Algorithm Design Strategies:

« Design by Induction
« Divide and Conquer
« Dynamic Programming

Design by Induction:

The principle of design by induction is as follows:
Assume that | know how to solve a problem of a given size.

How do | express the solution to problem of a larger size in
terms of the solution to problem of known size.

Design by Induction: Evaluating a polynomial.

Consider, again, the polynomial:
Pn(X) = apX™ + an X" + ..+ ag

Assume that you know how to compute P,,_;(x) and
S,.1(%)- Here, Sp_;(x) = x™1,

We know that Py(x) = agand Sp(x) = 1.

Now we can write:

Sp(x) = Sp.1(x) *x
Pn(X) = Pp.1(X) + @nSp(X)

It is easy to see that computing (Pp(x), Sy(x)) from
(Pn.1(x), Sp.1(x)) requires 2 multiplications and 1 addition.

It is easy to verify that computing Py, Py, P, ..., Pp, in
series therefore requires 2n multiplications and n additions.

Can we do yet better?

Design by Induction: Evaluating a polynomial.

Consider the polynomial:

Pn(¥) = apX" +ap X"+ +ag

Assume that you know how to compute P,_;(x). We know
that Py(x) = ap.

Given P,,_;(x), we can easily compute P,(x) as follows:
Pp(x) = Pp.1(x) + apx”

While we can write a program in this manner, computing
P, (x) from P,,_;(x) still requires computation of a,x" fol-
lowed by an addition. This takes n multiplications for com-
puting a,x" followed by 1 addition.

It is easy to verify that computing Py, Py, Py, ..., Pp, in
series therefore requires O(n°) computations.

Can we do better than this?

Design by Induction: Evaluating a polynomial.

Consider, again, the polynomial:

Pa(¥) = apx" + ap X+ .+ ag
This time, we define

‘1(x) =apx +ap 4
P'5(x) = (@pX + @n.1) *X +ap.o or P'y(x)* + a1

P,n(X) = P,n—l(x)*x +ap

It is easy to see that P,(x) is the same as P’,(x).

Also, computing P’i(x) from P’;;(x) takes one addition and
one multiplication.

However, in this case, computing in sequence P’;(x),
"5(X), ..., P’n(x) only takes n additions and n multiplica-

tions. While this is still O(n), this algorithm is twice as fast
as the preceding one.

Dynamic Programming (DP):

« Similar to Divide and Conquer (DC).

« Express solution of a problem in terms of solutions to
subproblems.

« Key difference between DP and DC is that while sub-
problems in DC are independent, subproblems in DP
may themselves share subsubproblems. This means
that if these were treated as independent subproblems,
the complexity would be higher.

« DP is typically used to solve optimization problems.

« In bioinformatics, the most common use of DP is in
sequence matching and alignment.

DP works on the Bellman principle of optimality, namely,
DP will return a desired solution for problems where the
desired (optimal) solution to a problem can be composed
from desired (optimal) solution to subproblems.

Dynamic Programming: Optimal matrix multiplication
parenthesization

Let C(i, j) denote the number of operations in an optimal
parenthesization (best multiplication order) of matrices
ApAir1Ajsze - A

Now, if j > i, there must exist a k such that
AiAirgAirze - AF (AiApsge - A (A Ageg. - A)

We know, by definition that the optimal parenthesization of
(AjAjs1--- - Ay requires C(i,k) operations and that of
(Ag-Ak+1-- - Aj) requires C(k,j) operations.

Therefore, the optimal number of operations to compute
A Ajs1-Ajsz... . Ajmust be defined as the minimum over all

k of C(i,k) + C(k,j) + (operations required to multiply
(A,‘.Ai+1... . Ak) and (Ak'Ak+1"' . A/))

Therefore the following recurrence relation follows:
C@ij)= 0 ifi=j
min (C(i,k) + C(k,j) + (1. Iy 111)) k=i, iva, ..

This recurrence relation can be used to compute the opti-
mal parenthesization.

Dynamic Programming: Optimal matrix multiplication
parenthesization.

Consider the problem of computing the product of the
matrices Al'AZ'A3"' . An.

Here, each A;is of dimension r; X rj,.
Clearly, the product is a matrix of dimension ry X rp.;.

The sequence in which the product is computed critically
impacts the number of operations. Recall that multiplying
two matrices of dimensions i x jand j x k takes i x j x k oper-
ations (each operation is a single add and multiply).

For example, if A is of dimension 3 x 3, A, of dimension
3 x 3 and Az of dimension 3 x 1,

(A1.A5).Aztakes 3 x 3 x 3+ 3 x 3 x1 =36 operations.

on the other hand,

Aj.(Ay.Az)takes 3x 3 x 1+ 3x3x1=18 operations.
The objective of the optimal matrix parenthesization prob-

lem is to derive the parenthesization that yields the lowest
operation count.

Dynamic Programming: Optimal matrix multiplication
parenthesization

We illustrate the algorithm with the following example:

15125
11875 10500
9375 7125 5375
7875 4375 2500 3500
15750 2625 750 1000 5000
0 0 0 0 0 0
Ag Ay Ay Ag Ay As

30x35 35x15 15x5 5x10 10x20 20x25

The optimal parenthesization of the six matrices can be
done in 15125 operations. This is less than just multiplying
AO with All

Dynamic Programming: Longest Common Subsequence.

A sequence Y is a subsequence of X if Y can be derived
by deleting O or more entries in X.

For example, <A, G, D> is a subsequence of
<B,A,C,D,G, A D>

On the other hand, <A, G, D> is not a subsequence of
<B, A, C, D, G, A>

The objective of the longest common subsequence prob-
lem is, given two sequences X and Y, to find a sequence Z
which is the longest subsequence of X and Y.

For example,

Here, < B, C>, < B, A>, and < B, C, B, A> are all subse-
quences (among others), however, as we shall show soon,
<B, C, B, A> is a longest common subsequence of X and Y.

Dynamic Programming: Longest Common Subsequence.

Example:

Consider two sequences:

X:<A/B,C,B,D,A, D>

Y:<B,D,C,A B, A>

The DP algorithm constructs the C table as follows:

Table 1: C table for matching X and Y.

B D C

O > 0 WOl m > X
o|lo|lo|o|o|o|o|lo| <
PR P PPl OO
NI NN R Rk R OO
N NN RN R oo
W WN NN R R o>
AW ww NN R Ol
MDA W W NN PR O

We can identify longest common subsequence by locating
all diagonal transitions in the C table. In this case, there are
multiple longest common subsequences. One is <B, C, B,
A>. What are the others?

Dynamic Programming: Longest Common Subsequence.

The key to the DP algorithm for longest common subse-
guence is as follows:

Say C(i, j) is the length of the longest common subse-
quence of first i characters of X and first j characters of V.
Now, say, we have somehow computed the longest com-
mon subsequence of first i-1 characters of X and j-1 char-
acters of Y, i.e., we know C(i-1, j-1). We need to use this
information to compute C(i, j).

In this case, if the ith character of X matches the jth charac-
ter of Y, then C(j, j) must be C(i-1, j-1) + 1 (since the length
can be increased because of the matching character).

The interesting case happens when the th character of X
does not match jth character of V. In this case, we have one
of two alternatives -- we discard the ith character of X and
carry on, or we discard the jth character of Y and carry on.
In the former case, C(j, j) = C(i-1, j) and in the latter case,
C(i, j) = C(i, j-1). Since we are looking for the maximum
length sequence, this leads to the simple recurrence rela-
tion:
C@i,j))= 0 ifi=0orj=0

C(i-i, j-1) + 1 if X; =Y;

max (C(i, j-1), C(i-1, j)) if X;1=Y;
This recurrence relation can be used to solve the longest
common subsequence problem.

The Smith-Waterman Algorithm for Matching.

The Smith Waterman algorithm augments the matching
process with similarity tables and gap penalties. The idea
is that not all amino-acids (characters) are equally similar
or dissimilar. An example of a similarity table is Blosum62
shown below:

EETF &G & B FOHEEEILYFPYE
[[
i i]
L] T
[L
i &
{ I L]
I L] L]
10 [[
4 Eaam u
S L I] q
. -1 -2 - 1-1 1 - o
§ -1 2 B0 a m u
E-10 TN T TR =
m - 1 -3 L1 B "
L ¥ 1 -1 14 1
L J 4 . i a L
r -2 -3 £ 1 -1 -3 -3 i1 4 ¥
ra4-1-2-8-L-3-11-1-3-F-3-F 0 B 0L @ r
¥4 -g RNl p-Paraaet BRBW
Wadd-da-Fpad]-@dopedbad-g-li didW

CETFFAERSE ITOHELINRILY *"TH

This table indicates that if you match a C in X witha Cin 'Y,
you can add 9 to the score. However, if you match an Sin X
with an Sin'Y, you only add 4 to your score. Similarly, if you
match a P in X with a C in Y, you must deduct 3 from your
score. This is in contrast to the earlier scheme in which you
added 1 if there is a match and did not do anything if there
is @ mismatch.

Smith-Waterman Matching: Example.

Table 1: Similarity Table

H |[E |[A |G |[A W |G |H |E |E

P /-2 |-1 (-1 |-2 |-1 |4 |-2 |-2 |-1 |-1
A -2 |-1 |4 0 4 -3 |0 2 -1 |1
w -2 |3 |-3 |-2 |-3 |11 |-2 |-2 |-3 |-3

H |8 0 2 |2 |2 |2 |-2 |8 0 0

E |0 |5 |1 |2 |1 |-3 |-2 |0 |5 |5
A -2 |-1 |4 0 4 -3 |0 2 |-1 |-1

E |0 |5 |1 |2 |-1 |-3 |-2 |0 |5 |5

Table 2: Smith-Waterman Match

HI|E |[A |G |A WG |H |[E |E

o 0 (0 |O |O |O |0 (O |0 |0 |O

P |0 |O |O |O |O [O |[O (O |0 |0 |O
A O |O |O |4 |2 |0 [0 |0 (O |O |O
w o o |0 (2 |2 |0 (11 |9 |7 |5 |3
H |0 |8 |6 |4 |2 |0 9 |17 |15 |13
E |0 |6 |13 |11 |9 |7 |7 |7 |15 |22 |20
A |0 (4 |11 |17 |15 |13 |11 |9 |13 |20 |21
E |0 |2 |9 |15 |15 |14 |12 |10 |11 |18 |19

Sequence 1: WGHE, Sequence 2: W_HE, Score: 22.

