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Abstract

Many spatial data structures (e.g., the quadtree, the cell tree, the R*-tree)
represent an object by partitioning it into more than one piece, each of which is
stored separately inside the data structure. Frequently, it is required to report
the objects stored in a particular subset (spatially defined) of the database. It can
be achieved by a simple traversal of the spatial data structure. This may result
in reporting each object as many times as the number of partitions of this object
inside the data structure. An operation, termed Report_Unique, is defined which
reports each object in the data structure just once, irrespective of the multiplic-
ity of the partitions of the object. Example algorithms are presented to perform
Report_Unique for a quadtree. A classification of spatial objects is also pre-
sented and it is shown to affect the complexity of performing the Report_Unique
operation.

1 Introduction

There are several ways of representing a spatial object inside a data structure [6]. Some data
structures (e.g., the R-tree [4], the Grid file [8]) represent a spatial object by just one entity inside
the data structure (e.g., by the object’s bounding rectangle in the case of the R-tree). On the other
hand, another group of data structures (e.g., the quadtree [5], the cell tree [3], the R*-tree [2])
represent a spatial object by partitioning it into more than one piece, each of which is stored
separately inside the data structure. In this paper, we focus on the latter group of data structures.

One of the most important functions of a spatial database system is to report the spatial objects
in a given portion of the database (e.g., the objects inside a query window). One way to do this
is to traverse the underlying data structure and to report each object encountered. However, this
simple traversal of the spatial data structure may result in reporting each object as many times as the
number of partitions of this object inside the data structure. When a spatial object is represented by
more than one piece inside the data structure, this poses a problem since the object will be reported
more than once. In this paper we define an operation, termed Report_Unique, which reports each
object in the data structure just once, regardless of the multiplicity of the partitions of the object
inside the spatial data structure.

The Report_Unique operation has many applications. For example, suppose we want to report
the spatial objects that lie inside a window, say w. Although several partitions of the same object,
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say o, may lie inside w, it is preferable to report the identity of o just once. This is especially true
if the identifier of o is to participate in further processing, e.g., if the identifier of o serves as the
argument to another procedure, say p (e.g., for computing the area or perimeter of the object). In
this case, if the identifier of o is reported more than once, then o will be processed by p redundantly.
Given the data structure holding the spatial objects that lie inside the window, Report_Unique
ignores the multiplicity of the object partitions inside the data structure and passes each object in
the data structure to p just once.

As an example of another application of Report_Unique, suppose we want to count the number
of spatial objects in the given data structure. In this case, we need to count each object only once
regardless of the number of partitions of the object.

The rest of the paper proceeds as follows. In Section 2 we outline a straightforward algorithm to
solve the Report_Unique problem and analyze its worst-case space and time complexities. The
straightforward approach requires O(n) space where n is the number of spatial objects in the
database. This may be unacceptable for large databases. Section 3 describes another algorithm
that eliminates the space requirements of the algorithm of Section 2. Section 4 points out that
supporting the Report_Unique operation for a realistic variety of objects requires classifying spatial
objects into categories of different complexity, and uses line segment objects as an example. Sec-
tion 5 shows how these classes affect the performance and correctness of the alternative approaches
to Report_Unique for line segment objects. Section 6 contains concluding remarks.

It is important to note that in this paper we do not attempt to compare the efficiency of different
data structures in performing Report_Unique nor do we present efficient algorithms for each case.
Instead, our emphasis is on demonstrating the importance of Report_Unique when considering new
data structures, and the need for efficient algorithms, especially when dealing with large spatial
databases.

2 The Test-And-Set Algorithm

A straightforward algorithm for Report_Unique is the test-and-set algorithm (or Report_Uniquel).
It works for almost all data structures that partition a spatial object into smaller pieces, provided
that each spatial object has a unique identification number that is stored in the data structure along
with each piece of the object. The algorithm makes use of an array of bits. There is one bit for each
object which is initially false. The algorithm proceeds as follows:

1. Traverse the data structure, and for each sub-object encountered test the object’s correspond-
ing bit in the array.

2. If the bit is false, then set it to true and retrieve the object using the object’s identifier and
report it.

3. If the bit is true, then don’t report this object.

Assume that there are n spatial objects stored in the data structure and that on the average each
object is partitioned into k pieces inside the data structure.? Assume further that the number of data
structure elements visited during the traversal is m (e.g., m quadtree nodes). Then, the test-and-set
algorithm takes n bits for storing the bit array, performs kn tests and n object retrievals (possibly
from secondary storage). Therefore, the total cost of the algorithm is C,, + knCepy, + nCj,, where
Cy, is the cost of traversing the m elements of the data structure, Cgp,, is the cost of testing a bit,
and Cj, is the cost of retrieving the spatial object (e.g., the coordinate values of a line segment, the
polygon boundary, etc.). Since all the algorithms that we present are based on traversal, we will
omit the term C,, from the comparison. Therefore, the cost of the algorithm is £nC.p,, +nCj,. This
component of the cost cannot be ignored for algorithms that are not based on traversal of the data
structure (e.g., direct access of data structure elements).

2Notice that the value of k varies from one data structure to another.



In order to improve the execution time or space requirements of Report_Uniquel we observe that
the Report_Unique operation requires a test function, say t, such that given a spatial object, say o,
with k pieces, p1, p2, ..., Dk, t has a value of false for only one of the pieces, say p; of 0. Application
of ¢ to the rest of the pieces yield the value of true. Any function ¢ that satisfies this criterion can
be used as a way of suppressing all pieces of o other than p; from reporting o’s object identifier, and
hence can be adopted by the Report_Unique operation.

For example, in the case of the test-and-set algorithm, ¢; is defined as follows (a is the bit array
and oid(p;) is the identifier of the object that piece p; belongs to):

ti(pi) = retwvalue «— aloid(p;)));
if (not aloid(p)]) then
aloid(p;)] < true;

return ret_value;

3 Avoiding the Extra Space

As an example data structure, consider the PMR quadtree [7]. In this data structure, a line segment
is divided into several pieces, where each piece is associated with the quadtree block that it intersects.
Figure 1 shows one example of the PMR quadtree. Each block stores the object identifiers of the
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Figure 1: An example of a PMR quadtree.

lines passing through it. On the other hand, the full description of the line segments (e.g., the start
and end coordinate values of the points) is stored in what is called the feature table. The index of
line [ in the feature table is I’s object identifier. Notice that we cannot simply traverse the feature
table and report the lines that we find since not all the lines in the feature table have to belong to
the data structure in question.

Our first attempt as improving on the test-and-set algorithm is to get rid of the O(n) space
requirements of the algorithm. This gives rise to algorithm Report_Unique2 described below. It
traverses the blocks of the PMR quadtree, and for each block, say B, it follows the following actions:

1. For each object identifer i stored in B (that corresponds to piece p;), retrieve the line descrip-
tion, say [;, from the feature table, and

2. perform the following testing function o

ta(li, B) = if(start_point(l;) in B) then return (true)

else return (false)
3. If t2(l;, B) is true, report line ;.

The algorithm is illustrated in Figure 2. Notice that for each line, say [, the testing function to will
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Figure 2: Line [ is stored in blocks By, Bs, and B3 where only block B; causes the point-in-block
test to succeed since the starting point p of [ lies inside By only but not in By or in Bs.

be true only when the block containing the starting point of [ is processed. All blocks containing
pieces of [ other than the starting point of [ will evaluate to false as the result of applying ¢ to them
(t2 is referred to as the point-in-block test).

A major advantage of this algorithm over the test-and-set algorithm is that it does not re-
quire any additional space. However, algorithm Report_Unique2 needs more time to execute. Note
that it applies a more complex test per object piece. The testing function is still performed nk
times. However, the point-in-block test requires four comparisons (each of cost Cep,) in contrast
to just one comparison in the test-and-set algorithm. Notice that the point (x,y) is inside block
B((bly,bly), (ury,ury)), where bl and wr denote the bottom left and upper right corners of the
window, respectively, iff bly <z <wury A bly <y <ury.

A more serious drawback of the algorithm is that in order to perform the point-in-block test
(t2) we must access the feature table (via the object identifier) each time we encounter a piece
of a line. This is necessary to retrieve the starting point of the line. Assuming that the cost of
retrieving a segment from the feature table is also Cj,, then the execution time of this algorithm is
4knCopy + knCio.

The cost term knC;, involves redundant disk-I/O requests. Basically, it represents the cost of
retrieving line segments from the feature table (once for every line segment partition, amounting to
k disk requests per line segment). A better algorithm would perform only n such requests, i.e., one
request per line segment in the database instead of one request per line segement partition. Thus, we
would like an algorithm that does not need the O(n) extra storage (or at least having an asymptotic
storage cost less then O(n)), yet still performs only n accesses to the feature table.

In Section 5, a third algorithm (Report_-Unique3) is presented that overcomes this drawback. It
uses the concept of an active border [9] to avoid accessing the feature table each time a piece of the
line is encountered.

4 Object Classification

An important factor affecting the performance of the Report_Unique operation is the shape of the
objects stored in the underlying data structure. For example, what is the effect of restricting the
lines to be rectilinear, in contrast to lines with arbitrary slopes? As another example, suppose that
objects are partially clipped as is the situation after a window operation. Is it more difficult to
report these clipped objects than reporting non-clipped objects?

As an illustration of the second example, note that due to the way the PMR quadtree is defined,
Report_Unique2 does not work properly if the line segments are partly clipped. This is shown in in
Figure 3. In particular, when a line is clipped (e.g., as a result of a window operation), the PMR,
quadtree does not update the starting and ending points of the clipped line in the feature table.
As a result, if a line, say [, is clipped so that only s remains and if s does not contain [’s starting
point, then s will not be reported by Report_Unique2. This case does not arise in Report_Uniquel,
and suggests that we have to consider the alternative classes of objects (e.g., clipped objects) when
developing algorithms for Report_Unique since it affects the correctness of the algorithm.
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Figure 3: (a) Line [ as stored in a PMR quadtree, (b) The result of clipping line ! by a window
operation in a PMR quadtree. Line [ is partially clipped so that its original starting point in the
feature table is neither in blocks By nor Bs. Notice that the feature table still stores point p as part
of the clipped line description.

Below, we present one way to classify spatial objects of type line segment. Other spatial types
can be classified in an analogous manner. The different classes of line segments are given in Figure 4.
The classes do not always impose different complexity requirements on Report_Unique. Example
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Figure 4: Classification of line segments (a) Class-1: a regular line segment, (b) Class-2: a clipped
line segment, (c) Class-3: a broken line segment.

implementations are given in Section 5.

e (Class-1 segments: a line segment having no clipped or missing portions as illustrated in Fig-
ure 4a, and termed a regular line segment.

e (Class-2 segments: a line segment where either one or both of its end-points are missing as
illustrated in Figure 4b, and termed a clipped line segment.

e Class-3 segments: a line segment where several portions (holes) may be missing as illustrated
in Figure 4c, and termed a broken line segment. Although disjoint, all the portions of the line
segment refer to, and represent, just one object of type line segment.

This classification of line segments is of practical use. Class-1 represents regular line segments
(e.g., road segments). Class-2 represents line segments that may result from a rectangular window
operation (Figure 5a). Class-3 represents line segments that may result from intersecting line seg-
ments with arbitrary regions (Figure 5b). Similar classes can be constructed for other spatial objects
(e.g., polygons).

We further classify lines of each class into the following types according to their orientation:

e Type-1 segments: uniformly oriented line segments - i.e., they are parallel to the z or the y
axes but not both (Figure 6a).
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Figure 5: (a) Class-2 line segments result from clipping line segments via a window operation,
(b) Class-3 line segments result from intersecting regular line segments with a simple polygon.
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Figure 6: Three types of line segments: (a) line segments parallel to the z-axis, (b) rectilinear line
segments, (c) line segments with arbitrary orientation.

e Type-2 segments: rectilinear line segments - i.e., they may be parallel to either the z or the y
axes (Figure 6b).

e Type-3 segments: arbitrary line segments - i.e., they have arbitrary orientations (slopes) (Fig-
ure 6¢).

5 Algorithms

Below, we present some algorithms that correspond to several class/type combinations given in
Section 4 and see how the complexity of the algorithms are affected. Our underlying spatial database
makes use of a PMR quadtree to store the spatial database objects which are line segments in these
examples.

5.1 Class-1 Type-1 Line Segments

Assume a collection of line segments that are parallel to the z-axis (Figure 6a). They may represent
time intervals for a group of events. The algorithm traverses the quadtree block by block and
maintains the notion of the active set of line segments. A line segment, say [, is added to the active
set when [ is first encountered during the traversal. [ is deleted from the active set once all the
quadtree blocks that overlap with [ have been visited during the traversal. The storage necessary
is bounded by the maximun size of the active set during the execution of the algorithm. The size
of the active set should be considerably smaller than n, the number of line segments in the spatial
database.

In order to execute the algorithm efficiently, we need to organize the active set of line segments.
The algorithm performs the following three primitive operations on an active set, say A: (1) test if



a line segment exists in A (notice that this is needed in order to decide whether a line has already
been encountered or if it is its first encounter in the traversal), (2) insert a line segment into A, and
(3) delete a line segment from A.

Before providing more details about the algorithm, observe that if we are able to perform each
of the above three operations in O(1) time and maintain the underlying data structure that stores
the active set in O(1) time, then the overall complexity of the algorithm would be O(nk) time
with O(active set size) space. The size of the active set in the worst case is O(bT') where b is the
maximum number of spatial objects that can be stored in a quadtree block before it overflows (i.e.,
the bucket size) and T is the width of the underlying spatial space. In practice, it is expected that
the size of the active set is considerably smaller than O(bT).

The algorithm visits the blocks of the quadtree in NW, NE, SW, SE scanning order. It maintains
one basic data structure: an active border [9]. The active border represents the border between those
quadtree blocks that have been processed and those that have not. The elements of the active border
form a “staircase” of vertical and borizontal edges, moving from southwest to northeast, as shown
by the heavy line in Figure 7a. Initially, the active border consists of the north and west borders of
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Figure 7: Various states of the active border: (a) initial state, (b) after visiting block A, lines 1
and 2 are reported, line 1 is deleted, (c) after visiting block B, line 3 is reported, line 2 is deleted,
(d) after visiting block C, lines 4 and 5 are reported.

the image. When the algorithm terminates, the active border consists of the south and east borders
of the entire image. In other words, whenever a node is visited by the algorithm, the active border is
updated accordingly to include the border of this new block (see Figures 7b and 7¢). Each element
of the active border stores in it the set of active line segments that intersect the portion of the active
border corresponding to this element. For example, in Figure 7d, lines 4 and 5 are associated with
portion (element) p of the active border.

When a leaf block is processed, the portion of the active border that is adjacent to the block
must be located. In [1], a technique is developed where blocks can be located in the active border
in constant time. This is achieved by traversing (and updating) the active border along with the
quadtree traversal while passing and stacking pointers to guarantee that the exact location in the
active border is available (O(1) time) whenever needed, so that searching in the active border is
entirely avoided. The reader is referred to [1] for further details. Once the appropriate active border
element is located, testing for existence, insertion, and deletion of a line segment into this element
takes O(b) time which is really a constant or O(1).3

We define an active line segment as a line segment that is partially processsed, i.e., at least one
of the quadtree blocks overlapping with this line has not been processed yet. A line is inactive if
either all of its overlapping blocks have been processed by the traversal algorithm or if all of them
are yet to be processed. Notice that a line segment is reported once it is first inserted in the active
border, and is deleted once its identifier does not appear in the neighboring quadtree of an active

3In some applications where the bucket size b is large, performing a linear search in O(b) time
tends to be too slow. In such a case, the objects inside each bucket can be sorted among themselves
to achieve better search time (e.g., O(logb)) within the bucket.



border portion that contains the line’s identifier. For example, when block B is processed in the
quadtree of Figure 7c, line 2 is deleted since it is entirely covered by the processed blocks A and B.

5.2 Line Segments of Classes 2 and 3

The algorithm of Section 5.1 can be extended easily to support Class-2 and Class-3 objects. In fact,
for Class-2 Type-2 objects, the same algorithm applies correctly without any changes. For Class-3,
a portion of a line segment can be hidden so that its absence from a neighboring block to the active
border does not imply that this line segment has been processed in its entirety, and hence it cannot
be deleted from the active border (see Figure 8). For this reason, the deletion mechanism of a line in
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Figure 8: Example illustrating the difficulty with Class-3 Type-2 line segments. (a) initial state,
(b) 1 is reported when block A is processed, (c) I is deleted when block B is processed, (d) [ is
reported again when block FE is processed.

the algorithm of Section 5.1 does not work properly. In fact, if used, it may result in a line segment
being reported several times since it was deleted erroneously.

In order to avoid this problem, additional information must be stored in the active border for
each active line segment. When the identifier of a line segment, say [, is encountered for the first
time during the traversal, I’s coordinates are retrieved from the feature table. The end-point, say
p, of [ that is not covered yet by the traversal is stored in the active border along with [’s identifier.
Now, if a neighboring quadtree block, say B, is visited, where B is a neighbor of the portion of the
active border that contains {’s identifier, then we need to check whether p lies inside B or not. If yes,
then [ is deleted from the active border (I is entirely processed by now). If not, then I’s identifier is
propagated into the portions of the active border that represent block B. This process is illustrated
in Figure 9.

5.3 Class-1 Type-3 Line Segments

The algorithm of Section 5.2 does not work for Type-3 objects. For example, consider Figure 10.
This algorithm would report line segment [ more than once, i.e., once for each of the visits of blocks
C, D, and F. In addition, line segment s is also reported more than once - i.e., once for each of the
visits of blocks E and F. The problem is worse for line segments of Classes 2 and 3.

This problem can be overcome by using a variant of the algorithm described in [1]. That algorithm
computes the boundaries of regions in a region quadtree. We can adapt this algorithm to work for
line segment objects by considering the regions through which the line segments pass. In particular,
the variant reports the coordinate values of the line segment end-points passing through the region
instead of the boundary. This version executes in O(kn-a(kn)) where () is the inverse of Ackerman’s
function (a function that grows very fast and hence its inverse grows very slowly).

Note that the algorithm of [1] maintains the partial active border of a spatial object. This
information may not be needed in the case of Report_Unique. This suggests that a simpler algorithm
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Figure 9: Class-3 Type-2 line segments. (a) initial state, (b) [ is reported when block A is processed,
(c) 1 is still considered active when block B is processed (although it does not overlap with B), (d) {
is not reported when block FE is processed, and is deleted from E afterwards since {’s end-point p
lies inside F.
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Figure 10: Example illustrating the difficulty with Class-1 Type-3 line segments.

(from a computational complexity standpoint) may be possible. We do not address this issue in this
paper.

6 Conclusion and Future Research

Table 1 represents a summary of our results. It shows the different complexities of the algorithms
developed for the class/type object combinations explored here. As we can see, Report_Unique
is a challenging problem. Future work involves: developing better algorithms for other class/type
combinations, classifying spatial objects besides line segments in an analogous matter and developing
algorithms for them as well, and considering spatial data structures that partition objects in addition
to the PMR quadtree.
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