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Quick-Sort
• To understand quick-sort, let’s look at a high-level

description of the algorithm

• 1) Divide : If the sequenceShas 2 or more elements,
select an elementx from S to youpivot. Any
arbitrary element, like the last, will do. Remove all
the elements ofS and divide them into 3 sequences:
- L, holdsS’s elements less thanx
- E, holdsS’s elements equal tox
- G, holdsS’s elements greater thanx

• 2) Recurse: Recursively sortL andG

• 3) Conquer: Finally, to put elements back intoS in
order, first inserts the elements ofL, then those ofE,
and those ofG.

• Here are some pretty diagrams....
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Quick-Sort Tree
85 24 63 45 17 31 96 50

24 45 17 31 50 85 63 96
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)

17 24 31
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Quick-Sort Tree (cont.)
17 24 31 50 63 85 9645

17 24 31 50 63 85 9645
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Analysis of Running Time
• Consider a quick-sort treeT:

- Let si(n) denote the sum of the input sizes of the
nodes at depth i in T.

• We know that s0(n) = n since the root ofT is
associated with the entire input set.

• Also, s1(n) = n - 1 since the pivot is not propagated.

• Thus: either s2(n) = n - 3, or n - 2 (if one of the nodes
has a zero input size).

• The worst case running time of a quick-sort is then:

Which reduces to:

• Thus quick-sort runs in timeO(n2) in the worst case.
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Analysis of Running Time
(contd.)

• Now to look at the best case running time:

• We can see that quicksort behaves optimally if,
whenever a sequence S is divided into subsequences
L and G, they are of equal size.

• More precisely:
- s0(n) = n
- s1(n) = n - 1
- s2(n) = n - (1 + 2) =n - 3
- s3(n) = n - (1 + 2 + 22) = n - 7

...
- si(n) = n - (1 + 2 + 22 + ... + 2i-1) = n - 2i + 1

...

• This implies thatT has heightO(log n)

• Best Case Time Complexity:O(nlog n)
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Randomized Quick-Sort
• The main drawback to quick-sort is that it achieves

its worst-case time complexity on data sets that are
common in practice: sequences that are already
sorted (or mostly sorted)

• To avoid this, we modify quick-sort so that it selects
the pivot as arandom element of the sequence

• Theexpected time of a randomized quick-sort on a
sequence of sizen is O(nlog n).

• Justification: we say that an invocation of quicksort,
on an input sequence of sizem is “good” if neither L
nor G is less thanm/4.
- there arem/2 “good” pivots and m/2 “bad” ones
- The probablility that an invocation is “good” is 1/2
- Suppose we choose a good pivot at nodev: the

algorithm recurs on sequences with size at most
(3/4)meach

- On average, the height of the tree representing a
randomized quick-sort is at most 2log4/3 n

• Total time complexity:O(n log n)
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In-Place Quick-Sort
• Divide step: l scans the sequence from the left, andr

from the right.

• A swap is performed whenl is at an element larger
than the pivot andr is at one smaller than the pivot.

85 24 63 45 17 31 96 50
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In Place Quick Sort (contd.)

• A final swap with the pivot completes the divide step

31 24 63 45 17 85 96 50

rl

31 24 17 45 63 85 96 50
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31 24 17 45 50 85 96 63

rl
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In Place Quick Sort (contd.)
• pseude-code fragment 8.7
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How Fast Can We Sort?
• Proposition: The running time of any comparison-

based algorithm for sorting ann-element sequence S
is Ω(nlog n).

• Justification:

• The running time of a comparison-based sorting
algorithm must be equal to or greater than the depth
of the decision treeT associated with this algorithm.

• Each internal node ofT is associated with a
comparison that establishes the ordering of two
elements of S.

• Thus every external node ofT represents a distinct
permutation of the elements of S.

• HenceT must have at leastn! external nodes which
again implies T has a height of at least log(n!)

• Since n! has at least n/2 terms that are greater than or
equal to n/2, we can see:

• log(n!)  log(n/2)n/2 = (n/2)log(n/2)

• Total Time Complexity:Ω(nlog n).
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How Fast Can We Sort? (contd.)
• A graphical representation of a comparison-based

algorithm’s decision tree.
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