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ABSTRACT

The widespread use of location-aware devices has led to count-

less location-based services in which a user query can be arbitrar-

ily complex, i.e., one that embeds multiple spatial selection and

join predicates. Amongst these predicates, the k-Nearest-Neighbor

(kNN) predicate stands as one of the most important and widely

used predicates. Unlike related research, this paper goes beyond

the optimization of queries with single kNN predicates, and shows

how queries with two kNN predicates can be optimized. In partic-

ular, the paper addresses the optimization of queries with: (i) two

kNN-select predicates, (ii) two kNN-join predicates, and (iii) one

kNN-join predicate and one kNN-select predicate. For each type

of queries, conceptually correct query evaluation plans (QEPs) and

new algorithms that optimize the query execution time are pre-

sented. Experimental results demonstrate that the proposed algo-

rithms outperform the conceptually correct QEPs by orders of mag-

nitude.

1. INTRODUCTION
Many emerging applications of location-based services demand

complex location-based queries. These queries can contain mul-

tiple predicates that involve a combination of spatial (e.g., kNN

and range) predicates along with the traditional selects, joins, and

group-by’s of relational databases.

Although a large spectrum of research has been devoted to query

processing of location-based queries (e.g., [12, 5, 10, 11, 21, 20,

9, 8]), none addresses the processing and optimization of location-

based queries that contain multiple location-based predicates.

The key issue in queries with multiple location-based predicates

is that they can produce different results based on the order in which

the predicates are evaluated. This results in an ambiguity on the

intended semantics of these queries. In [19], we study the con-

ceptual evaluation of queries that include multiple similarity predi-

cates [16]: similarity group-by (e.g., group-around) [17], similarity

join (e.g., ǫ-join, kNN-join, and join-around) [18], and similarity

∗This work was partially supported by the National Science Foun-
dation under Grants III-1117766, IIS-0964639, and IIS-0811954.

selection (e.g., ǫ-selection and kNN-selection). In [19], we pro-

vide equivalence rules for similarity queries in the form of algebraic

transformations that focus on the correctness of these transforma-

tions, but do not introduce any algorithms for the efficient evalua-

tion of similarity queries. In contrast, this paper introduces efficient

algorithms for processing queries with two kNN predicates while

retaining the correctness of their evaluation.

In this paper, we focus on the operations: kNN-select and kNN-

join. While these operations have a variety of flavors, the ones we

adopt in this paper are explained as follows. Assume that we have

two sets, say E1 and E2, of points in the two-dimensional space.

For simplicity, we use the Euclidean distance.

• kNN-select: For a focal point f , σk,f (E1) returns from the

set of points in E1 the k-closest to f .

• kNN-join: E1 ✶kNN E2 returns all the pairs of the form

(e1, e2), where e1 ∈ E1 and e2 ∈ E2, and e2 is among the

k-closest points to e1.

Queries containing two of these operations embed significant

query processing and optimization challenges. For example, the

well-known heuristic of pushing selections below joins [4] to re-

duce the execution time of a query, can produce wrong results in

the case of a kNN-join. This is demonstrated through the follow-

ing example.

Assume that a car breaks while in travel. The driver needs to

find an hotel and a mechanic shop that are close to each other. At

the same time, the driver wants the hotel to be close to a specific

shopping center, so that he can do shopping while the car is being

repaired. The driver issues the following query: From the list of

mechanic shops and the two closest hotels to each mechanic shop,

report the (mechanic shop, hotel) pairs, where the hotel is amongst

the two closest neighbors of the shopping center.

Notice that this query involves a kNN-select on the inner (right)

relation of a kNN-join. Figures 1 and 2 give two possible QEPs

for the query. In both figures, black dots represent mechanic shops,

white dots represent hotels, and the red triangle represents the shop-

ping center. In Figure 1, the kNN-select is performed after the

kNN-join, while in Figure 2, the kNN-select is pushed below the

kNN-join. As the figures demonstrate, the two QEPs produce dif-

ferent results.

According to [19], the correct QEP for such query is the one

in Figure 1. Pushing a kNN-select under the inner relation of a

kNN-join; as a standard relational query optimizer would typically

do; reduces the scope of the points being considered in the inner

relation. When the kNN-join is performed, the outer relation will

not have the entire set of points of the inner relation to join with, and

hence, the kNN-join will not be performed correctly. For example,

in Figure 2, the Mechanic relation will have nothing to join with
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Figure 1: A QEP with the kNN-select performed after the

kNN-join. k = 2 in both predicates. The resulting pairs are:

(m1, h1), (m2, h1), (m2, h2), (m3, h2), and (m4, h1).
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Figure 2: A QEP with the kNN-select pushed below the inner

relation of the kNN-join. k = 2 in both predicates. The result-

ing pairs are: (m1, h1), (m1, h2), (m2, h1), (m2, h2), (m3, h1),
(m3, h2), (m4, h1), and (m4, h2).

except Hotels h1 and h2. Thus, the resulting pairs will be all the

mechanic shops paired with either h1 or h2, which is wrong. In

other words,

(E1 ✶kNN E2) ∩ (E1 × σkσ,f (E2)) 6≡ E1 ✶kNN (σkσ,f (E2)).

The above example demonstrates that pushing a kNN-select on

the inner relation of a kNN-join is invalid. The lack of such opti-

mization calls for new optimization techniques that can still lever-

age the pruning effect of selection without compromising the cor-

rectness of evaluation.

In addition to the above form of interaction between kNN predi-

cates, we study the following cases:

• The case of a kNN-select on the outer relation of a kNN-

join. This case has been added for completeness. Actually,

pushing a selection below the outer relation of a kNN-join

produces correct query results.

• The cases of two chained and unchained kNN-joins. Since

the kNN-join is not a symmetric operation, the two expres-

sions (E1 ✶kNN E2)∩ (E2 ✶kNN E3) and (E1 ✶kNN E2)
∩ (E3 ✶kNN E2) are not equivalent. We call the joins in the

former expression chained (E1 → E2 → E3), and those in

the latter expression unchained.

• The case of two kNN-selects.

For each of these cases, we introduce efficient algorithms that not

only guarantee the correctness of evaluation, but also outperform

the corresponding conceptually correct QEPs by orders of magni-

tude.

More specifically, the contributions of this paper can be summa-

rized as follows.

1. We introduce two algorithms for evaluating a query with a

kNN-select on the inner relation of a kNN-join (Section 3).

2. We study the cases of two chained and unchained kNN-joins,

and introduce efficient algorithms for their evaluation (Sec-

tion 4).

3. We study the case of two kNN-selects, and present an effi-

cient algorithm for its evaluation (Section 5).

4. We conduct extensive experiments that show how our pro-

posed techniques outperform the conceptually correct QEPs

by orders of magnitude (Section 6).

2. PRELIMINARIES
We assume that the data consists of points in the two-

dimensional space. The algorithms we present do not assume a

specific indexing structure. The algorithms can be applied to a

quadtree, an R-tree, or any of their variants (e.g., [14, 6, 2, 7]).

The quadtree and its variants are hierarchical spatial data struc-

tures that recursively partition the underlying space into blocks un-

til the number of points inside a block satisfies some criterion (be-

ing less/greater than some threshold). We assume that the index

maintains the count of points in each block. We use a simple grid

in the figures for illustration purposes.

In this paper, we make extensive use of the two metrics:

MINDIST and MAXDIST [13]. The MINDIST (or MAXDIST)

between a point, say p, and a block, say b, refers to the minimum

(or maximum) possible distance between p and any point in b. In

the algorithms we present, we process the blocks in a certain order

according to their MINDIST (or MAXDIST) from a certain point.

An ordering of the blocks based on the MINDIST or MAXDIST

from a certain point is termed a MINDIST or MAXDIST order-

ing, respectively. We use the terms: neighborhood and locality of

a point [15] that are defined as follows:

DEFINITION 1. The neighborhood of a point, say p, is the set

of the k nearest neighboring points to p.

DEFINITION 2. The locality of a point, say p, is a set of blocks

inside which the neighborhood of p exists.

One can use any algorithm to compute the neighborhood of a

point. In this paper, we employ the locality algorithm of [15].

Given a point, say p, the main idea of the algorithm is to build

the minimum locality of p, and then compute the neighborhood of

p only from its locality. For more detail on the algorithm, the reader

is referred to [15].

3. KNNSELECT WITH KNNJOIN
As discussed in Section 1, pushing a kNN-select on the inner

relation of a kNN-join is invalid. However, pushing a kNN-select

on the outer relation of a kNN-join is valid [19], i.e.,

(E1 ✶kNN E2)∩ ((σkσ,f (E1))×E2)≡ (σkσ,f (E1)) ✶kNN E2.

To illustrate the above situation, consider the scenario in Sec-

tion 1. Assume that the driver issues the following query: From the

list of mechanic shops and the two closest hotels to each mechanic

shop, report the (mechanic shop, hotel) pairs where the mechanic

shop is amongst the two closest neighbors of the shopping center.
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Notice that in this case, the selection is on the outer (left) relation

of the join.

Figure 3 gives two different QEPs; QEP1 and QEP2; for the

query. In QEP1, the selection is pushed below the join while in

QEP2, the selection is performed after the join. Clearly, both QEPs

produce the same results. This is because as a consequence of the

pushed selection in QEP1, some points of the outer relation will

be excluded from the join. However, performing the join for these

excluded points is useless as the results of the join that have any of

these points will have to be excluded anyway if the selection is to

be applied at the end, as in QEP2.
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Figure 3: Two QEPs for a query with a kNN-select on the

outer relation of a kNN-join. k = 2 in both predicates. Both

QEPs result in the same pairs: (m2, h1), (m2,m2), (h3, h2),
and (m2, h3).

The challenge in pushing a kNN-select1 on the inner relation

of a kNN-join calls for new optimization techniques that can still

leverage the pruning effect of selection without compromising the

correctness of evaluation.

In the rest of this section, we present two algorithms; Count-

ing and Block-Marking; for evaluating a query with a kNN-select

on the inner relation of a kNN-join. Formally, the two algorithms

evaluate a query of the form (E1 ✶kNN E2) ∩ (E1 ×σkσ,f (E2)),
that retrieves the pairs (e1, e2), such that e2 is k✶-closest to e1 and

kσ-closest to f , where k✶ is the k value of the join, and kσ is the k
value of the selection.

The two algorithms are based on the following insight. First, we

compute the neighborhood of f (i.e., perform the selection). Then,

for each point e1 ∈ E1, if we can make sure that the neighborhood

of e1 cannot intersect the neighborhood of f without computing the

neighborhood of e1, then we ignore e1 as it will not contribute to

the results of the query. Otherwise, we compute the neighborhood

of e1, and intersect it with the neighborhood of f . The difference

between the two algorithms is in the way they check if the neigh-

borhood of e1 cannot intersect the neighborhood of f .

3.1 Counting Algorithm
The Counting algorithm proceeds as follows. First, we compute

the neighborhood of f . Then, for each point e1 ∈ E1, we compute

the distance between e1 and the nearest point to e1 in the neigh-

borhood of f . We call this distance search threshold. Then, we

determine the count of the points in the blocks that are completely

included within the search threshold. If the count exceeds k✶, i.e.,

the k value of the join, then the neighborhood of e1 cannot in-

tersect the neighborhood of f . Thus, it is useless to compute the

neighborhood of e1. Otherwise, we compute the neighborhood of

e1, intersect it with the neighborhood of f , and produce pairs of the

1Notice that the same challenge exists if the selection is a spatial
range (e.g., rectangle), or a relational attribute-based selection

form (e1, i), where i belongs to the intersection. An illustration of

the Counting algorithm is given in Figure 4.
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Figure 4: The small circle to the right confines the neighbor-

hood of f in E2. The search threshold is the distance between

e1 and the nearest to it in the neighborhood of f . If the count

of the points of E2 in the gray blocks (i.e., blocks that are com-

pletely included within the search threshold) exceeds k✶, point

e1 is ignored.

Procedure 1 gives pseudocode for the algorithm. We assume

the existence of Method getkNN(p, k) that returns the neigh-

borhood of a point, say p, and Method intersect(P, Q) that

returns the set-intersection between two sets of points, say P and

Q. We use both methods throughout the paper.

Procedure 1 kNN-join kNN-select (Counting)

1: nbrf ← getkNN(f, kσ) // Neighborhood of f
2: outputPairs← ∅
3: for (e1 ∈ E1) do

4: // Get the distance from e1 to the nearest point to it in nbrf
5: searchThreshold← distance(e1, nbrf .nearest)
6: count← 0
7: maxOrder ← A MAXDIST ordering of E2 blocks from e1
8: while count ≤ k✶ do

9: block ← maxOrder.next()
10: if MAXDIST (block, e1) > searchThreshold then

11: break

12: end if

13: count← count+ block.numberOfPoints
14: end while

15: if count ≤ k✶ then

16: nbre1 ← getkNN(e1, k✶) // Neighborhood of e1
17: intersection← intersect(nbrf , nbre1 )
18: for (i ∈ intersection) do

19: outputPairs.add(e1, i)
20: end for

21: end if

22: end for
23: return outputPairs

To determine the count of points in the blocks of E2 that are com-

pletely included within the search threshold, we scan the blocks of

the index of E2 in increasing order of their MAXDIST from e1.

We keep accumulating the count of the points in the encountered

blocks. As mentioned in Section 2, we assume that the index stores

the count of the points in each block. Once a block, say BM , hav-

ing its MAXDIST greater than the search threshold is encountered,

we stop (see Line 11). The reason is that BM and the ones to fol-

low are not completely included within the search threshold. Also,

we stop if the number of points in the encountered blocks exceeds

k✶ (see Line 8). In this case, processing more blocks would result

in a count that is also greater than k✶.
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3.2 BlockMarking Algorithm
The Block-Marking algorithm proceeds as follows. First, we

compute the neighborhood of f . Then, before performing the join,

we perform a preprocessing step for all the blocks of E1. For each

block, we determine whether points located inside the block can

contribute to the results of the query or not. If it is the case that

no point e1 ∈ E1 in the block can contribute to the results of the

query, we mark the entire block Non-Contributing. Otherwise, the

block is marked Contributing.

After the preprocessing step, we scan the Contributing blocks of

E1. Non-Contributing blocks are ignored. For each point e1 in

a Contributing block, we compute e1’s neighborhood, intersect it

with the neighborhood of f , and produce pairs of the form (e1, i),
where i is a point that belong to the intersection. Procedure 2 gives

pseudocode for the algorithm. Line 2 calls the preprocessing step

through Procedure 3 listed next.

Procedure 2 kNN-join kNN-select (Block-Marking)

1: nbrf ← getkNN(f, kσ) // Neighborhood of f
2: contriburingBlocks← preprocess(nbrf )
3: outputPairs← ∅
4: for (block ∈ contriburingBlocks) do

5: for (e1 ∈ block) do

6: nbre1 ← getkNN(e1, k✶) // Neighborhood of e1
7: intersection← intersect(nbrf , nbre1 )
8: for (i ∈ intersection) do

9: outputPairs.add(e1, i)
10: end for

11: end for

12: end for

13: return outputPairs

3.2.1 Efficient Preprocessing

To determine whether a block is Contributing or not, we compute

the neighborhood of the center of the block.2 Then, the distance

between the center and the farthest of its neighbors is determined,

and is added to the length of the diagonal of the block forming a

search threshold. If no point in neighborhood of f is within the

search threshold, then we mark the entire block Non-Contributing.

In this case, any point, say p, in the block will have k✶ or more

points that are nearer to p than any point in the neighborhood of f .

An equivalent, yet cheaper check can be described as follows.

Refer to Figure 5 for illustration. Consider a block, say NC, e.g.,
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Figure 5: A block is marked Non-Contributing if (r + d +
ffarthest) < fcenter .

2We discuss the reason behind choosing the center of the block
later in this section.

the gray block in Figure 5. Let r be the distance between the center

of NC and the farthest of NC’s neighbors, d be the length of the

diagonal of NC, and ffarthest be the distance between f and the

farthest of f ’s neighbors, and fcenter be the distance between f
and the center of NC. NC is marked Non-Contributing if:

(r + d+ ffarthest) < fcenter .

A brute-force approach for the preprocessing phase is to scan

each block in E1, compute the neighborhood of its center, and per-

form the check described above to determine whether the block is

Contributing or not. A more efficient approach is described below.

We scan the blocks of E1 in MINDIST order from f . When a

block, say NC, is marked Non-Contributing, the MAXDIST, say

M , between NC and f is determined. If all the following en-

countered blocks are also marked Non-Contributing, then we stop

scanning any more blocks when we encounter a block of MINDIST

at least M . Otherwise, if any of the next encountered blocks is not

marked Non-Contributing, then this cycle is repeated. The idea of

this approach is to determine a contour (complete cycle) of blocks

such that all the blocks in the contour are Non-Contributing. All the

blocks outside that contour are considered Non-Contributing with-

out further processing. This is illustrated in Figure 6. Procedure 3

gives pseudocode for the preprocessing phase.
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Figure 6: The preprocessing phase. The green block is a Non-

Contributing block. All the next scanned blocks are also Non-

Contributing (the contour of gray blocks). Processing stops

when the red block is encountered, since its MINDIST from

f equals the MAXDIST of the green block from f . All the

next blocks (outside the gray contour) are considered Non-

Contributing without further processing.

3.2.2 Why Choose the Center of the Block?

An important question to address is: If we choose any location,

say c, other than the center of the block, will this result in a tighter

(smaller) search threshold without falsely marking the block Non-

Contributing?

THEOREM 1. The search threshold is minimum if c is the cen-

ter of the block.

PROOF. The search threshold is determined by:

1. the distance between c and the farthest of its neighbors, and

2. an added distance, say x, that is the length of the diagonal of

the block in case c is the center of the block.

The purpose of the added distance x is to cover the neighborhood

of any point in the block, i.e., guarantee that the neighborhood of

any point in the block does not intersect the neighborhood of f .
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Procedure 3 Preprocess Blocks (Block-Marking)

Terms: nbrf : The neighborhood of f . M : MAXDIST between f and the
first Non-Contributing block encountered in the cycle (e.g., the green
block in the figure).

1: // ffarthest is the distance between f and the farthest of its neighbors
2: ffarthest ← distance(f, nbrf .farthest)
3: contributingBlocks← ∅
4: M ← 0
5: minOrder ← A MINDIST ordering of E1 blocks from f
6: for (block ∈ minOrder) do

7: if (block.MINDIST (f) ≥M) then

8: break // All the remaining blocks are Non-Contributing
9: end if

10: nbr ← getkNN(block.center, k✶) // Neighborhood of center
11: // r is the distance between center and the farthest of its neighbors
12: r ← distance(block.center, nbr.farthest)
13: fcenter ← distance(block.center, f)
14: if (r + block.diagonal+ ffarthest < fcenter) then

15: // Non-Contributing block
16: if (M = 0) then

17: // First Non-Contributing block in the cycle
18: M ← block.MAXDIST (f)
19: end if

20: else

21: contributingBlocks.add(block)
22: M ← 0 // Start another cycle
23: end if

24: end for

25: return contributingBlocks

Assume that we randomly select the location of c, and compute

its neighborhood. Refer to Figure 7 for illustration. The farthest

location to c in the block is the top-left corner of the block, say

t. ct = y.3 Point a is the farthest point to c in its neighborhood.

ac = r. Point b is the nearest point to t in the neighborhood of f .

The region bounded by the search threshold does not intersect the

neighborhood of f as shown.
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Figure 7: The effect of choosing any point other than the center

of the block to compute the neighborhood for. x = 2y is a

tight lower bound for the added distance x that guarantees the

correct coverage of the search threshold.

Observe that in Figure 7, we illustrate a bounding case in which

the three positions a, b, and c are collinear and are on the diagonal

of the block (or its extension). Point t is in the middle of the dis-

tance between Points a and b, i.e., ta = tb = (y + r). Any point

inside the block other than t will have distance to Point a that is

< (y + r), and also will have distance to point b that is > (y + r).

3To refer to the distance between two points, say p1 and p2, we use
the notation p1p2.

If x > 2y then tb > (y + r). For any point inside the block, the

distance to Point a will be < (y + r), and the distance to point b
will be > (y + r). This means that the neighborhood of any point

in the block cannot intersect with the neighborhood of f , i.e., the

block is correctly marked Non-Contributing.

If x < 2y then tb < (y + r). For Point t, Point b will be nearer

than Point a. So, even though no point in the neighborhood of f
is within the search threshold, the neighborhood of a point at the

top-left corner will intersect the neighborhood of f , i.e., the block

is falsely marked Non-Contributing.

Thus, x = 2y is a tight lower bound for the added distance x.

And since y is the distance from c to the farthest corner of the block,

y is minimum if c is the center of the block. For this reason, the

search threshold is minimum if c is the center of the block.

3.3 Counting vs. BlockMarking
An important question to address is: How do we choose be-

tween the Counting and Block-Marking algorithms? Observe that

the Counting algorithm does not require a preprocessing phase, i.e.,

once the query is issued, points of the outer relation are processed.

However, the Block-Marking algorithm requires a preprocessing

phase to determine the Contributing and Non-Contributing blocks.

Although this is a winning point for the Counting algorithm, the

Block-Marking algorithm always has better opportunities for being

faster.

In the Counting algorithm, for every point in the outer relation,

the number of points in the blocks that are within the search thresh-

old has to be determined. In other words, the Counting algorithm

poses a per-tuple overhead. On the other hand, the Block-Marking

algorithm has a per-block overhead (to determine the Contributing

blocks). Furthermore, as discussed in Section 3.2.1, this per-block

overhead does not affect all the blocks of the outer relation. The

reason is that the preprocessing phase stops when a contour of Non-

Contributing blocks is encountered.

As we illustrate in Section 6, when the number of points in the

outer relation is small, the Counting algorithm has better perfor-

mance. In this case, because the density of the points is relatively

low, the overhead of the preprocessing phase of the Block-Marking

algorithm is relatively high as it requires computing the neighbor-

hood of the centers of many blocks without significant payoff. On

the other hand, when the number of points in the outer relation is

relatively high, i.e., high density, the Block-Marking algorithm has

better performance because entire blocks will be excluded from the

join. On the contrary, the Counting algorithm will have to process

every point.

4. TWO KNNJOINS
As mentioned in Section 1, the kNN-join is not a symmetric op-

eration, i.e., the two expressions (E1 ✶kNN E2) ∩ (E2 ✶kNN E3)
and (E1 ✶kNN E2) ∩ (E3 ✶kNN E2) are not equivalent. We call

the joins in the former expression chained (E1 → E2 → E3), and

the joins in the latter expression unchained.

4.1 Unchained kNNJoins
Consider a query on three data sets, say A, B, and C. The query

is to retrieve the triplets (a, b, c), where a ∈ A, b ∈ B, and c ∈ C,

such that b is a kA−B nearest neighbor of a, and b is a kC−B nearest

neighbor of c. Figures 8 and 9 give two possible QEPs for the

query. In both figures, solid lines indicate the kNN-join performed

first, and dashed lines indicate the kNN-join performed at the end.

Although both QEPs seem to be legitimate, they produce differ-

ent results; surprisingly none of them is correct. The reason is that

if either join is performed first, then it filters out the input of the
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Figure 8: (A ✶kNN B) is evaluated before (C ✶kNN B).
kA−B = kC−B = 2. The resulting triplets are: (a1, b1, c1),
(a1, b1, c2), (a2, b1, c1), (a2, b1, c2), (a1, b2, c1), (a1, b2, c2),
(a2, b2, c1), and (a2, b2, c2).
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Figure 9: (C ✶kNN B) is evaluated before (A ✶kNN B).
kA−B = kC−B = 2. The resulting triplets are: (a1, b3, c1),
(a1, b3, c2), (a2, b3, c1), (a2, b3, c2), (a1, b2, c1), (a1, b2, c2),
(a2, b2, c1), and (a2, b2, c2).

inner relation of the other join. For example, in Figure 8, when

(A ✶kNN B) is performed first, point b3 is filtered out and will

not be in the neighborhood of any point c ∈ C. Similarly, in Fig-

ure 9, when (C ✶kNN B) is performed first, point b1 is filtered

out and will not be in the neighborhood of any point a ∈ A. Each

QEP is equivalent to pushing a selection on the inner relation of a

kNN-join, which has been proven to be invalid earlier in the paper.

According to [19], to evaluate a query with two unchained kNN-

joins, each join has to be evaluated independently. The results of

a�
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c2
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∩
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Figure 10: The two joins (C ✶kNN B) and (A ✶kNN B)
are evaluated independently. kA−B = kC−B = 2. The re-

sulting triplets are: (a1, b2, c1), (a1, b2, c2), (a2, b2, c1), and

(a2, b2, c2).

the two joins are combined using some operation that has the same

flavor as intersection. This operation takes as input the two sets

of pairs of the outputs of the two joins, and returns the matching

pairs that have the same B component, i.e., intersects the two sets

of pairs on B, which we denote by ∩B . This is illustrated in the

QEP in Figure 10.

4.1.1 Efficient Evaluation

Consider the QEP in Figure 10 for evaluating unchained kNN-

joins. Notice that because the two joins are evaluated indepen-

dently, we can start with either join. Without loss of generality,

assume that the execution starts by evaluating the join (A ✶kNN

B). We study the issue of choosing the optimal join order later

in this section. This QEP is efficient if every point c ∈ C is part

of the final results of the query. As we show next, if some points

in C do not contribute to the results of the query, computing their

neighborhood is redundant, and can be avoided without losing the

correctness of evaluation. This is illustrated in Figure 11 that shows

the distribution of the data sets A, B, and C.
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Figure 11: For points in Circle L, the join (C ✶kNN B) is re-

dundant and its computation can be avoided.

In Figure 11, points of Set A are in Circle Z, points of Set B
are divided between Circles X and M , and points of Set C are

divided between Circles Y and L. The points in Circle M confine

the neighborhood of the points in Circle L. The points in Circle

X confine the neighborhood of the points in Circle Y . The points

in Circle X confine also the neighborhood of points in Circle Z.

For all the points in Circle L, performing the join (C ✶kNN B)
is redundant because its result will never intersect the result of the

join (A✶kNN B) as the join result of the latter is fully contained in

Circle X . On the other hand, for the points in Circle Y , performing

the join (C ✶kNN B) is essential, because its result will be in

Circle X that also contains the result of the join (A ✶kNN B).
To efficiently evaluate a query with two unchained kNN-joins (A

✶kNN B) and (C ✶kNN B), we follow the following procedure.

After evaluating the join (A ✶kNN B), we determine the blocks of

B that contain points b ∈ B that belong to the resulting pairs (a, b),
where a ∈ A. We mark these blocks as Candidate blocks. All the

other blocks are marked as Safe blocks. For example, in Figure 11,

Circle X is a Candidate block, and Circle M is a Safe block.

Before evaluating the join (C ✶kNN B), we do a preprocessing

step similar to the preprocessing step of the Block-Marking tech-

nique in Section 3.2. In this preprocessing step, we scan all the

blocks of C to determine the blocks that are contributing or non-

contributing to the results of the query. For each block, we compute

the neighborhood of its center. Then, the distance from the center

to the farthest point in its neighbors is determined, and is added to

the length of the diagonal of the block to form a search threshold as

in Figure 12. We mark the block Non-Contributing if all the blocks

that are fully or partially contained within the search threshold are

Safe.

After the preprocessing step, we scan the Contributing blocks of

C. Non-Contributing blocks are ignored. For each point, say c,

1105



����������	A���BC

DE�F�

�

�C�CDE�F�C���B���E

����F�C

�������E�

Figure 12: gray blocks are Candidate blocks. White blocks are

Safe blocks. A block is Non-Contributing if the blocks that are

fully or partially contained within its search threshold are Safe.

in a Contributing block, we compute c’s neighborhood, and pro-

duce pairs of the form (c, b) that we intersect on B (i.e., ∩B) with

the computed pairs of the join (A ✶kNN B). Procedure 4 gives

pseudocode for the algorithm.

Procedure 4 Unchained kNN-joins (Block-Marking)

Terms: A, B, C: The input relations of the two joins. kA−B , kC−B : The
k values of the joins (A ✶kNN B) and (C ✶kNN B), respectively.

1: // Perform the join (A ✶kNN B)
2: ABpairs← kNNJoin(A,B, kA−B)
3: BPointsInAB ← project(ABpairs) // Project on B
4: // Determine Candidate blocks of C (a block is Safe by default)
5: for (b ∈ BPointsInAB) do

6: block ← C.index.locate(b)
7: block.isSafe← false
8: end for

9: // Preprocess the blocks of C to determine the Contributing ones
10: contributingBlocks← ∅
11: for (block ∈ C.index) do

12: if (block.isSafe = false) then

13: contributingBlocks.add(block)
14: else

15: nbr ← getkNN(block.center, kC−B)
16: r ← distance(block.center, nbr.farthest)
17: searchThreshold← r + block.diagonal
18: if (any block within searchThreshold is Candidate) then

19: contributingBlocks.add(block)
20: end if

21: end if

22: end for

23: // Perform the join (C ✶kNN B) and intersect on B
24: outputTriplets← ∅
25: for (block ∈ contriburingBlocks) do

26: for (c ∈ block) do

27: nbrc ← getkNN(c, kC−B) // Neighborhood of c
28: for ((a, b) ∈ ABPairs) do

29: if (b ∈ nbrc) then

30: outputTriplets.add(a, b, c)
31: end if

32: end for

33: end for

34: end for

35: return outputTriplets

A simple optimization for the preprocessing phase is to process

only the Safe blocks. This is because a Candidate block is never

marked Non-Contributing as its center is not contained in a Safe

block (refer to the check in Line 12 of Procedure 4).

4.1.2 Join Order

In the QEP of Figure 10, each kNN-join is evaluated indepen-

dently. Thus, changing the order of the two unchained kNN-joins

leads to the same results for the query. However, choosing which

join to evaluate first can affect the number of Candidate and Safe

blocks, and hence directly impacts the number of Non-Contributing

(pruned) blocks in the second join. Hence, the question: Which of

the joins (A✶kNN B) and (C ✶kNN B) should be evaluated first?

Consider the case when the points in A and B are uniformly

distributed and cover the whole space, while the points in C are

clustered inside a certain region, say R. If we perform the join (A
✶kNN B) first, there will be no Safe blocks because the neighbor-

hood of the points of A will cover all the blocks in B due to the

uniformity in data distribution. This means that all the blocks of

C will be Contributing, i.e., no pruning will take place. On the

other hand, if we perform the join (C ✶kNN B) first, the Candi-

date blocks will be only in Region R and its surroundings. This

means that there will be several Safe blocks. This will result in

Non-Contributing blocks in A that are pruned during the other join

(A ✶kNN B).
In conclusion, considering A and C as the outer relations of two

unchained kNN-joins:

• If either A or C is clustered, the evaluation of the query

should start with the join of the clustered relation. As a

consequence, blocks of the inner relation (e.g., B) will have

higher chance to be Safe. This would maximize the num-

ber of Non-Contributing blocks in the outer relation of the

second join, and hence these blocks will be pruned.

• If both A and C are clustered, the evaluation of the query

should start with the join of the relation that has less cluster

coverage, i.e., the relation with clusters that cover smaller

area. This increases the chance of pruning in the second join.

• If both A and C are uniformly distributed, it is better to use

the QEP of Figure 10, i.e., perform both joins independently.

If Procedure 4 is applied, then there will be a preprocessing

overhead (to mark the blocks) without payoff. The reason is

that all the blocks of the outer relation of the second join will

be Contributing, i.e., no pruning will occur.

In Section 6.2.1, we exploit various data distributions and cluster

setups that demonstrate the effects depicted in the above cases.

4.2 Chained kNNJoins
Consider a query on three data sets, say A, B, and C. The query

is to retrieve the triplets (a, b, c), where a ∈ A, b ∈ B, and c ∈ C,

such that b is a kA−B nearest neighbor of a, and c is a kC−B nearest

neighbor of b. The query can be evaluated in a variety of ways as

Figure 13 illustrates. The three QEPs in the figure produce the same

results for the query, i.e., the following relation holds [19]:

(A ✶kNN B) ∩ (B ✶kNN C) ≡
(A ✶kNN B) ✶kNN C ≡

A ✶kNN (B ✶kNN C).

The correctness of the above relation can be explained as fol-

lows. The join (A ✶kNN B) can be viewed as a selection on the

outer relation of the join (B ✶kNN C) (i.e., selection on B). Sim-

ilar to the discussions in Section 3, pushing a selection on the outer

relation of a kNN-join does not affect the correctness of evaluation.

That is why performing the join (A ✶kNN B) before or after the

join (B ✶kNN C) leads to the same results.

1106



a�

C a2

b1

b3

b2

c1

c2

c3

c4
A B

A

B C A B B C

QEP3

QEP1 QEP2

���

��� ��� ���

���

���

∩B

Figure 13: kA−B = kB−C = 2. Three different QEPs for

a query with two chained kNN-joins. The three QEPs re-

sult in the same triplets: (a1, b2, c1), (a1, b2, c2), (a2, b2, c1),
(a2, b2, c2), (a1, b3, c2), (a1, b3, c4), (a2, b3, c2), and (a2, b3, c4).

4.2.1 Efficient Evaluation

Although the three QEPs in Figure 13 produce the same results,

they have different performance. The following points illustrate the

pros and cons of each QEP.

• QEP1 is a right deep plan; the results of the join (B ✶kNN

C) have to be materialized before proceeding with the other

join. This is a major drawback, because no output can be pro-

duced until after the join (B ✶kNN C) is complete. More-

over, performing the join (B ✶kNN C) first implies that

some redundant computations will be performed, e.g., get-

ting the neighborhood of b1 although it will never appear in

the results of the query as it is not in the neighborhood of any

point a ∈ A.

• QEP2 has an extra operator; ∩B ; to intersect the results of

both joins on B. Moreover, QEP2 suffers the same redun-

dant computations as QEP1, since QEP2 blindly computes

the neighborhood of every point b ∈ B regardless of whether

or not b appears in the results of the query.

• QEP3 avoids the redundant computations of QEP1 and

QEP2. The neighborhood of a point b ∈ B is computed

only if b is produced as a nearest neighbor to a point a ∈ A.

Thus, computing the neighborhood of b1 is avoided in this

QEP. This results in remarkable performance gains for QEP3

in comparison to QEP1 and QEP2 especially for relations

that have clusters of points. Clusters of points in B that are

not in the neighborhood of any point a ∈ A are pruned in

the joins of QEP3. However, both QEP1 and QEP2 will have

to process all the clusters. On the other hand, QEP3 suffers

some repeated computations. In particular, this happens for

every point b that is in the neighborhood of more than one

point in A. For example, computing the neighborhood of b2
is performed twice because b2 appears in the neighborhood

of both a1 and a2. Similarly, the neighborhood of b3 is com-

puted twice.

To avoid the repeated computations in QEP3, we cache the re-

sults of the join (B ✶kNN C) in a hash table, where b ∈ B is the

key, and the value is the neighborhood of b. Whenever a pair (a, b)
is produced from the join (A ✶kNN B), the hash table is probed to

check if an entry corresponding to b exists. If such entry exists, the

neighborhood of b is retrieved from the hash table. Otherwise, the

neighborhood of b is computed. As we show in Section 6, caching

the results of the join (B ✶kNN C) significantly improves the per-

formance of QEP3, and thus outperforms both QEP1 and QEP2.

5. TWO KNNSELECTS

5.1 Correct Conceptual Evaluation
When two kNN-select predicates are combined in a single query,

different QEPs that seem to be legitimate can produce different re-

sults. The following example illustrates such ambiguity in the eval-

uation of a query with two kNN-selects.

Assume that a person gets a new job in a city different from

where he lives. He decides to move with his family to the new city,

and considers buying a new house such that the new house is close

to both his work and the school of his children. He wants to select

candidate houses to choose from such that these houses are among

the closest five houses to both his work and the school.

Figures 14 and 15 give two different QEPs for the above query

with the corresponding resulting houses. In both figures, solid lines

indicate the kNN-select predicate performed first, and dashed lines

indicate the kNN-select predicate performed second.

����

������

	

� A

B

C

D

�

E
F����

σ kNN, School
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Figure 14: A QEP with σkNN,Work(House) performed before

σkNN,School(House). The resulting houses are: x, y, l, m, and

z.
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Figure 15: A QEP with σkNN,School(House) performed before

σkNN,Work(House). The resulting houses are: x, y, n, p, and

o.

Although the QEPs in Figures 14 and 15 seem legitimate, they

produce different results. Surprisingly, both results are wrong. The

1107



reason is that when any of the two kNN selects is performed first,

it filters out the input of the other kNN select. The scope of the

kNN select performed at the end will be limited to only the k
points that qualify the first kNN select. For example, in Figure 14,

σkNN,School(House) has nothing to select from except the five

houses that σkNN,Work(House) returns. Similarly, in Figure 15,

σkNN,Work(House) has nothing to select from except the five

houses that σkNN,School(House) returns.

According to [19], for the above query to be correctly evalu-

ated, each kNN-select predicate has to be evaluated independently.

Then, the results of applying both predicates are intersected. This

is illustrated in the QEP in Figure 16.
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Figure 16: The correct QEP for a query with two kNN-select

predicates. Each predicate is evaluated independently, and the

results are intersected. The resulting houses are: x and y.

5.2 Efficient Evaluation
The QEP in Figure 16 for evaluating a query with two kNN-

selects, say σk1,f1(E) and σk2,f2(E), is efficient if k1 = k2. If

k1 6= k2, the above QEP suffers some redundancy as the following

discussions demonstrate.

Consider a query that has the two kNN-selects σ5,f1(E) and

σ100,f2(E), i.e., k1 = 5 and k2 = 100 (i.e., k2 has a value that is

significantly greater than k1). As mentioned in Section 2, in order

to compute the neighborhood of a point, say p, the locality is first

determined. Then, the points inside the blocks of the locality are

processed in order to get the closest k points to p. The standard

approach (as in [15]) of computing the locality is to keep adding

blocks to the locality until a total of k points is reached in the en-

countered blocks. If this approach is applied to σ100,f2(E), the

locality of f2 will be large and will cover almost the entire space in

which the points reside. In other words, almost all the blocks will

be in the locality of f2, and will have to be processed in order to

find the neighborhood of f2.

The above approach for computing the locality of f2 is not ef-

ficient because it does not consider the neighborhood of f1. In

particular, the number of blocks in the locality of f2 can be smaller

and still produce correct results. This can be achieved by observ-

ing that the neighborhood of f1 is completely included inside the

locality of f2.

Because the final result of the query is determined by intersect-

ing the neighborhoods of f1 and f2, this final result cannot include

points other than the neighborhood of f1. Consequently, once the

neighborhood of f1 is determined, the locality of f2 can be ad-

justed to cover just the neighborhood of f1. We define the search

threshold as the distance between f2 and the farthest to it in the

neighborhood of f1. A block, say b, is added to the locality of f2
only if the MINDIST between b and f2 is less than or equal to the

search threshold. Refer to Figure 17 for illustration. This guaran-
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Figure 17: The search threshold is the distance between f2 and

the farthest to it in the neighborhood of f1. The gray blocks

represent the locality of f2. A block is added to the locality of

f2 if its MINDIST from f2 is less than the search threshold.

tees that the neighborhood of f1 is included in the locality of f2
and in turn, the final result of the query.

Procedure 5 2-kNN-select

Terms: nbr1, nbr2: The neighborhoods of f1 and f2, respectively.
1: if k1 > k2 then

2: swap(k1, k2)
3: swap(f1, f2)
4: end if

5: nbr1 ← getkNN(f1, k1)
6: searchThreshold← distance(f2, nbr1.farthestTof2)
7: f2.locality ← ∅
8: count← 0
9: maxDistSoFar ← 0

10: // Process the blocks in MAXDIST order from f2
11: while count < k2 do

12: block ← maxOrder.next()
13: count← count+ block.numberOfPoints
14: maxDistSoFar ←MAXDIST (block, f2)
15: if MINDIST (block, f2) ≤ searchThreshold then
16: f2.locality.add(block)
17: end if

18: end while

19: // Process the remaining blocks in MINDIST order from f2
20: for (block ∈ minOrder) do

21: if MAXDIST (block, f2) ≤ maxDistSoFar then

22: if MINDIST (block, f2) ≤ searchThreshold then

23: f2.locality.add(block)
24: else

25: break

26: end if

27: else

28: break

29: end if

30: end for

31: // Determine the neighborhood of f2 from its locality
32: nbr2 ← getNeighborhood(f2, f2.locality)

33: return intersect(nbr1, nbr2)

Procedure 5 gives pseudocode for evaluating two kNN-select

predicates. The procedure starts by computing the neighborhood

of f1, i.e., evaluating the predicate with smaller k. To compute the

neighborhood of f2, f2’s locality is determined using a slightly dif-

ferent version of the algorithm in [15]. In [15], to determine the

locality of a point, say p, the blocks of the index are processed in
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increasing order of their MAXDIST from p, and are added to the lo-

cality. The counts of the number of points in the blocks are summed

up until the total number of points in the encountered blocks ex-

ceeds k. At this moment, the current value of the MAXDIST, say

M , is recorded. Afterwards, the remaining blocks are processed

in increasing order of their MINDIST from p, and are added to the

locality until a block the MINDIST of which exceeds M is encoun-

tered. All the remaining blocks need not be examined. This pro-

cedure for building the locality is proven to guarantee the optimal

(minimum) possible number of blocks [15]. We follow the same

procedure for computing the locality of f2 except that a block, say

b, is added to the locality of f2 only if the MINDIST between b and

f2 is less than or equal to the search threshold. Refer to Lines 15

and 22, and 25 of Procedure 5. Notice that in Line 25, scanning the

blocks in MINDIST order stops when a block of MINDIST greater

than the search threshold is encountered.

6. EXPERIMENTAL RESULTS
In this section, we study the performance of the proposed op-

timization techniques. We measure the query execution time. To

compute the neighborhood of a point, we implement the locality

algorithm as in [15]. All implementations are in Java. Experiments

are conducted on a machine running Windows 7 with Intel Core2

Duo CPU at 2.1 GHz and 4 GB of main memory.

Our datasets are mainly generated using BerlinMOD [3]; a

benchmark for spatio-temporal database management systems. The

data is downloadable through the BerlinMOD website [1] with

scale-factor 1.0. In BerlinMOD, about two thousand cars report

their movement over Berlin City for 28 days. We remove the time

dimension from the data to deal with snapshots of points. Depend-

ing on the kind of experiment, we vary the number of points in the

datasets, from 32,000 to 2,560,000 data points. A sample snapshot

of the data is given in Figure 18. In addition to the BerlinMOD

data, and in order to demonstrate some specific effects, we gener-

ate our own synthetic data. In particular, for some experiments, we

generate clustered data and vary the number of clusters.

Figure 18: A sample snapshot of BerlinMOD data plotted on

the map of Berlin City.

We index the data points into a simple grid. Since our algorithms

are independent of a specific indexing structure, we choose a grid

in order to be able to see the effectiveness of our algorithms even

with simple structures. We expect our algorithms to maintain the

same effectiveness (if not better) with more robust index implemen-

tations, e.g., using variants of the R-tree or the quadtree.

6.1 kNNSelect with kNNJoin
In the following experiments, we study the performance of

the two proposed algorithms, Counting and Block-Marking, for a

query with a kNN-select on the inner relation of a kNN-join. Fig-

ure 19 illustrates that the Block-Marking algorithm outperforms the

conceptually correct QEP by orders of magnitude. Blocks of points

of the outer relation that do not contribute to the results of the join

are detected and are excluded from the join operation. From the

figure, increasing the number of points in the outer relation empha-

sizes the pruning effects of the algorithm.
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Figure 19: Execution time of a query with a kNN-select on the

inner relation of a kNN-join. The Block-Marking algorithm

outperforms the conceptually correct evaluation plan by three

orders of magnitude.

Figures 20 and 21 compare the performance of the Counting and

Block-Marking algorithms. In Figure 20, the number of points in

the outer relation is lower than those in Figure 21. As the figures
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Figure 20: Execution time of a query with a kNN-select on the

inner relation of a kNN-join. The Counting algorithm has bet-

ter performance than the Block-Marking algorithm when the

number of points in the outer relation is low, and vice versa.
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Figure 21: Execution time of a query with a kNN-select on the

inner relation of a kNN-join. The Block-Marking algorithm

has much better performance than the Block-Marking algo-

rithm when the number of points in the outer relation is high.

demonstrate, when the number of points in the outer relation is

small, the Counting algorithm has better performance. In this case,

the density of the points is relatively low, and the overhead of the

preprocessing phase required by the Block-Marking algorithm is
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relatively high because it requires computing the neighborhood of

the centers of many blocks without much payoff. On the other

hand, when the number of points in the outer relation is high, i.e.,

the outer relation has high density, the Block-Marking algorithm

has better performance because entire blocks are excluded from

the join. On the contrary, the Counting algorithm processes every

point.

6.2 Two kNNJoins

6.2.1 Unchained kNNJoins

In the following experiments, we study the performance of the

Block-Marking algorithm for a query with two unchained kNN-

joins, e.g., (A ✶kNN B) and (C ✶kNN B). As mentioned in

Section 4.1.2, if both A and C are uniformly distributed, then it

is better to use the conceptually correct QEP of Figure 10, i.e.,

perform both joins independently, than to use the Block-Marking

algorithm. In that case, if the Block-Marking algorithm is applied,

then there will be a preprocessing overhead without payoff.

To demonstrate the pruning effects of the Block-Marking algo-

rithm, we have the following experimental setup. Points of B and

C are generated using BerlinMOD. Points of A are generated such

that they are clustered inside a certain region. We fix the num-

ber of points in A and B, and vary the number of points in C.

Figure 11 illustrates that the Block-Marking algorithm can outper-
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Figure 22: Execution time of a query with two unchained kNN-

joins (A ✶kNN B) and (C ✶kNN B). B and C are uniformly

distributed, and A is clustered. The Block-Marking algorithm

outperforms the conceptually correct QEP by an order of mag-

nitude.

form the conceptually correct QEP by an order of magnitude. As

the figure demonstrates, the Block-Marking algorithm almost has

constant performance because it detects the blocks of C that do not

contribute to the results of the query, and excludes them from the

join (C ✶kNN B). However, the conceptually correct QEP has to

perform the join for all the points in C regardless of the layout of

the data.

If both A and B are clustered, then applying the Block-Marking

technique can also result in good performance gains. In this case,

the evaluation of the query should start with the join of the relation

that has less cluster coverage, i.e., the relation the clusters of which

cover smaller area. This gives a higher chance for pruning effects

in the second join.

To demonstrate this effect, we have the following experimental

setup. Points of B are generated using BerlinMOD. We generate

clusters of points in A and C. All the clusters have the same num-

ber of points (4000), have the same area, and are non-overlapping.

We vary the number of clusters such that the number of clusters

in A is greater than the number of clusters in C by 1, 2, . . . , 10.

Figure 23 illustrates that starting the evaluation with (C ✶kNN B)
results in better performance than starting with (A ✶kNN B). If

the evaluation starts with (C ✶kNN B), the Block-Marking algo-

rithm detects the clusters of points in A that do not contribute to

the results of the query and excludes them from the join (A ✶kNN

B). However, starting with (A ✶kNN B) will fully compute the

join for all the clusters without exclusion.
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Figure 23: Execution time of a query with two unchained kNN-

joins (A ✶kNN B) and (C ✶kNN B). A and C are clustered.

Varying the difference between the number of clusters in A and

C; when the number of clusters in C is smaller, starting with

(C ✶kNN B) results in better performance.

6.2.2 Chained kNNJoins

In the following experiments, we study the performance of the

three QEPs of Figure 13, for a query with two chained kNN-joins,

e.g., (A ✶kNN B) and (B ✶kNN C). For illustration, we call

QEP3: Nested Join, and QEP2: Join Intersection.

As discussed in Section 4.2, there are two versions of the Nested

Join QEP; one that caches the results of the join (B ✶kNN C)
in a hash table to avoid repeating join computations, and another

version that does not do any caching. Figure 24 illustrates that

caching the results of the join (B ✶kNN C) significantly enhances

the performance.
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Figure 24: Execution time of a query with two chained kNN-

joins (A ✶kNN B) and (B ✶kNN C). Caching the results of

the join (B ✶kNN C) significantly enhances the performance.

As discussed in Section 4.2, the Join Intersection QEP performs

the two joins (A ✶kNN B) and (B ✶kNN C) independently, and

then intersects their results on B (i.e., ∩B . However, the Nested

Join QEP performs the join (B ✶kNN C) only for points b ∈ B
that are in the neighborhood of one or more points in A. When

comparing the two QEPs, we find that both plans have almost

the same performance if the data points are uniformly distributed.

However, as Figure 25 demonstrates, for clustered data, the Nested

Join QEP has better performance. We use the version of the Nested

Join QEP that caches the results of the join (C ✶kNN B). As

the number of clusters in B increases, the Nested Join QEP out-

performs the Join Intersection QEP. This is because the Join Inter-

section QEP blindly does both joins without any kind of pruning.

However, clusters of points in B that are not in the neighborhood

of any point in A are pruned by the Nested Join QEP.
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Figure 25: Execution time of a query with two chained kNN-

joins (A ✶kNN B) and (B ✶kNN C). Performance when vary-

ing the number of clusters in B.

6.3 Two kNNSelects
In the following experiment, we study the performance of the

2-kNN-select algorithm, for a query with two kNN-select pred-

icates, e.g., σk1,f1(E) and σk2,f2(E). Unlike the 2-kNN-select

algorithm, the conceptually correct QEP fully computes the two

kNN-selects and then intersects the results, i.e., does not leverage

the effect of doing one select and using its output to prune some of

the work of the other. In particular, this effect is leveraged by the

2-kNN-select algorithm when k1 and k2 have different values.

Figure 26 illustrates how the 2-kNN algorithm can outperform

the conceptually correct QEP by almost two orders of magnitude.

In this experiment, we fix k1 = 10 and vary k2. The x-axis of

the figure is log
2
(k2/k1). As the ratio k1/k2 increases, the per-

formance of the conceptually correct QEP degrades. The 2-kNN-

select algorithm has almost constant performance, as it adjusts the

search threshold corresponding to the predicate of higher k value

to cover just the output of the predicate of lower k value.
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Figure 26: Execution time of a query with two kNN-selects. The

2-kNN-select algorithm outperforms the conceptually correct

QEP by almost two orders of magnitude.

7. CONCLUSIONS
In this paper, we presented the first complete study for the op-

timization of queries with two kNN predicates. We demonstrated

how traditional optimization techniques can compromise the cor-

rectness of evaluation for a query that involves two interacting

kNN predicates. For different combinations of two kNN predi-

cates, we presented efficient algorithms that guarantee the correct-

ness of evaluation, and outperform the corresponding conceptually

correct QEPs by orders of magnitude.

The algorithms presented in this paper are designed for snapshot

queries. Applying further optimization techniques that can support

incremental evaluation of continuous queries with two kNN predi-

cates is a potential future work. Moreover, we believe that the ideas

presented in this paper pave the way towards a query optimizer that

can support spatial queries with more than two kNN predicates.
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[3] C. Düntgen, T. Behr, and R. H. Güting. Berlinmod: a
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