
Algorithm Design Strategies:

• Design by Induction
• Divide and Conquer
• Dynamic Programming

Design by Induction:

The principle of design by induction is as follows:

Assume that I know how to solve a problem of a given size.
How do I express the solution to problem of a larger size in
terms of the solution to problem of known size.

Design by Induction: Evaluating a polynomial.

Consider the polynomial:

pn(x) = anxn + an-1xn-1 + ... + a0

Assume that you know how to compute Pn-1(x). We know
that P0(x) = a0.

Given Pn-1(x), we can easily compute Pn(x) as follows:

Pn(x) = Pn-1(x) + anxn

While we can write a program in this manner, computing

Pn(x) from Pn-1(x) still requires computation of anxn fol-
lowed by an addition. This takes n multiplications for com-

puting anxn followed by 1 addition.

It is easy to verify that computing P0, P1, P2, ..., Pn, in

series therefore requires O(n2) computations.

Can we do better than this?

Design by Induction: Evaluating a polynomial.

Consider, again, the polynomial:

pn(x) = anxn + an-1xn-1 + ... + a0

Assume that you know how to compute Pn-1(x) and

Sn-1(x). Here, Sn-1(x) = xn-1.

We know that P0(x) = a0 and S0(x) = 1.

Now we can write:

Sn(x) = Sn-1(x) * x
Pn(x) = Pn-1(x) + anSn(x)

It is easy to see that computing (Pn(x), Sn(x)) from
(Pn-1(x), Sn-1(x)) requires 2 multiplications and 1 addition.

It is easy to verify that computing P0, P1, P2, ..., Pn, in
series therefore requires 2n multiplications and n additions.

Can we do yet better?

Design by Induction: Evaluating a polynomial.

Consider, again, the polynomial:

pn(x) = anxn + an-1xn-1 + ... + a0

This time, we define

P’1(x) = anx + an-1
P’2(x) = (anx + an-1) * x + an-2 or P’1(x)*x + an-1

P’n(x) = P’n-1(x)*x + a0

It is easy to see that Pn(x) is the same as P’n(x).

Also, computing P’i(x) from P’i-1(x) takes one addition and
one multiplication.

However, in this case, computing in sequence P’1(x),
P’2(x), ..., P’n(x) only takes n additions and n multiplica-
tions. While this is still O(n), this algorithm is twice as fast
as the preceding one.



Dynamic Programming (DP):

• Similar to Divide and Conquer (DC).
• Express solution of a problem in terms of solutions to

subproblems.
• Key difference between DP and DC is that while sub-

problems in DC are independent, subproblems in DP
may themselves share subsubproblems. This means
that if these were treated as independent subproblems,
the complexity would be higher.

• DP is typically used to solve optimization problems.
• In bioinformatics, the most common use of DP is in

sequence matching and alignment.

DP works on the Bellman principle of optimality, namely,
DP will return a desired solution for problems where the
desired (optimal) solution to a problem can be composed
from desired (optimal) solution to subproblems.

Dynamic Programming: Optimal matrix multiplication
parenthesization.

Consider the problem of computing the product of the
matrices A1.A2.A3... . An.

Here, each Ai is of dimension ri x ri+1.

Clearly, the product is a matrix of dimension r1 x rn+1.

The sequence in which the product is computed critically
impacts the number of operations. Recall that multiplying
two matrices of dimensions i x j and j x k takes i x j x k oper-
ations (each operation is a single add and multiply).

For example, if A1 is of dimension 3 x 3, A2 of dimension
3 x 3 and A3 of dimension 3 x 1,

(A1.A2).A3 takes 3 x 3 x 3 + 3 x 3 x 1 = 36 operations.

on the other hand,

A1.(A2.A3) takes 3 x 3 x 1 + 3 x 3 x 1 = 18 operations.

The objective of the optimal matrix parenthesization prob-
lem is to derive the parenthesization that yields the lowest
operation count.

Dynamic Programming: Optimal matrix multiplication
parenthesization

Let C(i, j) denote the number of operations in an optimal
parenthesization (best multiplication order) of matrices
Ai.Ai+1.Ai+2... . Aj.

Now, if j > i, there must exist a k such that

Ai.Ai+1.Ai+2... . Aj= (Ai.Ai+1... . Ak).( Ak.Ak+1... . Aj)

We know, by definition that the optimal parenthesization of
(Ai.Ai+1... . Ak) requires C(i,k) operations and that of
( Ak.Ak+1... . Aj) requires C(k,j) operations.

Therefore, the optimal number of operations to compute
Ai.Ai+1.Ai+2... . Aj must be defined as the minimum over all
k of C(i,k) + C(k,j) + (operations required to multiply
(Ai.Ai+1... . Ak) and ( Ak.Ak+1... . Aj)).

Therefore the following recurrence relation follows:

C(i,j) = 0 if i = j
min ( C(i,k) + C(k,j) + (ri . rk . rj+1) ) k=i, i+1, .. j.

This recurrence relation can be used to compute the opti-
mal parenthesization.

Dynamic Programming: Optimal matrix multiplication
parenthesization

We illustrate the algorithm with the following example:

15125

11875 10500

9375 7125 5375

7875 4375 2500 3500

15750 2625 750 1000 5000

0 0 0 0 0 0

A0 A1 A2 A3 A4 A5
30x35 35x15 15x5 5x10 10x20 20x25

The optimal parenthesization of the six matrices can be
done in 15125 operations. This is less than just multiplying
A0 with A1!



Dynamic Programming: Longest Common Subsequence.

A sequence Y is a subsequence of X  if Y can be derived
by deleting 0 or more entries in X.

For example, <A, G, D> is a subsequence of
<B, A, C, D, G, A, D>

On the other hand, <A, G, D> is not a subsequence of
<B, A, C, D, G, A>

The objective of the longest common subsequence prob-
lem is, given two sequences X and Y, to find a sequence Z
which is the longest subsequence of X and Y.

For example,

X : < A, B, C, B, D, A, D>
Y: < B, D, C, A, B, A>

Here, < B, C>, < B, A>, and < B, C, B, A> are all subse-
quences (among others), however, as we shall show soon,
<B, C, B, A> is a longest common subsequence of X and Y.

Dynamic Programming: Longest Common Subsequence.

The key to the DP algorithm for longest common subse-
quence is as follows:

Say C(i, j) is the length of the longest common subse-
quence of first i characters of X and first j characters of Y.
Now, say, we have somehow computed the longest com-
mon subsequence of first i-1 characters of X and j-1 char-
acters of Y, i.e., we know C(i-1, j-1). We need to use this
information to compute C(i, j).

In this case, if the ith character of X matches the jth charac-
ter of Y, then C(i, j) must be C(i-1, j-1) + 1 (since the length
can be increased because of the matching character).

The interesting case happens when the ith character of X
does not match jth character of Y. In this case, we have one
of two alternatives -- we discard the ith character of X and
carry on, or we discard the jth character of Y and carry on.
In the former case, C(i, j) = C(i-1, j) and in the latter case,
C(i, j) = C(i, j-1). Since we are looking for the maximum
length sequence, this leads to the simple recurrence rela-
tion:

C(i, j) = 0 if i = 0 or j = 0
C(i-i, j-1) + 1 if Xi = Yi
max (C(i, j-1), C(i-1, j)) if Xi != Yi

This recurrence relation can be used to solve the longest
common subsequence problem.

Dynamic Programming: Longest Common Subsequence.

Example:

Consider two sequences:
X : < A, B, C, B, D, A, D>
Y: < B, D, C, A, B, A>
The DP algorithm constructs the C table as follows:

We can identify longest common subsequence by locating
all diagonal transitions in the C table. In this case, there are
multiple longest common subsequences. One is <B, C, B,
A>. What are the others?

Table 1: C table for matching X and Y.

Y B D C A B A

X 0 0 0 0 0 0 0

A 0 0 0 0 1 1 1

B 0 1 1 1 1 2 2

C 0 1 1 2 2 2 2

B 0 1 1 1 2 3 3

D 0 1 2 2 2 3 3

A 0 1 2 2 3 3 4

D 0 1 2 2 3 4 4

The Smith-Waterman Algorithm for Matching.

The Smith Waterman algorithm augments the matching
process with similarity tables and gap penalties. The idea
is that not all amino-acids (characters) are equally similar
or dissimilar. An example of a similarity table is Blosum62
shown below:

This table indicates that if you match a C in X with a C in Y,
you can add 9 to the score. However, if you match an S in X
with an S in Y, you only add 4 to your score. Similarly, if you
match a P in X with a C in Y, you must deduct 3 from your
score. This is in contrast to the earlier scheme in which you
added 1 if there is a match and did not do anything if there
is a mismatch.



Smith-Waterman Matching: Example.

Sequence 1: WGHE, Sequence 2: W_HE, Score: 22.

Table 1: Similarity Table

H E A G A W G H E E

P -2 -1 -1 -2 -1 -4 -2 -2 -1 -1

A -2 -1 4 0 4 -3 0 -2 -1 -1

W -2 -3 -3 -2 -3 11 -2 -2 -3 -3

H 8 0 -2 -2 -2 -2 -2 8 0 0

E 0 5 -1 -2 -1 -3 -2 0 5 5

A -2 -1 4 0 4 -3 0 -2 -1 -1

E 0 5 -1 -2 -1 -3 -2 0 5 5

Table 2: Smith-Waterman Match

H E A G A W G H E E

0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 4 2 0 0 0 0 0 0

W 0 0 0 2 2 0 11 9 7 5 3

H 0 8 6 4 2 0 9 9 17 15 13

E 0 6 13 11 9 7 7 7 15 22 20

A 0 4 11 17 15 13 11 9 13 20 21

E 0 2 9 15 15 14 12 10 11 18 19


