
32sorting

Quick-Sort
• To understand quick-sort, let’s look at a high-level

description of the algorithm

• 1) Divide : If the sequenceShas 2 or more elements,
select an elementx from S to youpivot. Any
arbitrary element, like the last, will do. Remove all
the elements ofS and divide them into 3 sequences:
- L, holdsS’s elements less thanx
- E, holdsS’s elements equal tox
- G, holdsS’s elements greater thanx

• 2) Recurse: Recursively sortL andG

• 3) Conquer: Finally, to put elements back intoS in
order, first inserts the elements ofL, then those ofE,
and those ofG.

• Here are some pretty diagrams....

33sorting

Quick-Sort Tree
85 24 63 45 17 31 96 50

24 45 17 31 50 85 63 96

34sorting

Quick-Sort Tree (cont.)

24 45 17 31

50 85 63 96

24 17 31 45

50 85 63 96

35sorting

Quick-Sort Tree (cont.)

24 17

31 45

50 85 63 96

17 24

31 45

50 85 63 96

36sorting

Quick-Sort Tree (cont.)

17 24

31 45

50 85 63 96

17 24

31 45

50 85 63 96

37sorting

Quick-Sort Tree (cont.)

17

24

31 45

50 85 63 96

17 24

31 45

50 85 63 96

38sorting

Quick-Sort Tree (cont.)

17 24

31 45

50 85 63 96

17 24 31 45

50 85 63 96

39sorting

Quick-Sort Tree (cont.)

17 24 31

50 85 63 96

45

17 24 31

50 85 63 96

45

40sorting

Quick-Sort Tree (cont.)

17 24 31

50 85 63 96

45

17 24 31 50 85 63 9645

41sorting

Quick-Sort Tree (cont.)
17 24 31 50 63 85 9645

17 24 31 50 63 85 9645

42sorting

Analysis of Running Time
• Consider a quick-sort treeT:

- Let si(n) denote the sum of the input sizes of the
nodes at depth i in T.

• We know that s0(n) = n since the root ofT is
associated with the entire input set.

• Also, s1(n) = n - 1 since the pivot is not propagated.

• Thus: either s2(n) = n - 3, or n - 2 (if one of the nodes
has a zero input size).

• The worst case running time of a quick-sort is then:

Which reduces to:

• Thus quick-sort runs in timeO(n2) in the worst case.

O si n()
i 0=

n 1–
∑

 
 
 

O n i–()
i 0=

n 1–
∑

 
 
 

O i
i 1=

n
∑

 
 
 

O n2()= =

43sorting

Analysis of Running Time
(contd.)

• Now to look at the best case running time:

• We can see that quicksort behaves optimally if,
whenever a sequence S is divided into subsequences
L and G, they are of equal size.

• More precisely:
- s0(n) = n
- s1(n) = n - 1
- s2(n) = n - (1 + 2) =n - 3
- s3(n) = n - (1 + 2 + 22) = n - 7

...
- si(n) = n - (1 + 2 + 22 + ... + 2i-1) = n - 2i + 1

...

• This implies thatT has heightO(log n)

• Best Case Time Complexity:O(nlog n)

44sorting

Randomized Quick-Sort
• The main drawback to quick-sort is that it achieves

its worst-case time complexity on data sets that are
common in practice: sequences that are already
sorted (or mostly sorted)

• To avoid this, we modify quick-sort so that it selects
the pivot as arandom element of the sequence

• Theexpected time of a randomized quick-sort on a
sequence of sizen is O(nlog n).

• Justification: we say that an invocation of quicksort,
on an input sequence of sizem is “good” if neither L
nor G is less thanm/4.
- there arem/2 “good” pivots and m/2 “bad” ones
- The probablility that an invocation is “good” is 1/2
- Suppose we choose a good pivot at nodev: the

algorithm recurs on sequences with size at most
(3/4)meach

- On average, the height of the tree representing a
randomized quick-sort is at most 2log4/3 n

• Total time complexity:O(n log n)

45sorting

In-Place Quick-Sort
• Divide step: l scans the sequence from the left, andr

from the right.

• A swap is performed whenl is at an element larger
than the pivot andr is at one smaller than the pivot.

85 24 63 45 17 31 96 50

rl

85 24 63 45 17 31 96 50

rl

31 24 63 45 17 85 96 50

rl

46sorting

In Place Quick Sort (contd.)

• A final swap with the pivot completes the divide step

31 24 63 45 17 85 96 50

rl

31 24 17 45 63 85 96 50

rl

31 24 17 45 63 85 96 50

rl

31 24 17 45 50 85 96 63

rl

47sorting

In Place Quick Sort (contd.)
• pseude-code fragment 8.7

48sorting

How Fast Can We Sort?
• Proposition: The running time of any comparison-

based algorithm for sorting ann-element sequence S
is Ω(nlog n).

• Justification:

• The running time of a comparison-based sorting
algorithm must be equal to or greater than the depth
of the decision treeT associated with this algorithm.

• Each internal node ofT is associated with a
comparison that establishes the ordering of two
elements of S.

• Thus every external node ofT represents a distinct
permutation of the elements of S.

• HenceT must have at leastn! external nodes which
again implies T has a height of at least log(n!)

• Since n! has at least n/2 terms that are greater than or
equal to n/2, we can see:

• log(n!) log(n/2)n/2 = (n/2)log(n/2)

• Total Time Complexity:Ω(nlog n).

49sorting

How Fast Can We Sort? (contd.)
• A graphical representation of a comparison-based

algorithm’s decision tree.

s1 s2

s1 s3

s1 sns1 sn

s1 s3

s1 sn s1 sn

. . .

. . .

. . .

. . .
sn-1 sn sn-1 sn sn-1 sn sn-1 sn

yes no

nono

no nono

no no no no

yes yes

yes yes yes yes
no

yes yes yes yes

