust toward Entity X. 

 

This gives rise to at least two heterogeneity-related challenges. First, different privacy-preserving techniques or 
systems claim different degrees of data privacy. These claims are usually verified using ad hoc methods customized for 
each technique and system. While this approach can indicate the privacy level for each technique or system, it does not 
allow comparisons of different techniques or systems using various user models. 

Second, privacy metrics themselves are usually ad hoc and customized for a user model and for a specific 
technique or system.  

Requirements for good privacy metrics call for unified and comprehensive privacy measures to provide 
quantitative assessments of privacy levels achieved by diverse privacy-preserving techniques. A good privacy metric 
has to compare different techniques/systems confidently. It also has to account for: (a) operation of a broad range of 
privacy-preserving techniques; (b) dynamics of legitimate users—such as how users interact with the system, and 
awareness that repeated patterns of data access can leak information to a violator; (c) dynamics of violators—such as 
how much information a violator may gain by watching the system for some time; and (d) costs associated with metric 
implementation—such as storage, injected traffic, CPU cycles, and delay. 
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We propose to design metrics for assessing the privacy level of a given system. The metrics must be general 
enough to be used for comparing different privacy-preserving techniques. The objective of the privacy metrics is to 
answer questions such as: Given a specific user model, how much data privacy is maintained, and at what cost?  

Two metrics are proposed to assess the privacy achieved by a given system: an anonymity set size metric and an 
information-theoretic (entropy-based) metric. The first metric can provide a quick assessment of privacy, while the 
second gives a more detailed insight into the privacy aspects of the system. 

A.1. Effective Anonymity Set Size Metric     Since anonymity is defined as the state of being indistinguishable within 
a set of subjects (Pfitzmann & Kohntopp, 2000)=[42], we can use the size of the anonymity set as privacy metrics. The 
basic idea is that of “hiding in a crowd” illustrated in Figure 6. As shown, hiding among n entities provides more 
privacy than hiding among 4 entities (for n >> 4). Clearly, the larger the set of indistinguishable entities, the lower 
probability of identifying any one of them. This approach can be generalized to “anonymize” not only identities of 
entities but also the values of their attributes: a selected attribute value is hidden within the domain of its all possible 
values. 
 

 

Figure 6.  “Hiding in a crowd” underlying anonymity set size metrics. 

We need to present this metric more precisely. The set of subjects, or values, is known as the anonymity set, 
denoted by A. Using the size of the anonymity set directly may indicate a stronger privacy than what it really is. The 
probability distribution that the violator can assign to individual subjects of the set should be considered. To illustrate 
this problem, consider a system that claims that a subject receiving data cannot be distinguished from |A| other subjects 
of the anonymity set A. Suppose that a violator has noticed that a half of the nodes in A rarely receive messages. Then, 
he assigns to these nodes a very low probability of receiving a data item. The violator has effectively reduced the 
anonymity set size to |A|/2. To counter this problem, we define the anonymity set as: A = {(s1, p1), (s2, p2), …, (sn, 
pn)}; where pi represents the probability assigned to the subject si. Thus, we can determine the effective size of the 
anonymity set as: 

∑=
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A

i
i ApAL              (1) 

Note that the maximum value for L is |A|, which happens when all entities in A are equally likely to access data, i.e., pi 
= 1/|A|, 1 ≤ i ≤ n. Equation (1) captures the fact that the anonymity set size is effectively reduced when the probability 
distribution is skewed, that is, when some entities have a higher probability of accessing data than the others.  

A.2. Information-theoretic (Entropy-based) Metric     Entropy measures the randomness in the system, and 
therefore, it measures the uncertainty that one has about that system (Cover & Thomas, 1991)=[21]. Building on this 
notion, we propose to use entropy to measure the level of privacy that a system achieves at a given moment. The idea is 

“Hiding in a crowd” 

“Less” anonymous (1/4) 

“More” anonymous (1/n) 
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that when an attacker gains more information about the system, the uncertainty about subjects that send or receive 
data, and thus their entropy, is decreased. By comparing a current entropy value with the maximum possible entropy 
value for the system, we can learn how much information the attacker has gained about the system. Therefore, the 
privacy of the system can be measure based on how much private information was lost. 

a) Entropy Calculation Example      Privacy loss D(A,t) at time t, when a subset of attribute values A might have been 
disclosed, is given by: 

 
where: H*(A) is the maximum entropy (computed when probability distribution of pi’s is uniform), and H(A, t) is 
entropy at time t given by: 

 
 
with wj denoting weights capturing relative privacy “value” of the attributes. 

Consider a private phone number: (a1 a2 a3) a4 a5 a6 – a7 a8 a9 a10, where the first three digits constitute the area 
code. Assume that each digit is stored as a value of a separate attribute. Assume also that the range of values for each 
attribute is [0—9], and that all attributes are equally important, i.e., for each j ∈  [1-10],  wj = 1. 

The maximum entropy exists when an attacker has no information about the probability distribution of the values 
of the attributes. As a consequence, the attacker assigns a uniform probability distribution to the attribute values. In 
this case, for each j, aj = i with pi = 0.1  for each i, and we get: 

 

 

Suppose that after time t, the attacker can figure the state in which the phone number is registered, which may 
allow him to learn the three leftmost digits (at least for states with a single area code). Entropy at time t is given by: 

 
 

 
Note that attributes a1, a2, and a3 contribute 0 to the entropy value because the attacker knows their correct values. 
Information loss at time t is: 

 

b) Decrease of system entropy with attribute disclosures     Decrease of system entropy with attribute disclosures is 
illustrated in Figure 7. The white circle indicates the size of the attribute set for private data under consideration, the 
darker circles within them indicate the sizes of subsets of disclosed attributes, the vertical lines to the left of the white 
circles indicate the maximum entropy H*, and vertical bars to the left of the white circles (superimposed on the “H* 

lines”) indicate the current entropy level. Let us first consider Cases (a) – (c) in which we assume a fixed size of 
private data (this explains why the white circles in these three cases have the same size). When entropy reaches 
a certain higher threshold value H2, as shown in Case (b), a controlled data distortions method (increasing entropy of 
these data) must be invoked to protect privacy of data. When entropy drops below a certain lower threshold level H1, 
as shown in Case (c), data destruction must be triggered to destroy all private data (as the ultimate way of preventing 
data disclosure).  

Let us add a bit more detail to this example. Consider private data that consists of a set of attributes, e.g., a name, 
a social security number, and a zip code. Each attribute has a domain of values. The owner of private data first 
computes the maximum entropy H* for all attributes. She also determines two values for entropy mentioned above: the 
higher value H2 (the threshold for triggering controlled data distortions) and the lower value H1 (the threshold for 
triggering data destruction). Every time private data is being shared or transferred from one entity to another, entropy 
is recomputed using Equation (2). The new value of entropy, Hnew,  is calculated based on how much additional 
information is being disclosed at this time If Hnew stays above H2, no actions to prevent privacy disclosure are needed. 
If Hnew drops below H2 but stays above H1 (H2 > Hnew > H1), a controlled data distortions method is invoked on the 
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private data to  increases its entropy. (Examples of distortion mechanisms include generalization and suppression 
(Sweeney, 2002a)=[63] or data evaporation (Lilien & Bhargava, 2006)=[p2d2].) Finally, if Hnew drops below H1 (H1 > 
Hnew), data destruction is invoked to destroy private data. 
 

 
Figure 7.  Dynamics of entropy. 

The example above assumed that the size of the private data attribute set is fixed. The entropy metric can also be 
used in cases when the private data attribute set is allowed to grow or shrink. Case (d) in Figure 7, as compared with 
Case (c), illustrates the situation in which private data attribute set grew. This growth is indicated by the larger 
diameter of the white circle, indicating a larger attribute set for private data. The sizes of subsets of disclosed 
attributes, indicated by the red circles, are identical in Cases (d) and (c)—do not be fooled by the optical illusion that 
the red circle in (d) is smaller than in (c). As a result, entropy for Case (d) is higher than for Case (c), as indicated by a 
higher vertical bar for Case (d). This uses the principle of “hiding in the crowd” again. 

Entropy can be increased not only by increasing the size of the private data attribute set, as shown above, but also 
by making its subset of disclosed attributes less valuable. For example, suppose that a bank releases the current 
account balance of a customer to the insurer. This balance is valid for a specific period of time. After this period, the 
value of knowing this private piece of information decreases, because the customer could have changed her balance. In 
computing the new value of entropy, the balance is assumed to be a private data again. This leads to a gradual 
increase in entropy. In another example, a bank can increase entropy rapidly: to make the stolen credit card numbers 
useless, it quickly changes the credit card numbers for the compromised accounts. 

 

B.   Methods for Protecting Privacy      

Privacy controls for sensitive data are necessary. Without them, many interaction opportunities are lost. Examples 
are patients’ symptoms hidden from doctors, given up business transactions, lost research collaborations, and rejected 
social contacts 

Privacy can be supported by technical or legal controls. Examples of legal controls are the EPA privacy act 
(Privacy Act, 2004)=[44], and HIPAA Privacy Rule (HIPAA Summary, 2003, and Mercuri, 2004) intended to protect 
privacy of individuals. Yet, there are many examples of privacy violations even by federal agencies. The sharing of 
travellers’ data by JetBlue Airways with the federal government was one such incident (Privacy Act, 2004)=[44]. 

Technical controls for facilitating or enabling privacy controls must complement legal controls. Such privacy 
protection mechanisms should empower users (peers, nodes, etc.) to protect various aspects of privacy, including user 
identity, privacy of user location and movement, as well as privacy in collaborations, data warehousing, and data 
dissemination. Each party that obtained through an interaction other party’s sensitive data must protect privacy of 
these data. Forwarding them without proper privacy guarantees to other entities could endanger partner’s privacy.  

Both partners need appropriate protection mechanisms and should be assisted with technical solutions. On the one 
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hand, the responsibility of the stronger partner for protecting privacy is larger. The reason is that the stronger partner 
obtains more sensitive data of her counterpart then a weaker partner. In many cases, the stronger partner might be the 
only party that obtains private data.  

On the other hand, the weaker partner should not rely entirely on the integrity of the stronger counterpart. He needs 
mechanisms to protect sensitive data released by him even—or especially—when they are out of his hands. This means 
that at least the following two kinds of mechanisms are needed. The first one must assist in minimizing the amount of 
private information that is disclosed. A system for privacy-for-trust exchange, presented in this chapter, is an example 
of a mechanism of this kind.  

Mechanisms of the second kind provide protection for further dissemination of sensitive data that are already 
disclosed, setting clear and well-defined limits for such dissemination. They assure that data disclosed to a stronger 
party are not freely disseminated by her to other entities. For example, a mechanism of this kind assures that only some 
of data revealed by a patient to his doctor are forwarded by the doctor to an insurer or a nurse, and most sensitive data 
are never forwarded to anybody.3 An example of this kind is the solution named P2D2 (Privacy-Preserving Data 
Dissemination) (Lilien & Bhargava, 2006), which enables control of further dissemination of sensitive data by 
integrating privacy protection mechanisms with the data they guard. P2D2 relies on the ideas of bundling sensitive 
data with metadata, an apoptosis—that is, a clean self-destruction (Tschudin, 1999)—of endangered bundles, and an 
adaptive evaporation of bundles in suspect environments.  

B.1. Technical Privacy Controls     Technical privacy controls, also known as Privacy-Enhancing Technologies 
(PETs), can be categorized into the following categories (Fischer-Hübner, 2001): 

a) Protecting user identities 
b) Protecting usee identities 
c) Protecting confidentiality and  integrity of personal data 

We take in turn a  look at these categories of technologies. 
a) Protecting User Identities (Fischer-Hübner, 2001)     User identities can be protected via anonymity, 
unobservability, unlinkability, and pseudonymity of users. First, anonymity ensures that a user may use a resource or 
service without disclosing the user´s identity (Common Criteria 1999). The special cases of anonymity are: sender 
anonymity, ensuring that a user is anonymous in the role of a sender of a message, and receiver anonymity, ensuring 
that a user is anonymous in the role of a receiver of a message.  

We can define the following six degrees of sender anonymity—from the one fully protecting the sender, to the one 
exposing the sender (Fischer-Hübner, 2001): (i) absolute privacy, when the sender enjoys full privacy w.r.t. to being 
considered as the sender of the message; (ii) beyond suspicion, when the sender appears to be no more likely to be the 
originator of a sent message than any other potential sender in the system; (iii) probable innocence, when the sender 
appears to be no more likely to be the originator of a sent message than not to be the originator; (iv) possible 
innocence, when there is a nontrivial probability that the real sender is someone else; (v) exposed, when the sender is 
highly likely to be the originator of a sent message; and (vi) provably exposed, when the sender is identified beyond 
any doubt as the originator of a sent message. 

Second,  unobservability ensures that a user may use a resource or service without others being able to observe 
that the resource or service is being used (Common Criteria 1999). Third, unlinkability ensures that a user may make 
use of resources and services without others being able to link these uses together (Common Criteria 1999). Its special 
case is unlinkability of a sender and a recipient, when a sender and a recipient cannot be identified as communicating 
with each other. 

Fourth, pseudonymity: "ensures that a user acting under a pseudonym may use a resource or service without 
disclosing his identity (Common Criteria 1999). 

 
3 A special case of protection of this kind is preventing any forwarding of disseminated data by any party that received it directly from their 

owner. 
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b) Protecting Usee Identities (Fischer-Hübner, 2001)     In this case, the protected entity is the subject described by 
data, that is, a usee—not the user of data. Usee identities can be protected, e.g., via depersonalisation, providing 
anonymity and pseudonymity of data subjects.  

Depersonalisation (anonymization) of data subjects can be classified as a perfect depersonalization, when data 
are rendered anonymous in such a way that the usee (the data subject) is no longer identifiable, and a practical 
depersonalization, when a modification of personal data is such that information concerning personal or material 
circumstances can either no longer be attributed to an identified or identifiable individual, or can be so attributed only 
with a disproportionate amount of time, expense and labor. Attackers attempt to circumvent depersonalization by 
reidentification attacks.  

c) Protecting confidentiality and integrity of personal data (Fischer-Hübner, 2001)     Protecting confidentiality and 
integrity of personal data can be protected by a number of methods and technologies, including privacy-enhanced 
identity management, limiting access control (incl. formal privacy models for access control, also security models 
enforcing legal privacy requirements), using enterprise privacy policies, making data inaccessible with cryptography or 
steganography (e.g., hiding a message in an image), and utilizing specific tools (such as Platform for Privacy 
Preferences or P3P (Marchiori et al , 2002)=[40]). 

B.2. Legal Privacy Controls     For completeness of our presentation, we will take a look at legal privacy controls. 
Since the focus of this chapter is on computing technology solutions, this overview is concise. 

Despite the fact that definitions of privacy vary according to context and environment, the belief that privacy is 
a fundamental human right, even one of the most important rights of the modern age, is internationally recognized At a 
minimum, individual countries protect inviolability of the home and secrecy of communications [Green, 2004]. 

There are two types of privacy laws in various countries [Green, 2004]: comprehensive laws, and sectoral laws. 
Comprehensive laws are general laws that govern the collection, use and dissemination of personal information by 
public and private sectors. They are enforced by commissioners or an independent enforcement body. The 
disadvantages of this approach include lack of resources for oversight and enforcement agencies, as well as the 
governmental control over the agencies.  Comprehensive privacy laws are used in Australia, Canada, the European 
Union,  and the United Kingdom. 

Sectoral laws focus on specific sectors and avoid general laws. They benefit from being able to use a variety of 
specialized enforcement mechanisms, selecting the ones best suited for the sector they apply to. Their disadvantage is 
the need for a new legislation for each new sectoral technology. Sectoral privacy laws are used in the United States. 

Disparate national privacy laws require international (or regional) agreements to bridge different privacy 
approaches. An example is the Safe Harbor Agreement, reached in July 2000, between the United States and the 
European Union (Safe Harbor, 2007). It has been criticized by privacy advocates and consumer groups in both the 
United States and European Union for inadequate enforcement, and relying too much on mere promises of participating 
companies. 

 
 

3.2.3.   Trading Privacy for Trust 

An interacting entity can choose to trade its privacy for a corresponding gain in its partner’s trust in it (Zhong & 
Bhargava, 2004). We believe that the scope of a privacy disclosure should be proportional to the benefit expected by 
the entity that discloses its private information. For example, a customer applying for a mortgage must (and is willing 
to) reveal much more personal data than a customer buying a book.  

Having measures of trust and privacy defined above will allow precise observation of these two quantities, and 
precise answers to questions such as: (a) What degree of privacy is lost by disclosing given data? (b) How much trust 
is gained by disclosing given data? (c) What degree of privacy must be sacrificed to obtain a certain amount of trust 
gain? 
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A.   Symmetric and Asymmetric Trust      

Trust relationships can be symmetric—which occurs between partners of similar stature, or asymmetric—which 
occurs when one partner’s position is stronger vis-à-vis the other’s. The strength of a party participating in the 
relationship is defined by its capability to demand private information from the other party, and her means available in 
case when the other party refuses to comply. As a simple example, a bank is stronger than a customer requesting 
a mortgage loan. 

 

B.   Symmetric and Asymmetric Privacy-for-trust Negotiations     

 To realize a privacy-for-trust tradeoff, two interacting parties, P1 and P2, must negotiate how much privacy 
needs be reveled for trust. We categorize  such negotiations as either: (1) symmetric—when both parties are of similar 
strength; or (2) asymmetric—when one party’s position is stronger vis-à-vis the other’s. In turn, symmetric privacy-
for-trust negotiations can be either: (1a) privacy-revealing negotiations, in which parties disclose their certificates or  
policies to the party; or (1b) privacy-preserving negotiations, in which parties preserve privacy of their certificates and 
policies. 

We compare all three kinds of privacy-for-trust negotiations—that is, (1a), (1b), and (2)—in terms of their 
behavior during the negotiations. This behavior includes defining trust level necessary  to enter negotiations, growth of 
trust level during negotiation, and the final  trust level sufficient for getting a service. 

Symmetric negotiations are very popular in the research literature. Asymmetric negotiations, to the best of our 
knowledge have been defined by us. 

B.1.   Trust Growth in Symmetric Trust Negotiations     Symmetric trust negotiations involve partners of similar 
strength. 

a)   Trust growth in privacy-revealing symmetric trust negotiations     Considering trust growth in symmetric trust 
negotiations, let us focus first on  privacy-revealing symmetric trust negotiations. They allow to reveal private 
certificates or policies to the negotiation partner. 

Negotiations of this type can start only if  an initial degree of trust exists between the parties. They must trust each 
other enough to reveal to each other some certificates and policies right away. From this point on, mutual trust grows 
in a stepwise manner as more private information is revealed by each party. Negotiation succeeds when a “sufficient” 
mutual trust is established by the time when the negotiation ends. It is “sufficient” for the requestor to obtain the 
desired service. This procedure is summarized in Figure 8. 

An initial degree of trust necessary 
• Must trust enough to reveal (some) certificates / policies right away 

Stepwise trust growth in each other as more (possibly private) info about each 
other revealed 

• Proportional to the number of ceritficates revealed to each other 

Succeed if sufficient mutual trust established when negotiation completed 
• „Sufficient” for the task at hand 

Figure 8. Trust growth in privacy-revealing symmetric trust negotiations. 

b)   Trust growth in privacy-preserving symmetric trust negotiations     Let us turn now to privacy-preserving 
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symmetric trust negotiations. They ensure that no private certificates or policies are revealed to the negotiation partner. 

In contrast to privacy-revealing symmetric trust negotiations, negotiations of this type can without any initial trust. 
There are no intermediate degrees of trust established during the negotiations. They continue without mutual trust up to 
the moment when they succeed or fails. They succeed when a sufficient mutual trust is established by the time when the 
negotiation ends. This procedure is summarized in Figure 9. 

Initial distrust 
• No one wants to reveal any info to the partner 

No intermediate degrees of trust established 
• „From distrust to trust” 

Succeed if sufficient mutual trust established when negotiation completed 
• „ Sufficient” for the task at hand 

Figure 9. Trust growth in privacy-preserving symmetric trust negotiations. 

B.2.  Trust Growth in Asymmetric Trust Negotiations     Asymmetric trust negotiations involve partners of 
dissimilar strength, with one party’s position visibly stronger vis-à-vis the other’s. 

Negotiations of this type can start only if  at their start the weaker partner has a sufficient trust into the stronger 
partner. This trust is “sufficient” when the weaker party is ready for revealing all private information required to gain 
stronger party’s trust necessary for obtainig a service from the stronger party. As negotiations continue, the weaker 
partner trades a (degree of) privacy loss for (a degree of) a trust gain as perceived by the stronger partner. It should be 
clear that the former looses a next degree of privacy when she reveals the next private certificate to the latter. (The only 
exception to privacy loss is the “no privacy loss” case in the anonymity-preserving example in „Stronger Building 
Trust in Weaker” shown in Figure 3). 

Negotiations succeed when, by the time when the asymmetric trust negotiations end, the stronger party gains 
a sufficient trust into the weaker party to provide it the requested service. This procedure is summarized in Figure 10. 

B.3.  Summary of Privacy-for-trust Trading in Symmetric and Asymmetric Trust Negotiations     Figure 11 
summarizes trust growth in symmetric and asymmetric trust negotiations. 

Initially, Weaker has a „sufficient” trust into Stronger 
• Weaker must trust Stronger sufficiently to be ready for revealing all private 

information required to gain Stronger’s sufficient trust 

Weaker trades a (degree of) privacy loss for (a degree of) a trust gain as 
perceived by Stronger 

• A next degree of privacy „lost” when a next certificate revealed to Stronger 

„Sufficient” trust of Stronger into Weaker established when negotiation 
completed 

• „ Sufficient” for the task at hand 

Figure 10. Trust growth in asymmetric trust negotiations. 
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Trust growth in symmetric „disclosing” trust negotiations 
• Initial degree of trust / stepwise trust growth / establishing mutual „full” trust 
• Trades info for trust (information is private or not) 

Trust growth in symmetric „preserving” trust negotiations (from distrust to trust) 
• Initial distrust / no stepwise trust growth / establishes mutual „full” trust 
• No trading of info for trust (info is private or not) 

Trust growth in asymmetric trust negotiations 
• Initial „full” trust of Weaker into Stronger and no trust of Stronger into Weaker 

/ stepwise trust growth / establishes „full” trust of Stronger into Weaker 
• Trades private info for trust 

 
Figure 11. Summary of trust growth in symmetric and asymmetric trust negotiations. 

 
 

C.   Privacy-for-trust Optimization in Asymmetric Trust Negotiations     The optimization procedure for trading 
privacy for trust in asymmetric trust negotiations presented below follows our approach (Zhong & Bhargava, 2004). It 
includes four steps: 

1. Formalize the privacy-trust tradeoff problem. 
2. Measure privacy loss due to disclosing a private credential set. 
3. Measure trust gain due to disclosing a private credential set. 
4. Develop algorithms and build a system that minimize privacy loss for required trust gain. 

We distinguish two forms of privacy-for-trust optimization. The first one minimizes the loss of privacy by the 
weaker partner  necessary for obtaining, in the eyes of the stronger partner, a certain trust level required to get 
a service. This is the form discuss in more detail below.  

The second form of optimization finds the degree of privacy disclosure (loss) by the weaker partner  necessary for 
maximizing the trust level obtained from the stronger partner.  We do not discuss this form, just noticing that it is 
needed in situations when the weaker partner’s benefits obtained form the stronger partner are proportional to the trust 
level attained in the eyes of the stronger partner. 

We assume that a user has multiple choices on what private information to disclose (e.g, in response to an age 
query, a user can show a driver license, a passport, a birth certificate, etc.). Each user can make this selection decision 
independently. 

C.1.  Formulating the Tradeoff Problem     Suppose that the private attributes we want to conceal are a1, a2, …, am. 
A user has a set of credentials {c1, c2, …, cn}. A credential is classified as a direct or a linking one. A direct credential 
contains information that reveals private attribute values. A linking credential is associated with a set of credentials. 
An example of a linking credential is the ownership of a pseudonym. A service provider obtaining this credential can 
access a new set of credentials of the user under this pseudonym. A credential set can be partitioned by a service 
provider into revealed and unrevealed credential subsets. The partitions are denoted as R(s) and U(s), respectively, 
where s is the identity of a service provider. 

The tradeoff problem can now be formulated as follows: choose from U(s) the next credential nc to be revealed in 
a way that minimizes privacy loss while satisfying trust requirements. In a more formal notation it can be represented 
as: 

}|))((Pr))((min{Pr tsrequirementrustsatisfiesncsRivacyLosssRncivacyLoss −∪  

This problem can be investigated in two scenarios: 
1. Service providers never collude to discover customer’s private information. An individual version R(s) is 

maintained for each service provider and privacy loss is computed based on it.  
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2. Some service providers collude to discover customer’s private information. A global version Rg that consists of 
all credentials disclosed to any service provider is maintained. Since the difference between R(s) and Rg is 
transparent to the evaluation of privacy loss and trust gain, they both are denoted as R in further 
considerations. 

The tradeoff problem changes to a multivariate problem if multiple attributes are taken into consideration. It is 
possible that selecting nc1 is better than nc2 for a1 but worse for a2. We assume the existence of an m-dimensional 
weight vector [w1, w2, …, wm] associated with these private attributes. The vector determines the protection priority for 
the private attributes a1, a2, …, am, respectively. We can minimize either: (a) the weighted sum of privacy losses for all 
attributes, or (b) the privacy loss of the attribute with the highest protection weight. 

Another factor affecting the tradeoff decision would be the purpose of data collection. It can be specified in the 
service provider’s privacy policy statement, for instance, by using P3P (Marchiori et al , 2002)=[40]. Pseudonymous 
analysis and individual decision are two data collection purposes defined in P3P. The former states that the collected 
information will not be used to attempt to identify specific individuals. The latter tells that information may be used to 
determine the habits, interests, or other characteristics of individuals. A user could make different decisions based on 
the stated purpose. Furthermore, the service provider’s trustworthiness to fulfill the declared privacy commitment can 
be taken into consideration. 

C.2.   Estimating Privacy Loss     In order to make the tradeoff decision, we use metrics and inference procedures for 
representing and estimating privacy loss. 

We distinguish the query-dependent and query-independent privacy losses. Query-dependent privacy loss for a 
credential nc is defined as the amount of information that nc provides in answering a specific query. The following 
example illustrates the query-dependent privacy loss for a credential. Suppose that the user’s age is a private attribute. 
The first query asks: “Are you older than 15?” The second query tests the condition for joining a silver insurance plan, 
and asks: “Are you older than 50?”. If a user has already presented a valid driver license, we are 100% sure that the 
answer to the first query is “yes” but the probability of answering “yes” to the second query by a person with a driver 
license is, say, 40%.  Privacy loss for a revealed credential (a driver license) is here query-dependent since it varies for 
different queries: it is a full privacy loss (100%) for the first  query, and only a partial (“probabilistic”) privacy loss 
(40%) for the second query. This example also makes it clear that the value of revealed information (such as a driver 
license) can vary for different queries. 

It is time for an example illustrating the query-independent privacy loss for a credential. Suppose that a user has 
already presented her driver license. It implies that she is older than 16. If she uses her Purdue undergraduate student 
ID as the next piece of evidence, a high query-independent privacy loss ensues—since this credential greatly reduces 
the probable range of her age. Let us consider the third query asking: “Are you an elementary school student?” The 
student ID is redundant as a credential for this because her previous revealed credential (the driver license) has already 
excluded this possibility. This shows that a credential having a high query-independent privacy loss may not 
necessarily be useful to answer a specific query. 

Two types of methods can be used to measure a privacy loss: probabilistic methods and the predefined lattice 
method. 

a) Probabilistic Methods for Estimating Privacy Loss     The first type are probabilistic methods, one for evaluating 
query-dependent privacy losses and another for evaluating query-independent privacy losses. More specifically, the 
first probabilistic method evaluates the query-independent privacy loss for disclosing a credential ci with respect to one 
attribute aj that has a finite domain { v1, v2,  …, vk }. The probability of aj = vi before disclosing the credential is 
Prob(aj = vi | R). The probability of aj = vi with a given credential ci disclosed is Prob(aj = vi | R  ∪   ci). The privacy 
loss is measured as the difference between entropy values (Young, 1971)=[72]: 
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The second probabilistic method evaluates the query-dependent privacy loss based on the knowledge of the 
complete set of potential queries. Let q1, q2,  …, qn denote the n queries. Let pri be the probability that qi is asked, and 
wi  be the corresponding weight indicating the protection priority of this query. We can now evaluate the privacy loss 
of disclosing a credential ci in response to a query qk. Suppose that there are r possible answers to the query. The 
domain of an attribute aj is divided into r subsets { jqv1 ,  jqv2 , ..., j

rqv } based on the query answer set. The privacy 
loss with respect to attribute aj and query qk is computed as: 
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The query-dependent privacy loss with respect to attribute aj is evaluated by the following formula: 
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Bayes networks (Jensen, 1996)=[36] and kernel density estimation can be used for conditional probability estimation. 

b)   The Predefined Lattice Method for Estimating Privacy Loss     The second type of methods that can be used for 
measuring a privacy loss is represented by the predefined lattice method. This method assumes that each credential is 
associated with a tag indicating its privacy level with respect to attribute aj. The tag set is organized as a lattice 
(Donnellan, 1968)=[25a] in advance. Tags are assigned to each subset of credentials as follows. Suppose that TB and 
TA are two tags and TB ≤ TA. TA and TB are assigned to credentials cA and cB, respectively, if the information inferred 
from cA is more precise than what can be inferred from cB. cA determines a possible value set VA for aj, and cB 
determines another set VB. The formula to compute the privacy loss is: 

)()|(Pr ia j
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where lub is the least upper bound operator (Donnellan, 1968)=[25a]. 

C.3.  Estimating Trust Gain     The way to compute the trust gain has already been shown in Section 3.2.1-A on 
Trust Metrics. It requires defining a trust benefit function B(ti) associated with each trust level ti.  Then the trust gain 
G can be calculated as follows: 

trust gain = G(new_trust_level, old_trust_level) = B(new_trust_level) - B(old_trust_level) 

C.4.   PRETTY—a System Minimizing Privacy Loss for a Required Trust Gain     A prototype software 
PRETTY (PRivatE and TrusTed sYstems) was developed at in the Raid Laboratory at Purdue University (Zhong & 
Bhargava, 2004)=[25b]. PRETTY utilizes the server/client architecture as shown in Figure 12. It uses as its 
component the existing TERA (Trust-Enhanced Role Assignment) prototype also developed in the Raid Lab at Purdue 
(Zhong et al., 2004)=[75]. TERA evaluates the trust level of a user based on her behavior. It decides whether a user is 
authorized for an operation based on the policies, the credentials, and the level of trust. A user’s trust value is 
dynamically updated when more data on her behavior becomes available. 

The client component of PRETTY consists of the user application, the credential manager, the evaluator of trust 
gain and privacy loss, the privacy negotiator, and a set of privacy policies. The server component consists of the server 
application, the TERA server, the privacy negotiator, the set of privacy policies, the database, and the data 
disseminator. 
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Figure 12. Architecture of PRETTY. 

A typical interaction is illustrated in Figure 12. An arrow number in the figure (1 – 4, some with letter suffixes) 
corresponds to an item number in the interaction description below. A number in parentheses in the figure denotes an 
unconditional path (e.g., “(1)”)—a path followed by all interactions, and a number in brackets denotes a conditional 
path (e.g., “[2a]”)—a path followed only by some interactions. An interaction takes place as follows:  

1) User application sends query to server application. 

2) Server application sends user information to TERA server for trust evaluation and role assignment. 

2a) If a higher trust level is required for query, TERA server sends the request for more user’s credentials 
to privacy negotiator. 

2b) Based on server’s privacy policies and the credential requirements, privacy negotiator interacts with 
user’s privacy negotiator to build a higher level of trust. 

2c) Trust gain and privacy loss evaluator selects credentials that will increase trust to the required level 
with the least privacy loss. Calculation considers credential requirements and credentials disclosed in 
previous interactions. (This item includes two actions: [2c1] and [2c2].) 

2d) According to privacy policies and calculated privacy loss, user’s privacy negotiator decides whether or 
not to supply credentials to the server. 

3) Once trust level meets the minimum requirements, appropriate roles are assigned to user for execution of his 
query. 

4) Based on query results, user’s trust level and privacy polices, data disseminator determines: (i) whether to 
distort data and if so to what degree, and (ii) what privacy enforcement metadata should be associated with it. 

The evaluator of trust gain and privacy loss implements the ideas present in this paper. It allows users to specify 
the representation of a privacy loss and the strategies and prompts a user to enter the utility function for the ongoing 
interaction. The evaluator either automatically makes the tradeoff decision, or provides a user with the evaluation 
results for privacy loss and trust gain. The following methods are used for automatic decision making: (a) if the lattice-
based representation of privacy loss is used, the decision procedure is to choose the least upper bound of privacy loss 

(1) 

[2a] 

(3) User Role 

[2b] [2d] 
[2c1] 

[2c2] 
(2) 

(4) 
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of the candidate credentials; (b) if the numeric representation of privacy loss is used, search algorithms using the 
privacy loss as heuristic functions can be used. We are still developing mechanisms to precisely evaluate conditional 
probabilities for privacy loss. We plan to study the effectiveness and efficiency of the entropy-based and lattice-based 
privacy loss evaluation methods using PRETTY. 
 
 
 
 

4.  FUTURE TRENDS FOR PRIVACY AND  TRUST RESEARCH 

Technical privacy- and  trust-related solutions will continue their strong impact on online consumer protection. The 
future trends related to privacy will be determined, among others, by the following challenges (Bhargava et al., 2003): 

1. Defining and measuring privacy and its multifaceted aspects. 
How to define and assess quality, safety, and privacy of personal data? How to define metrics for this 
assessment? 

2.  Defining, analyzing, and managing privacy policies. 
How to define privacy policies? How to best perform privacy requirement analysis and stakeholder analysis? 
How to address privacy of primary and secondary uses of information? How to optimize digital rights 
management (DRM)? 

3. Determining technologies endangering privacy in computing environments. 
What technologies (or system components) endanger privacy in computing environments, and how to prevent 
this? As an example, how to prevent pervasive computing from illegitimate monitoring and controlling people? 
How to assure anonymity in more and more pervasive computing environment? How to balance anonymity 
with accountability under these circumstances? 

4. Finding new privacy-enhancing technologies. 
What technologies can be utilized or exploited to provide privacy, and how to use them to this end? For 
example, is there a way to insert “privacy monitors” or tools that provide alerts when privacy is endangered 
due to inference or careless transactions? What are the best ways of privacy-preserving data mining and 
querying? How to monitor Web privacy and prevent privacy invasions by undesirable inferences? How to 
address the issue of “monitoring the monitor,” including identification and prevention of situations when 
incorrect monitor data result in a personal harm? 

The future trends related to trust will be determined among others, by the following challenges (Bhargava et al., 
2003): 

1. Improving initiation and building of trust. 
How to create formal models of trust, addressing the issues of different types of trust (e.g., trust towards data, 
or users, or system components)? How to define trust metrics able to compare different trust models? How 
should trust models select and accommodate trust characteristics? How should the models of trust handle both 
direct evidence and second-hand recommendations related to the trusted subjects or objects? How trusted 
parties can be used to initiate and build trust? How timeliness, precision, and accuracy affect the process of 
trust building? 

2. Maintaining and evaluating trust. 
How to collect and maintain trust data (e.g., credentials, evidence on the behavior of the trusted objects, 
recommendations)? How and when to evaluate trust data? How to discover betrayal of trust, and how to 
enforce accountability for damaging trust? How to prevent trust abuse, for example, by means of revocation of 
access rights? How to motivate users to be good citizens and to contribute to trust maintenance? 

3. Constructing practical trust solutions. 
How to scale up trust models and solutions? What is the impact of trust solutions on system performance and 
economics? How to guarantee performance and economy of trust solutions? How and what economic 
incentives and penalties can be used for trust solutions? 
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4. Engineering trust-based applications and systems. 
How to experiment with and implement trust-based applications and systems for e-government, e-commerce, 
and other applications? How to enhance system performance, security, economics, etc., with trust-based ideas 
(such as enhancing role-based access control with trust-based mappings)? 

 
 
 

5.  CONCLUSION 

Providing tools for privacy-for-trust exchange is critical to the further development of online interactions. Without 
privacy guarantees, there can be no trust, and without at least some trust no interactions can even commence—unless a 
party is totally oblivious to the dangers of privacy loss, up to the point of identity theft. Normally, people will avoid 
any negotiations if their privacy is threatened by a prospective negotiation partner. Without trust-building 
negotiations, no trust can be established. 

The stakes are becoming higher since privacy guarantees are becoming absolutely essential as we progress towards 
pervasive computing. More pervasive devices have the higher potential for violating privacy. Unless adequate technical 
privacy controls and privacy-for-trust support is provided, possibilities of huge privacy losses will scare people off, 
crippling the promise of pervasive computing. 

The objective of this chapter was presentation of an approach and a tool for protecting privacy in privacy-for-trust 
exchanges. We began with summarizing the role of trust and privacy in online interactions, emphasizing the tradeoff 
between these two phenomena. After an overview of trust with its characteristics and privacy with its characteristics, 
we discussed the issue of interplay of privacy and trust, emphasizing privacy-for-trust tradeoff. Next, an overview of 
problems facing a person wishing to trade privacy for trust was followed by a description of our proposed solution. It 
started with a look at trust metrics and means for building and verifying trust. We then discussed technical means for 
protecting privacy, preceded by a presentation of privacy metrics: an effective anonymity set size and an entropy-based 
metric.  

We categorized the processes of trading privacy for trust into symmetric privacy-for-trust negotiations and 
asymmetric privacy-for-trust negotiations, dividing the former into privacy-revealing and privacy-preserving 
subcategories. The presented privacy-for-trust solution is intended for optimization in asymmetric trust negotiations. It 
involves four steps: formulating the tradeoff problem, estimating privacy loss, estimating trust gain, and minimizing 
privacy loss for a required trust gain. We provided a brief description of PRETTY, a system minimizing privacy loss 
for a required trust gain. 
 
 
 

5. FUTURE RESEARCH DIRECTIONS IN TRADING 
PRIVACY FOR TRUST IN ONLINE INTERACTIONS 

We have shown that privacy and trust enable and facilitate collaboration and communication. We indicated their 
growing role in open environments. To increase the benefits of privacy- and trust-related solutions, a number of 
research directions should be pursued (cf. (Bhargava et al., 2003)). For privacy-related solutions, the following 
research problems should be addressed (ibid): 

1. Privacy  metrics.  
Issues of privacy of users or applications, on the one hand, and privacy (secrecy, confidentiality) of data, on 
the other hand, intertwine. Metrics for personal and confidential data usage should be developed. They should 
include measures of who and how accesses data, what data are accessed, and for how long. Metrics and 
methods for measurements of privacy-related aspects of data quality should be provided. Researchers should 
also propose measures of accuracy in information extraction with respect to privacy, since inaccurate 
information can obstruct accountability or harm privacy (like in a case of a wrongly identified individual).  
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2. Privacy policy monitoring and validation. 
We need to better understand how to monitor and validate privacy policies. We need to develop technologies 
that ensure the correct enforcement of privacy policies. This research should include addressing the issues of 
monitoring and validating privacy aspects of data integration, separation, warehousing, and aggregation. An 
interesting issue, related to validation, is licensing of personal data by their owners for specific uses (an 
example is Ms. Smith agreeing to receive house-for-sale advertising by licensing her e-mail rights to a real 
estate advertiser). 

3. Information hiding, obfuscation, anonymity, and  accountability.  
Research should address different ways of assuring anonymity via information hiding and obfuscation, ranging 
from steganography through location security and hiding message source and destination from intermediate 
nodes to approaches used for digital elections. At the same time, for accountability, we need to investigate how 
to prevent illegitimate or improper information hiding. We need models supporting accountable anonymity that 
do not depend on a trusted third party. As an example, accountability suffers when data provenance 
obfuscation or user anonymity hinder intruder identification. Other interesting issues are information hiding 
and anonymity preservation in negotiations among parties with variable degrees of mutual trust. 

4. New  privacy-enabling  and  privacy-disabling  technologies.   
We need more research on the impact of new technologies on preserving privacy. In particular research on 
privacy for pervasive computing is needed, since pervasive computing results in an easy information flow.  
Unless proper access control is provided, this flow threatens to ruin anonymity with perfect accountability 
(e.g., not only GPS-enabled devices but even cell phones and RFID tags on purchased products introduce the 
risk of monitoring of location of individuals). Similarly, permanent availability (or “always-on” connectivity) 
complicates protection against denial-of-service attacks. Interesting aspects of trust-related privacy are raised 
by data-sharing peers, including limiting data disclosures on the as-needed basis, and avoiding sharing 
irrelevant or highly sensitive data (such as trade secrets). Another important issue is privacy-preserving data 
mining on massive datasets. 

5. Interdisciplinary privacy research.  
One important direction of interdisciplinary work is proposing comprehensive and rich privacy models based 
on social and ethical privacy paradigms. Another direction is considering public acceptance of privacy 
requirements and rules, and their enforcement. 

 
In turn, for trust-related solutions, the following research problems should be addressed (ibid): 

1. A better utilization of the social paradigm of trust.  
Utilization of the powerful social paradigm of trust, based on the analogies to uses of the notion of trust in 
social systems, should be explored in many ways. Finding out what makes trust work in existing social 
systems, and transferring this to a computing world is a big challenge. This work calls for a strong cooperation 
with social scientists. 

2. Liability  of  trust.  
We need to provide methods, algorithms, and tools to identify which components and processes of the system 
depend on trust. We also need to find out to which extent and how security of a system may be compromised if 
any of these trust-dependent components fails. As an example, the role of data provenance explanations in 
trust-based systems needs be investigated. 

3. Scalable  and  adaptable  trust  infrastructure.  
A high priority should be given to building scalable and adaptable trust infrastructures, including support for 
trust management and trust-based negotiations. In particular, support should be made available for gaining 
insight from different applications, for exploring the issue of dynamic trust, for building interoperable tools for 
the trust infrastructure, for developing flexible and extensible standards, and for investigating trust-based 
negotiations. 

4. Benchmarks, testbeds, and development of trust-based applications.  
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We need benchmarks and testbeds for experimenting with diverse roles of trust in computing systems. The 
experiments should form a strong basis for the development of prototype trust-based applications, such as ones 
for crisis and emergency management for homeland security, broad collaborations among researchers or 
government agencies, or medical information sharing between healthcare providers. Trust-based solutions for 
new and emerging technologies should be studied. An example is using trust for ensuring data integrity and 
privacy in sensor networks deployed in trustless environments. 

5. Interdisciplinary trust research.  
There is a strong need for trust-related interdisciplinary research outside of the realm of computer science and 
engineering. In addition to already-mentioned interdisciplinary work on the social paradigm of trust, it should 
include research on ethical, social, and legal issues, both human-centered and system-centered. Another 
important interdisciplinary work should focus on economic incentives for building trust, and disincentives and 
penalties for committing fraud. 

Trust and privacy are strongly related to security. Therefore, in addition to the separate research directions for 
privacy and trust specified above, we can also indicate threads of research common not only to them, but also to 
security.  This means research on intersecting aspects of trust, privacy and security (TPS) (Bhargava et al., 2003). 
The first common thread includes the tradeoffs, including not only the tradeoff between privacy and trust, but also 
performance vs. TPS, cost and functionality vs. TPS, and data monitoring and mining vs. TPS. The second common 
thread contains policies, regulations, and technologies for TPS. This includes creation of flexible TPS policies, 
appropriate TPS data management (including collection, usage, dissemination, and sharing of TPS data), and 
development of domain- and application-specific TPS approaches (such as TPS solutions for commercial, government, 
medical, and e-commerce fields). The third and the fourth threads are development of economic models for TPS, and 
investigation of legal and social TPS aspects. 
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8.  ADDITIONAL READING IN TRADING PRIVACY FOR TRUST IN ONLINE INTERACTIONS 
 

(8) Additional Reading 
A list of 25-50 additional readings (e.g. journal articles, book chapters, case studies, 
etc.) should be offered by the author(s) of each chapter. As the experts, we feel as 
though the contributing authors are the best source for suggestions on additional 
readings in their respective fields! 
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