Quick-Sort

e To understand quick-sort, let’s look at a high-leve
description of the algorithm

e 1) Divide : If the sequenc&has 2 or more elements
select an elementfrom Sto youpivot. Any
arbitrary element, like the last, will do. Remove al

the elements dband divide them into 3 sequences:

- L, holdsSs elements less than
- E, holdsSs elements equal to
- G, holdsSs elements greater than

» 2) Recurse Recursively sort. andG

« 3) Conguer: Finally, to put elements back in&in
order, first inserts the elementslafthen those oE,
and those of.

e Here are some pretty diagrams....
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Quick-Sort Tree
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Quick-Sort Tree (cont.)
‘EI'» (85 63 5%9

)

4 \
(24 45 17 3} l .
\ /
- o my = o oy e = =
V4 \ /7 \
/7 \ Ve \
/ \ / \
/ \ /7 \
e p——— - e -
’ \ YAEEREN ’ \ YARERRN
I I i [ I I I I
\N— R \N—/ \~ ————— _/ \h—/
; 7\
/ \ / \
/ \ / \
- - - -
rT TN 2T TN rT TN 2T TN
i | [ i [ I

( (85 63 9})

4 \
(22 19 (a1 i |
\ /
- o my = o oy e = =
7 N / N
/ \ 7 N\

/ \ / \

7 \ / \
e p——— - e -
’ \ YAEEREN ’ \ YARERRN
i I i I I | I I
\N— R \N—/ \~ ————— _/ \h—/

; 7\
’ \ / \
/ \ / \
-t -— — -
rTTN T TN rTTN T TN
i | [ i [ I

sorting 34




Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Quick-Sort Tree (cont.)
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Analysis of Running Time

e Consider a quick-sort trele

- Let 5(n) denote the sum of the input sizes of the
nodes at depthin T.

* We know that §n) = n since the root of Is
associated with the entire input set.

 Also, 5(n) =n- 1 since the pivot is not propagated.

e Thus: either gn) =n- 3, or n- 2 (if one of the nodes
has a zero input size).

e The worst case running time of a quick-sort is the

m-1 O
OO0 v s(n)O
4=o0 U

Which reduces to:

e Thus quick-sort runs in tim&(n?) in the worst case.

—

n.
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Analysis of Running Time
(contd.)

 Now to look at the best case running time:

* We can see that quicksort behaves optimally if,
whenever a sequence S is divided into subsequenc
L and G, they are of equal size.

* More precisely:

- () =n

- s(n)=n-1
-S(nN)=n-(1+2)=n-3
-s(N)=n-(1+2+%)=n-7

g =n-(+2+ 2+ +21)=n-2+1

e This implies thafl has heighO(log n)

» Best Case Time Complexit@2(nlog n)
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Randomized Quick-Sort

 The main drawback to quick-sort is that it achieves
Its worst-case time complexity on data sets that are
common In practice: sequences that are already
sorted (or mostly sorted)

« To avoid this, we modify quick-sort so that it selects
the pivot as #aandomelement of the sequence

e Theexpectedime of a randomized quick-sort on a
sequence of sizeis O(nlog n).

e Justification we say that an invocation of quicksort
on an input sequence of sig®is “good” if neither L
nor G is less thanv4.

- there aran/2 “good” pivots and m/2 “bad” ones
- The probablility that an invocation is “good” is 1/2

- Suppose we choose a good pivot at nodhe
algorithm recurs on sequences with size at most
(3/4)m each

- On average, the height of the tree representing|a
randomized quick-sort is at most 2logn

 Total time complexityO(n log n)
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In-Place Quick-Sort

 Divide step | scans the sequence from the left, and
from the right.

(:85 24 63 45 17 31 96 5@)
I r

o A swap is performed whdns at an element larger
than the pivot andis at one smaller than the pivot

N

(s 24 63 45 17 31 9  50)
| r

(:31 24 63 45 17 8 96 5@)
I r
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In Place Quick Sort (contd.)

O\

(31 24 63 45 17 85 96 50)
I r

(31 24 17 45 63 8 9 50)

« A final swap with the pivot completes the divide ste

(31 24 17 45 50 85 96 @

| =4

I r
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In Place Quick Sort (contd.)

e pseude-code fragment 8.7
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How Fast Can We Sort?

e Proposition: The running time of any comparison-
based algorithm for sorting anelement sequence $
Is Q(nlog n).

-

e Justification:

* The running time of a comparison-based sorting
algorithm must be equal to or greater than the dept
of the decision tre& associated with this algorithm.

e Each internal node df is associated with a
comparison that establishes the ordering of two
elements of S.

e Thus every external node dfrepresents a distinct
permutation of the elements of S.

e HenceT must have at least external nodes which
again implies T has a height of at least ibg(

» Since n! has at least n/2 terms that are greater than
equal to n/2, we can see:

 log(n!) log(n/2)n/2 = (n/2)log(n/2)
e Total Time ComplexityQ(nlog n).
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How Fast Can We Sort? (contd.)

« A graphical representation of a comparison-based
algorithm’s decision tree.

sorting 49



