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Abstract—Access control mechanisms and Privacy Protection Mechanisms (PPM) have been proposed for data streams. The access

control for a data stream allows roles access to tuples satisfying an authorized predicate sliding-window query. Sharing the sensitive

stream data without PPM can compromise the privacy. The PPMmeets privacy requirements, e.g., k-anonymity or l-diversity by

generalization of stream data. Imprecision introduced by generalization can be reduced by delaying the publishing of stream data.

However, the delay in sharing the stream tuples to achieve better accuracy can lead to false-negatives if the tuples are held by PPM

while the query predicate is evaluated. Administrator of an access control policy defines the imprecision bound for each query. The

challenge for PPM is to optimize the delay in publishing of stream data so that the imprecision bound for the maximum number of

queries is satisfied. We formulate the precision-bounded access control for privacy-preserving data streams problem, present the

hardness results, provide an anonymization algorithm, and conduct experimental evaluation of the proposed algorithm. Experiments

demonstrate that the proposed heuristic provides better precision for a given data stream access control policy as compared to the

minimum or maximum delay heuristics proposed in existing literature.

Index Terms—Privacy, k-anonymity, access control, data stream
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1 INTRODUCTION

DATA Stream Management Systems (DSMS) have been
proposed to process transactional data, e.g., internet

traffic, health monitoring, and sensor networks [1], [2].
Access control mechanisms for data streams ensure that
only the authorized parts of the stream are available to each
user or role [3], [4]. Objects protected under the access con-
trol mechanism are the queries or views of the data stream
[4]. If the sensitive information in the authorized view of the
data stream is not privacy protected, then the privacy of a
person can be compromised even in the presence of access
control. For example, for health monitoring and epidemic
surveillance applications, various stakeholders including
public health officials, epidemiologists, doctors, and resea-
rchers from various agencies and regions, should only
access the views of patient streaming data for which they
have the authorization. Furthermore, prior to publishing
these views to the authorized stakeholders, privacy of
patients must be protected. The well-known privacy preser-
vation techniques of k-anonymity [5] and l-diversity [6]
have also been used for privacy protection of data streams
[7], [8]. However, to the best of our knowledge, precision-
bounded access control along with privacy protection has
not been investigated before for data streams. The focus of

this paper is to develop a privacy-preserving mechanism
for publishing precision-bounded authorized views of
streaming data. The existing approaches for privacy protec-
tion of data streams suppress the time-stamp attribute [7],
[8]. However, applications like access control do require
time-stamp information to evaluate temporal queries over
stream data.

The attribute values in data stream tuples can be general-
ized to satisfy given privacy requirements. Generalization
of relational data attributes introduces imprecision in the
query results for access control mechanism. This impreci-
sion can be reduced if the publishing of stream data is
delayed. However, the delay introduces False-Negatives
(FNs) in the query results in case the tuples satisfying the
query predicate are not made available to the access control
mechanism at the instance of query evaluation.

In the following example (Example 1), we provide a
motivating scenario and explain how imprecision in an
authorized view can be used to assess the utility of the
streaming data. Subsequently, in Example 2, we illustrate
how a privacy-preserving mechanism can be applied
prior to generating such authorized views. Through these
examples we highlight the requirement for defining the
imprecision bounds for publishing authorized data
stream views.

Example 1 (Motivating Scenario). Syndromic surveillance
systems have been developed by state and federal agen-
cies to detect and monitor public health emergencies [9].
The emergency department data (age, gender, location,
time of arrival, symptoms, etc.) from county hospitals is
collected and is sent to the department of health at
the state level on an hourly basis. The surveillance
data stream is classified into syndrome categories and is
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anonymized by the state department of health. The data
is subsequently shared with the department of health in
each county.

A Role Based Access Control (RBAC) policy is given
in Fig. 1. Role SE is above roles CE1 and CE2 in the role
hierarchy and can execute all the permissions allowed to
roles CE1 and CE2. This policy allows the users to access
the data stream view defined by the authorized queries,
e.g., role CE1 can view tuples under Permission P1 over
the data stream in a 24-hour window with a slide of 4
hours (i.e., updated every four hours). The Temporal
Constraint (TC) T1 defines a sliding-window (size ¼ 24
hours, slide ¼ 4 hours) of stream data upon which the
query can execute. Permissions under an access control
policy ensure that only the authorized view of the data
stream is available to each user. Anonymization adds
False-Positives (FPs) to the authorized view and the
precision can be improved by delaying the stream data.
However, the delay adds false-negatives for the views
(when a tuple satisfying the view is not shared). The
imprecision bound for each permission ensures that the
authorized view is within the required tolerance at
the time of predicate evaluation. The total imprecision
for a view is the sum of false-positives and false-negatives
and is used to gauge the utility of the authorized view.

The contributions of the paper are as follows. First,
we introduce the concept of precision-bounded access
control for privacy-preserving data streams. Second, we
formulate the Precision-bounded Access Control for pri-
vacy-preserving data strEams (PACE) problem and give
hardness results along with probabilistic analysis for
query bound violation. Third, we propose a heuristic for
an approximate solution of the PACE problem and con-
duct empirical evaluation.

The rest of this paper proceeds as follows. In Section 2,
relevant background is discussed. The problem formula-
tion and definitions are presented in Section 3. Section 4
covers the proposed Total Imprecision Minimization (TIM)
heuristic for multi-dimensional partitioning of stream data
to satisfy imprecision bounds for predicate sliding-window
queries. Experimental results are presented in Section 5.
The related work is presented in Section 6 and Section 7
concludes the paper.

2 BACKGROUND

Given a stream T ½i� ¼ fID; TS;A1; A2; . . . ; Ad; SAg, where
ID is an identity attribute, TS is a time-stamp attribute that

represents the arrival time of a tuple, Aj is a Quasi Identifier
(QI) attribute, SA is the sensitive attribute, d is the number
of QI attributes, and, i is the current time-stamp. T ½i� repre-
sents all the data stream tuples that have arrived till the
time instance i. The identity attribute (e.g., social security
number) can uniquely identify an individual in a data
stream. QI attributes (e.g., address, age) can be used with
the background information to identify an individual even
if the identity attribute has been suppressed [5]. If the sensi-
tive attribute SA is associated with a unique individual, it
results in privacy violation.

2.1 Privacy Definitions

k-anonymity [5] for streaming data has been proposed by
Cao et al. [7] and Zhou et al. [8]. Both have suggested to
suppress the TS attribute in the anonymized stream for
privacy protection. However, with respect to access con-
trol over streaming data, the TS attribute is required for
the evaluation of sliding-window queries. We propose
that the generalized time-stamp value for each Equiva-
lence Class (EC) must be included in the anonymized
stream. The time-stamp attribute is a quasi-identifier attri-
bute as knowing the time-stamp value for a person in a
relational stream data can allow to find the associated
sensitive value and can result in violation of privacy of
that person.

Definition 1 (Equivalence Class). An equivalence class is a set
of tuples having the same QI attribute and time-stamp value.

Definition 2 (Stream ks-anonymity Property [8]). A data
stream Tp½i� satisfies the ks-anonymity property if each pub-
lished equivalence class has k or more tuples and if
t1:ID ¼ t2:ID then ECðt1Þ 6¼ ECðt2Þ for any t1; t2 2 T ½i�.

Here, Tp½i� is the anonymized view of the stream data
that is published till time instance i. In Tp½i�, the identity
attribute is suppressed, the QI and the time-stamp attri-
bute values are generalized and the sensitive attribute is
published. The time-stamp attribute gives the arrival time
of a tuple t 2 T ½i�. The delay in publishing is equal to t.
PUB - t.TS, where t.PUB is the time when a tuple is pub-
lished (i.e., is added to Tp½i�). The second part of the
stream ks-anonymity definition provides the constraint
that two tuples with same ID must be in different equiva-
lence classes. In the case of a data stream, multiple tuples
(� ks) can be received from the same person/ID in a short
span of time. Without the above constraint, the tuples
with the same ID can be put into the same equivalence
class without any generalization resulting in a high prob-
ability of privacy violation. l-diversity counters the homo-
geneity attacks possible against k-anonymity when all the
tuples in an equivalence class have the same sensitive
attribute value.

Definition 3 (Stream ls-Diversity Property). A data stream
Tp½i� satisfies the ls-diversity property if each equivalence class
has at least l distinct values of the sensitive attribute and if
t1:ID ¼ t2:ID then ECðt1Þ 6¼ ECðt2Þ for any t1; t2 2 T ½i�.

In the case of sensitive numeric attributes, if the
numeric values in an equivalence class are close to each

Fig. 1. Access control policy.
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other, an ls-diverse equivalence class can still leak pri-
vate information. Variance diversity [10] and t-closeness
[11] have been proposed to protect privacy against such
a threat. We define the stream variance diversity as
follows:

Definition 4 (Stream Variance Diversity). A data stream
Tp½i� is variance diverse if the variance Vs(EC) of each pub-
lished equivalence class satisfies Vs(EC) � vs, where vs is the
data stream variance diversity parameter. In addition, if
t1:ID ¼ t2:ID then ECðt1Þ 6¼ ECðt2Þ for any t1; t2 2 T ½i�.

Definition 5 (Delay Constraint). The delay constraint, denoted
by d, is the maximum delay before which a tuple is required to
be published.

The delay constraint can be set according to the data
stream application requirement regarding availability of the
anonymized tuples. The time constraint set by d ensures
that the delayed tuples eventually get published. d can also
be set based on storage limitations of the system anonymiz-

ing sensitive stream data. Th½i� is the set of tuples from T ½i�
that are put on hold and are still to be anonymized at time
instance i.

Example 2 (Privacy-preserving Data Stream Views). In this
example we consider a sensitive data stream and
provide authorization views for roles defined in
Example 1. Fig. 2a lists the data stream tuples T ½4�
received till time instance 4, and Fig. 2b gives the cor-
responding anonymized data stream Tp½4�. The data
stream in Fig. 2a does not satisfy k-anonymity because
knowing the age and zip code of a person allows asso-
ciating a disease to that person. The data stream Tp½4�
in Fig. 2b is two-anonymous and two-diverse. The

tuples Th½4� in Fig. 2c are on hold and are still waiting
to be published. Assuming time stamps 1-4 are inside
the active sliding window, County 1 zip is 15, and
County 2 zip is 28 then the privacy-preserved data
stream views for role CE1, CE2 and SE (refer Fig. 1) at
time stamp 4 are given in Fig. 2d. It can be noted that
imprecision has been added after anonymization to the
authorized views for roles. The main challenge
addressed in this paper is that imprecision added to
each anonymized view should be less than the impre-
cision bound specified for that view.

2.2 Stream Query Model

Predicate window queries have been proposed for stream-
ing data management systems [12]. Other types of queries
on streaming data are the snapshot query [13] and the
landmark query [14]. The sliding window query is
defined by two parameters: 1) Range that defines the size
of query window and 2) Slide that defines the step by
which the window moves [12], [14]. If the slide of the win-
dow is less than the range, then the query sliding win-
dows overlap. Otherwise, if the slide is equal to the range,
then the windows are non-overlapping and are also
known as tumbling windows. The sliding-window query
can be either a tuple-count sliding-window or a time-slid-
ing-window [1]. In this paper, we consider time-sliding-
window queries. The predicate sliding-window query is

evaluated at the end of the window size and then the win-
dow slides by the step size.

2.3 Role Based Access Control

Definition 6 (RBAC Policy). An RBAC policy r is a tuple
hU;R; P; UA; PA;RHi, where U is a set of users, R is a set of
Roles, P is a set of Permissions, RH is a Role Hierarchy that is
a partial order on roles, UA is a user-to-role assignment rela-
tion, and RA is a role-to-permission assignment relation [15].

Role-based Access Control for data streams has been pro-
posed by Carminati et al. [4]. Permissions under P are the
sliding-window query predicates that define the authorized
view of the data stream.

3 PRECISION-BOUNDED ACCESS CONTROL FOR

PRIVACY-PRESERVING DATA STREAMS

In Section 3.1 we discuss query evaluation semantics and
give definitions for the imprecision, imprecision bound and
average query bound violation (AQV). We discuss preci-
sion-bounded access control enforcement and the choice of
relevant semantics in Section 3.2. In Section 3.3 we formu-
late the PACE problem and present its hardness results.
Section 3.4 presents the probabilistic analysis for query

Fig. 2. Generalization of streaming data for k-anonymity and l-diversity.
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bound violation for a given imprecision bound. An access
control policy administrator can use this analysis to revise
the imprecision bounds for the queries if the probability of
satisfying the bound for a large number of queries at any
time instance is very low.

3.1 Predicate Evaluation and Imprecision

A predicate sliding-window query is evaluated for a data
stream, say T ½i�, by including all the stream tuples that sat-
isfy the query predicate. For predicate evaluation over an
anonymized data stream Tp½i�, we adhere to the same
semantics as suggested in [10], [16], i.e., include all the
tuples in equivalence classes that overlap the query predi-
cate range. We refer to query evaluation under these seman-
tics as the Overlap semantics. Another possible semantics for
query evaluation can be to include all tuples in the equiva-
lence classes that are fully enclosed inside the query predi-
cate range. These semantics are referred to as the Enclosed
semantics. The definitions in the following paragraphs and
the anonymization algorithm in Section 4 follow the Overlap
semantics. We compare the two semantics in Section 3.2 for
access control enforcement.

Definition 7 (False-Positive Tuple). A tuple is a false-positive
when it does not satisfy the sliding-window query predicate at
the time instance of query evaluation but is included in the
query result as the equivalence class in Tp½i� that contains the
tuple overlaps the query predicate.

The number of False-Positive tuples in the result of a
predicate sliding-window query, say Qj½i�, at any time
instance i, is as follows:

FPQj½i� ¼ jQjðTp½i�Þj � jQjðT ½i� � Th½i�Þj;where (1)

jQjðTp½i�Þj ¼
X

ECðoverlapsÞ Qj

jECj

A published partition can add a false-positive tuple to a
predicate sliding-window query due to a spatial overlap
(QI attributes), temporal (time-stamp attribute) overlap, or
both temporal and spatial overlaps.

Definition 8 (False-Negative Tuple). A tuple is a false-nega-
tive when it satisfies the predicate sliding-window query at the
time instance of query evaluation but is not included in the
query result due to being put on hold.

The number of False-Negative tuples for a query, say
Qj½i�, evaluated at time instance i, is as follows:

FNQj½i� ¼ jQjðTh½i�Þj: (2)

If the publishing delay is increased, the number of false-
positives reduces because equivalence classes with less
imprecision can be formed while at the same time the num-
ber of false-negatives increases.

Definition 9 (Sliding-Window Query Imprecision). Query
imprecision is defined as the total sum of false-positives and
false-negatives for a predicate sliding-window query evaluated
on an anonymized stream Tp½i� at any given time instance i.

The imprecision for query Qj½i� evaluated at time instance i is
denoted by impQj½i� and is equal to the sum of false-positives

and false-negatives. In other words,

impQj½i� ¼ FPQj
½i� þ FNQj

½i�: (3)

Here, query Qj½i� is evaluated over Tp½i� by including all
the tuples in equivalence classes that overlap the query

region and Th½i�. impQj½i� is a utility measure that for a given

sliding-window query captures two types of information
loss; loss due to generalization (in terms of false positives)
and loss due to publishing delay (in terms of false negatives).

Example 3. The two-dimensional representation for the
quasi-identifier attributes of the anonymized data stream
in Fig. 2 is given in Fig. 3. The rectangles with solid lines
represent queries Q1 and Q2. The rectangles with dotted
lines represent partitions (equivalence class). Assume
that Query Q2½4� is evaluated at time instance 4. There is
one false-positive Tuple A for Q2½4� as Partition P1 and
P2 overlap the query. The false-negative tuple for Q2½4� is
Tuple H as that tuple is still to be published and has not
joined any equivalence class.

Definition 10 (Query Imprecision Bound). The query impre-
cision bound, denoted by BQj½i�, is the total imprecision accept-
able to the access control mechanism when the sliding-window
query predicate Qj½i� is evaluated at time instance i.

A query violates the imprecision bound when, at the time
of query evaluation, the total imprecision is more than the
imprecision bound. For a sliding-window query, the query
evaluation takes place at each step. Accordingly, we define
the average query bound violation as follows:

Definition 11 (Average Query-bound Violation (AQV)).
The Average Query-bound Violation for a query Qj is the aver-
age number of times the query imprecision bound is violated
over a given time period. In other words,

AQVQj
¼ VQj

NQj

; (4)

where NQj
is the number of steps Query Qj takes till the cur-

rent time instance and VQj
is the number of times the impreci-

sion bound is violated for these steps.

AQV treats violation of the imprecision bound by a query
at each step equally even if the amount of violation differs
dramatically. However, the focus in this paper is on meeting

Fig. 3. Query evaluation over an anonymized data stream.
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the precision bounds and AQV precisely captures the aver-
age performance of queries in terms of bound violations.

Example 4. Consider a sliding-window query, say Q1, that
takes 10 steps during a given time interval. At each query
step, the query imprecision is evaluated and the impreci-
sion value violates the imprecision bound at 4 of these
steps. The average query bound violation for Q1 is then
0.4 (4/10). Consider another query, say Q2, that takes 20
steps during the same time interval and the imprecision
bound is violated at 6 of these steps. The average query
bound violation for Q2 is then 0.3 (6/20) and, on average,
Q2 has better accuracy than that of Q1.

Definition 12 (Tuple Arrival Rate). The data stream tuple
arrival rate, denoted by �, is the number of tuples received in a
given time instance.

Intuitively, a higher tuple arrival rate translates into less
imprecision as more tuples are available to form equiva-
lence classes with fewer false-positives.

3.2 Precision-Bounded Access Control

A precision-bounded access control framework for privacy-
preserving data streams is proposed as shown in Fig. 4. The
Privacy Protection Mechanism (PPM) ensures that the pri-
vacy and precision goals are met before the sensitive stream
data is made available to the access control mechanism. The
access control policy administrator defines sliding-window
queries that define the authorized view of the data stream
for each role. The PPM uses generalization of stream data
tuples to anonymize and satisfies the given privacy require-
ment. Generalization adds uncertainty resulting in a reduc-
tion of precision of authorized view. The uncertainty due to
generalization can be reduced by delaying the stream tuples
and forming equivalence classes with less imprecision.
However, the delay introduces false-negatives if the stream
tuples belonging to the authorized view are held by PPM.
The access control policy administrator provides the impre-
cision bound for each query. PPM needs to ensure that at the
time of query evaluation the sum of false-negatives and
false-positives is less than the imprecision bound.

The purpose of access control is to ensure that each user
accesses only the authorized information. False-positives due
to generalization under the Overlap semantics imply that
access is being provided to unauthorized tuples. False-nega-
tives as a result of Enclosed semantics although deny access to

the authorized information but ensure that the access control
policy is not violated. The reference monitor can be set to
enforce an access control policy using either the Overlap
semantics or strict access control enforcement using the
Enclosed semantics. Choice of each semantics has its own pros
and cons. Relaxed enforcement is beneficial for applications
where false alarms are acceptable as compared to the risks
associated with a missed event, e.g., epidemic surveillance
and airport security. Strict enforcement is suitable for applica-
tionswhere a high risk is associatedwith a false alarm as com-
pared to amissed event, e.g., false arrest in case of shoplifting.
In this paper, the focus is on relaxed enforcement. However
the proposed approach for anonymization is also valid for
strict enforcement because the heuristic proposed in Section 4
reduces the overlap between anonymized partitions and
predicate sliding-window queries. For the Overlap semantics,
the reference monitor may be set to deny access to a permis-
sion if false-positives aremore than a desired threshold.

3.3 The PACE Problem

The Precision-bounded Access Control for privacy-
preserving data strEams (PACE) problem is defined as
follows:

Definition 13 (The PACE Problem). Given a data stream T ½i�,
a set of predicate sliding-window queries Q, and privacy
parameter ks, the Precision-bounded Access Control for pri-
vacy-preserving data strEams (PACE) problem is to generate

an anonymized stream TP ½i� such that the sum of the average
query bound violation for all queries q 2 Q is minimized.

The optimal k-anonymity problem based on generaliza-
tion has been shown to be NP-complete [17]. The hardness
result for the PACE problem follows the construction of
LeFevre et al. [18] that shows the hardness of k-anonymous
multi-dimensional partitioning with the smallest average
equivalence class size. The decision problem for k-anony-
mous partitioning satisfying the query imprecision bounds
for relational data has been shown to be NP-complete [16].

For the decision version of the problem, we consider a
single time instance and a set of queries q 2 Q. The data
stream tuples received at this time instance can be trans-
formed into an equivalent set of distinct ðtuple; countÞ pairs.
All the queries are evaluated at this time instance. The con-
stant qv defines an upper bound for the sum of the average
query bound violation for all predicate sliding-window
queries. The tuples received can either be published as par-
titions or can be put on hold. The decision version of the
PACE problem is as follows:

Definition 14 (The Decisional PACE Problem). Given a set
t 2 T of unique ðtuple; countÞ pairs received at a given time
instance and a set of sliding-window queries q 2 Q with impre-
cision boundsBq, does there exist a multidimensional partition-
ing for T such that every published multidimensional regionRi

in Tp,
P

t2Ri
countðtÞ � ks and sum of average query bound

violation for all queries is less than the positive constant qv?

Theorem 3.1. Decisional PACE problem is NP-complete.

Proof. Refer to Appendix A, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2015.2391098. tu

Fig. 4. Precision-bounded access control enforcement.
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3.4 Probabilistic Analysis for Query Bound
Violation

A precision-bounded access control framework for privacy-
preserving data streams has been presented in Section 3.2.
The access control policy administrator sets the imprecision
bound for each predicate sliding-window query and
requires that the imprecision bound for the least number of
queries is violated by the PPM. The policy administrator
can revise the imprecision bounds for the queries if the
probability of satisfying the bound of large number of
queries at any time instance is very low. From this perspec-
tive, we are interested in the following questions:

� What is the probability that the number of queries
violating imprecision bounds is less than a given
threshold or is in a given range at any given time
instance?

� How long does it take for the sum of average query-
bound violation for all queries to reach a steady-state
value?

To answer these questions, let X1½j�; . . . ; Xn½j� be a set of
independent random variables such that PrðXi½j� ¼ 1Þ ¼ pi
and PrðXi½j� ¼ 0Þ ¼ 1� pi, where 0 � pi � 1. Xi½j� is equal
to 1 if a sliding-window query say, Qi (size ¼ w and step ¼
1) evaluated at time instance j violates the imprecision
bound, otherwise Xi½j� is equal to 0. The step size for all n
queries is 1. Thus, all queries are evaluated at each time
instance. The number of queries violating imprecision
bounds at time instance j is X½j� ¼ Pn

i¼1 Xi½j�. X1½j�; . . . ;
Xn½j� at each time instance are modeled as Poisson trials and
follow a Poisson binomial distribution. The expected number
of queries violating the imprecision bound at time instance
j is E½X½j�� ¼ m ¼ Pn

i¼1 pi [19]. Dependency may exist
among the sliding-window queries evaluated at each time
instance but for our analysis we assume that they are
independent.

By the law of large numbers, the difference between the
actual and expected values for a random process decreases
as the number of trials increases. Formally, for a set of
independent non-identically distributed random variables
X1½j�; . . . ; Xn½j� and X½j� ¼ Pn

i¼1 Xi½j�, the sample average

�m ¼ 1
j

Pj
i¼1 X½i� at time j, converges to the expected value

m ¼ E½X½j�� as j approaches 1 [20]. The sample average �m
for a large number of samples can be used to answer the
first question: What is the probability that the number of
sliding-window queries violating bounds is less than a
given threshold? We use the Hoeffding/Chernoff bound
[21] for the Poisson trials as given in Lemma 3.2.

Lemma 3.2. Let X1½j�; . . . ; Xn½j� be an independent Poisson
trial at time instance j, then for X½j� ¼ Pn

i¼1 Xi½j�,
m ¼ E½X½j��, and 0 < � � 1, we have

Pr½X½j� < ð1� �Þm� < e�
m�2

2 : (5)

The � value is set according to the required threshold.
However, in order to use Lemma 3.2 we would like to
know the sample size that gives a high probability of
j�m� mj being smaller than some constant x. Theorem 3.3
provides a lower bound on S, the sample size, for a given
probability that j�m� mj � x. The proof for Theorem 3.3 is

similar to the proof of generalized pairwise-independent
sampling theorem [22].

Theorem 3.3. Let X1½j�; . . . ; Xn½j� be an independent Poisson
trial at time instance j. Xi½j� is a random variable that is 1 if a
sliding-window query say, Qi (with size ¼ w and step ¼ 1)
that is evaluated at time instance j violates the imprecision
bound, otherwise Xi½j� is 0. The Var½Xi� � b for b � 0,

X½j� ¼ Pn
i¼1 Xi½j�, �m ¼ 1

S

PS
i¼1 X½i�, m ¼ E½X½j��, and

x > 0, we have

S � bn

Pr½j�m� mj � x�x2
: (6)

Proof. Refer to Appendix A, available in the online
supplemental material. tu

Example 5. Suppose that for 500 predicate sliding-window
queries (i.e., n ¼ 500) the tolerance for �m is x ¼ 2:5 and
we want our estimate to be within this tolerance with a
95 percent probability. The Var½Xi� is equal to pið1� piÞ
and the maximum value b of pi in the interval 0 � pi � 1

occurs for pi ¼ 1
2. From Equation (6), we get a sample

size of 800, which implies that when 800 time-stamps
have elapsed, there is a 95 percent probability that
j�m� mj < 2:5.

According to central limit theorem the Poisson binomial
distribution for a large number of samples can be approxi-
mated by a normal distribution of sample mean �m and stan-
dard deviation �s [23]. The cumulative distribution function
of the approximate normal distribution can then be used to
find the probability of the number of queries violating the
imprecision bounds in a given range at any time instance.

4 ALGORITHM FOR PRECISION-BOUNDED

ANONYMIZATION

Cao et al. [7] have proposed a clustering algorithm for ano-
nymization of a data stream. Another approach proposed
by Zhou et al. [8] uses an R-tree [24] based algorithm to ano-
nymize. The stream tuples are added to leaf nodes in an
R-tree with a constraint that each node should have
between ks to 2ks tuples. When a leaf node is published,
that node is removed from the R-tree. The proposed heuris-
tic listed in Algorithm 1 can be applied to both techniques
for a given predicate sliding-window query workload. We
follow the approach suggested by Zhou et al. but use an
Rþ-tree [25] instead of an R-tree. The Rþ-tree-based ano-
nymization algorithm for relational data has been proposed
by Iwuchukwu et al. [26]. When the tuples are added to an
Rþ-tree, the leaf nodes and intermediate nodes are non-
overlapping [26]. This condition can be maintained for a
data streams under the assumption that the identity value
of stream tuple is not repeated within the maximum delay.
However, if the tuple identity value is repeated, then
according to the data stream ks-anonymity definition, the
tuple cannot be put into the same leaf node. Adding that
tuple to any other leaf node creates an overlapping leaf
node. It is observed in the experiments in Section 5 that bet-
ter accuracy can be achieved by maintaining non-overlap-
ping leaf nodes and by setting the maximum delay such
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that the existing leaf nodes are published before any dupli-
cate tuple is received.

An Rþ-tree-based index is maintained by the PPM. The
data stream tuples in T ½i� are first added to the active
Rþ-tree at each time instance. Then, the decision to publish
each leaf node (equivalence class) is taken. For a leaf node
in the active Rþ-tree, the expected false-positives (EFP ) and
the expected false-negatives (EFN) are defined as follows.

Definition 15 (Expected False-Positives). The Expected False-
Positives for a leaf-node Partition P (EFPP , for short) is
defined as the sum of false-positives for all queries resulting
from Partition P , provided the partition is published at the
current time instance

EFPP ¼
X

Qj2Q
P �Qj

�� ��: (7)

In Equation (7) above, the minus sign denotes the set dif-
ference operation which gives the data stream tuples that
are inside the partition but are outside the region defined
by the predicate sliding-window query Qj. If Partition P is
published then all these tuples satisfy Definition 7 for a
false-positive tuple.

Definition 16 (Expected False-Negatives). The Expected
False-Negatives for a leaf-node Partition P (EFNP , for short)
is defined as the sum of false-negatives for all queries that are
evaluated at the next time instance resulting from Partition P
if the partition is held by the PPM at the current time instance.

EFNP ¼
X

Qj2Q
QjðP Þ�� �� (8)

In Equation (8) above, only those sliding-window queries
that add false-negatives are evaluated in the next time
instance. The tuples inside the Partition P that are also
inside the region defined by a predicate sliding-window
Query Qj satisfy Definition 8 for a false-negative tuple.

A leaf-node in the Rþ-tree can either add false-positives
(if published) or false-negatives (if held) towards the slid-
ing-window queries. The false-positives represent the infor-
mation loss due to generalization while false-negatives
represent the information loss due to publishing delay.
Therefore, we choose the option that contributes less impre-
cision for all the queries with respect to a partition. In other
words, a leaf-node partition can be held in the active
Rþ-tree until EFPP is smaller than EFNP . We also define
wFP and wFN as weights where 0 < wFP ; wFN � 1. The
weight assignment should be done according to require-
ments of the application, e.g., wFP can be set less than 1 for
an application sensitive to false-negatives.

The Total Imprecision Minimization (TIM) algorithm is
listed in Algorithm 1. The activeRþ-tree is initialized in Line
. In the for loop in Lines 2-5, at each time instance, the tuples
arriving in data stream T ½i� are added to a leaf node in the
active Rþ-tree and the leaf node is split if the size of new leaf
nodes is greater than ks. The leaf node is split along the
median in the dimension having the least expected false-pos-
itives. The for loop in Lines 6-9 checks all the leaf nodes of the
active Rþ-tree. If the expected false-negatives by holding a
leaf node are more than the false-positives as a result of

publishing the node, then the node is published as an equiva-
lence class. For wFP ¼ wFN , the sum of false-negatives for all
queries is always greater than total false-positives because
until a partition is published, it only adds false-negatives.
Access control enforcement under theOverlap semantics can
be adjusted to set a preference for lower false-positives
(wFP > wFN ) or lower false-negatives (wFN > wFP ). The same
algorithm can be used to satisfy the privacy requirements of
ls-diversity (Listing 2 in Appendix B, available in the online
supplemental material) or variance diversity by splitting the
leaf node in Line of Algorithm 1, provided both the new leaf
nodesmeet the privacy requirement.

Algorithm 1. Total Imprecision Minimization

Input: T ½i�, ks, Q, and BQj

Output: EC1; EC2; . . .
Initialize the active Rþ-tree;
2: for (each tm 2 T ½i� arriving at time instant i) do
3: Add Tuple tm to a leaf node in active Rþ-tree;
4: if (Size of new leaf nodes after splitting is > ks) then
5: Split the leaf node;
6: for (all leaf nodes P in active Rþ-tree at time instant i) do
7: Update the imprecision cost of each leaf node;
8: if ((wFN � EFNP > EFPP � wFP )OR ((i - tm.TS) � (d - 1)))

then
9: Publish the leaf node as EC and remove from active

Rþ-tree;

Example 6. Assume that eight tuples are received at some
time instance as shown in Fig. 5. The shaded rectangles
with solid lines represent sliding-window queries while
the rectangles with dotted lines represent partitions. The
leaf-node Partitions P1 and P2 are added to the Rþ-tree.
The weight assignment is wFP ¼ wFN ¼ 1. The two slid-
ing-window queries Q1 and Q2 are to be evaluated at the
next time instance. The EFP for P1 is 1 and EFN is 3. Since
EFP is less than EFN for P1, P1 is published. For P2, EFP
is 3 and EFN is 1. Since EFN is less than EFP for P2, P2 is
put on hold by the PPM. The total imprecision contrib-
uted by P1 and P2 at this time instance is 2. Note that if
both P1 and P2 are published or held by PPM the total
imprecision will be 4.

5 EXPERIMENTS

The experiments for the empirical evaluation of the pro-
posed algorithm have been carried out on two real datasets.

Fig. 5. EFPP and EFNP for leaf nodes P1 and P2.
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The first dataset is the Adult dataset from UC Irvine
Machine Learning Repository [27] having 45,222 tuples
and is the benchmark for k-anonymity research. The attrib-
utes in the Adult dataset are: Age, Work class, Marital sta-
tus, Relationship, Race, Gender, Education, and,
Occupation. The second dataset is the Census dataset [28]
from IPUMS.1 This dataset is extracted for the year 2001
using attributes: Age, Gender, Marital status, Race, Lan-
guage, Education, Occupation, and Income. The size of this
dataset is about 1.2 million tuples. For the ks-anonymity
experiments, we use the first six attributes as quasi-attrib-
utes from both datasets. To model the dataset as a data
stream, we assume that 1,000 tuples are received at each
time instance. The maximum delay constraint d is set to
five time units for the Adult dataset and 25 time units for
the Census dataset. It is assumed that the time interval
between the two time instances is enough to update the
Rþ-tree and the query imprecision at each time instance.
We also assume that the tuple ID is not repeated within
the time duration of the maximum delay.

We use 100 and 300 queries as the workload/permissions
for the Adult and Census datasets, respectively. The queries
are generated randomly using the approach suggested by
Iwuchukwu, et al. [26]. In this approach, two tuples are
selected randomly from the tuple space and a query is
formed by making a bounding box of these two tuples. The
bounding box gives the predicates for the sliding-window
query. The window size and step are also selected randomly
from a fixed range. For the Adult dataset, the range for the
window size is 20-30 and for the step the range is 10-20. For
the Census dataset, the range for the window size is 100-200
and for the step is 50-100. The random query is then added
to the workload if the sliding-window query meets the size
constraint for the first step (8,000 for the Adult dataset and
15,000 for the Census dataset). The imprecision bounds for
all sliding-window queries are set based on the query size
at the time of query evaluation. For example, an imprecision
bound of 10 percent for a sliding-window query implies

that, at each step, when the query is evaluated, the impreci-
sion should be less than 10 percent of the query size at that
time instance.

The approach proposed by Cao et al. [7] for data stream
anonymization tries to minimize the error due to generali-
zation with a constraint that tuples must be published
before the maximum delay deadline. Zhou et al. [8] pro-
pose an R-tree-based approach to anonymize the data
stream and propose a minimum-delay heuristic, where
tuples are published as soon as they meet the privacy con-
dition. They also propose a randomized algorithm to mini-
mize a delay-based cost function and show that the
accuracy can be further improved by taking the tuple dis-
tribution into account. In our experiments, we compare the
proposed approach (i.e., Total Imprecision Minimization)
with the maximum delay heuristic (denoted by maxD) and
the minimum delay publishing (denoted by minD). wFP

and wFN are set to 1 for TIM.

5.1 Varying Imprecision Bound

For the ks-anonymity experiments, the value of ks is fixed
and the query imprecision bound is varied from 15 to
35 percent with increments of 5 and the sum of the average
query-bound violation for all predicate sliding-window
queries is evaluated. The results for ks-anonymity are
given in Fig. 6 for the Adult dataset for ks values of 3, 4, 5
and 6. The minimum delay heuristic is better than the max-
imum delay heuristic but TIM gives the best results for all
values of ks.

For the Census dataset results for ks-anonymity are
given in Fig. 7 for ks values of 3, 4, 5 and 6. The perfor-
mance of TIM is better than that of minD and maxD for
all values of ks in the Census data. In this case, maxD
performs better than minD as compared to the Adult
dataset. The performance of maxD is dependent upon
the maximum delay value. In the case of the Adult data-
set, maxD performs better than minD only when the
delay value is 2 as given in Fig. 8a but the experiments
were performed with d ¼ 5. For the Census dataset with
d ¼ 25, it can be observed in Fig. 9a that the maxD heu-
ristic is better than minD heuristic.

Fig. 6. The sum of the average query-bound violation for ks-anonymity
for the Adult dataset.

Fig. 7. The sum of the average query-bound violation for ks-anonymity
for the Census dataset.

1. Available at http://usa.ipums.org/usa/
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5.2 Varying the Maximum Delay (d) Parameter

In the next experiment for the Adult dataset, ks is set to 3
and the query imprecision bound is set to 20 percent of the
sliding-window query size at the time of query evaluation.
The maximum delay value (d) is varied from 2 time units to
20 time units as given in Fig. 8. The total imprecision in
Fig. 8b is the sum of false-positives in Fig. 8c and false-nega-
tives in Fig. 8d. The total imprecision, false-positives, and
false-negatives are calculated by adding the imprecision
values for all queries. The average query violation and the
total imprecision for the minimum delay heuristic remain
constant for all values of the d as they are independent of
the delay value. For the minimum delay heuristic, the false-
negatives are zero as given in Fig. 8d because the partitions
are published without delay in the same time instance. TIM
has the best performance in terms of the average query-
bound violation and the total imprecision as noted in Fig. 8a
and Fig. 8b. We can notice in Fig. 8c that as the d value is
increased, the total false-positives decrease for TIM as more
data stream tuples are available to form partitions with less
imprecision. Also, we can observe in Fig. 8d that as the d

value is increased the false-negatives increase because more
tuples are put on hold by the PPM.

For the Census dataset, ks is fixed at 3 and query impreci-
sion bound is fixed at 20 percent of the sliding-window
query size at the time of query evaluation. Then, the maxi-
mum delay (d) value is varied from 10 time units to 40 time
units in increments of 5 time units as given in Fig. 9. It can
be observed that TIM has the best performance in terms of
the average query-bound violation and the total imprecision
as given in Figs. 9a and 9b. For TIM, as the d is increased, the
false-positives decrease as given in Fig. 9c because more
data stream tuples are available to form partitions with
fewer false-positives. On the other hand, the false-negatives
increase as given in Fig. 9d with the increase in the d value
as more tuples are held by PPM.

5.3 Varying the Rate of Tuple Arrival (�) for TIM

The next experiment is performed to analyze the effect of
the rate of tuple arrival on TIM. Intuitively, the higher rate
of tuple arrivals should give better results because more
data stream tuples are available at a given time instance to
form partitions with fewer false-positives. For this experi-
ment, we vary tuple arrival rates as 250, 500, 750, and 1,000
tuples for Adult dataset at each time instance, a ks value of
3 and an imprecision bound of 25 percent. We can notice in
Fig. 10a that, as the tuple arrival rate is increased, the sum
of average query-bound violations decreases for all maxi-
mum delay (d) values.

For the Census dataset the same trend as that of the
experiment on the Adult dataset is observed. The perfor-
mance improves as the rate of tuple arrival increases. For
this experiment, we vary the tuple arrival rates as 500, 750,
1,000, 1,250, and 1,500 tuples for each time instance, a ks
value of 3 and an imprecision bound of 20 percent. From
Fig. 10b, we can observe that as the tuple arrival rate is
increased the performance is improved because more data
stream tuples are available to form partitions with fewer
false-positives.

5.4 Varying Weights (wFN;wFP ) for TIM

In TIM, a partition is published when the expected false-
negatives are greater than the expected false-positives. In
this experiment for the Adult dataset, weights are assigned
to expected false-negative and false-positive values. By
TIM14, it is meant that weight wFN is four times higher than
the weight wFP (and vice versa for TIM41). It can be
observed in Fig. 11a, that for TIM14, there are more false-
positives than for TIM and in Fig. 11b, there are less false-
negatives as partitions are published early. Similarly, for
TIM41 as compared to TIM, the false-positives are less and

Fig. 8. Varying the maximum delay (d) parameter for the Adult dataset.

Fig. 9. Varying the maximum delay parameter (d) for the Census dataset.

Fig. 10. Varying the rate of tuple arrival for TIM.
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the false-negatives are more as partitions are held for a
longer time by PPM.

5.5 Duplicate Tuples Received within the Maximum
Delay (d)

In the previous experiments, it is assumed that the stream
tuple-id values are not repeated. We now assume that a
tuple-id can be repeated only once within the maximum
delay (d) after time d

2. The d is set to 10 and the total impreci-
sion is plotted for various values of ks. The repetition of
tuple-id forces PPM to create overlapping leaf nodes in the
R-tree to satisfy the ks-anonymity requirement. The results
of the experiment shown in Fig. 12a reveal that maxD has
the worst performance for all the values of ks because more
delay allows more overlapping leaf nodes while minD has
the best performance. For TIM2 and maxD2, knowing that a

tuple-id is repeated after time d
2, we set the d to 5 and use an

Rþ-tree with non-overlapping leaf nodes. This allows to
reduce the total imprecision by an order of 3 as shown for
TIM2 in contrast with minD.

We repeat this experiment for the Census dataset with a d
value of 20. Notice that in Fig. 12b, the performance of minD
is better than maxD and TIM due to fewer overlapping leaf
nodes. For TIM2 and maxD2, knowing that the tuple-id is

repeated after time d
2, the d value is set to 10 and an Rþ-tree

is used with non-overlapping leaf nodes. This allows to
reduce the imprecision by an order of 3 for TIM2.

5.6 ls-Diversity and Stream Variance Diversity

We use Attribute occupation as the sensitive attribute and the
first six attributes as the QI attributes for the ls-diversity
experiments on data streams using the Census dataset. All
the tuples having the occupation value as Not Applicable (0
in the dataset) in the Census dataset are removed leaving
about 700 k tuples. The proposed algorithm in Listing 2
(Refer to Appendix B, available in the online supplemental
material) is used for ls-diversity with the constraint that
each leaf node should be ls-diverse after splitting. The

experiment is conducted for the ls values of 3 and 4. For
each value of ls, we vary the query imprecision bounds
from 15 to 35 percent with increments of 5 and find the sum
of average query-bound violation for all sliding-window
queries. The results are given in Fig. 13 and demonstrate
that TIM has the lowest average query-bound violation for
ls-diversity.

For the data stream variance diversity experiments, we
use Attribute income as the sensitive attribute. All the tuples
having the income value as Not Applicable (9,999,999 in the
dataset) in the Census dataset are removed, which leaves
about 950 k tuples. The experiments are conducted for the
variance values V

200 and V
100, where V is the variance of the

sensitive attribute in the dataset. For a given variance diver-
sity value , the query imprecision bound is changed from
15 to 35 percent and the sum of the average query-bound
violation for each publishing approach is calculated. Similar
to ks-anonymity and ls-diversity, each leaf node in the active
Rþ-tree needs to satisfy the variance diversity condition.
The results for data stream variance diversity are given in
Fig. 14 and illustrate that TIM gives the best results as com-
pared to minD and maxD.

5.7 Sample Size for Sample Mean to Stabilize

In this experiment, the number of sliding-window queries
violating bounds for TIM along with the sample mean
(average query-bound violation) is given in Fig. 15. We
randomly select 500 queries (with window size ¼ 25 and
step ¼ 1) with cardinality � 2500 in the first step and set
imprecision bound to 30 percent of the query size. One of
the important observations in this plot is the dependence
of Poisson trials on query window size. The number of slid-
ing-window queries violating bounds changes abruptly
after intervals of about 25 time units. The dependence
among trials decreases if the query window size is
reduced. Secondly, in Example 5, the sample size for toler-
ance j�m� mj < 2:5 with a 95 percent probability is found to
be greater than 800. Observe that in Fig. 15, after 800 time-
stamps, �m is almost stable.

Fig. 11. The imprecision for TIM using weights for the Adult dataset.

Fig. 12. Duplicate tuples received within the maximum delay (d).

Fig. 13. ls-diversity for the census dataset.

Fig. 14. Stream variance diversity for the census dataset.
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5.8 Visual Representation of Heuristics

The visual representations of the published partitions
resulting from the approaches minD, maxD, TIM with
R-tree, and TIM with Rþ-tree are given in Fig. 16. 1,200
tuples with two attributes are randomly selected (using a
Normal distribution with m ¼ 50, s ¼ 10, and cardinality =
100) and it is assumed that rate of tuple arrival � ¼ 200. Five
random predicate sliding-window queries are selected (the
query size is greater than 400) with window size 5 and win-
dow step 2. The query imprecision bound is set to 15 per-
cent of the sliding-window query size at the time of query
evaluation. The maximum delay d is set to 3 time-units. The
rectangles with the blue (darker) lines are the queries while
the rectangles with the red (lighter) lines are the partitions
generated by the heuristics at ks ¼ 3. The partitions held by
PPM are given in green (very light) color and the false-nega-
tive tuples inside these rectangle are marked by � while the
tuples outside the queries are marked by �.

The summary of the comparisons for minD, maxD,
TIM with R-tree, and TIM with Rþ-tree is given in Table 1.
In this table, AQV stands for the Average Query-bound
Violation. Minimum delay publishing has zero false-nega-
tives but the highest false-positives as shown in Fig. 16a.
Observe that in Fig. 16b, maximum delay publishing
allows to reduce the false-positives but considerably
increases the number of false-negatives. In comparison,
the partitions published by TIM given in Fig. 16c
have the lowest total imprecision and violate the bounds
for the minimum number of predicate sliding-window
queries. Fig. 16d gives the partitions published by TIM
using an R-tree instead of an Rþ-tree. It can be noted that
the R-tree approach creates overlapping leaf nodes result-
ing in higher false-positives.

6 RELATED WORK

In this section, first the literature related to access control on
data streams is reviewed and then research related to pri-
vacy preserving publishing of data streams is discussed. To
the best of our knowledge both the precision-bounded
access control and privacy together for data streams have
not been investigated before.

Nehme et al. propose security punctuation-based access
control framework for data streams [3]. A security punctua-
tion is a predicate that defines access to stream data and is
created by the user generating stream data. The security
punctuation tuples are then interleaved in the data stream.
The subjects are assigned roles on the server and can exe-
cute authorized queries on the incoming data stream. The

server allows the roles access to stream tuples according to
the embedded security punctuation.

Role-based access control for data streams has been pro-
posed by Carminati et al. [4]. In their framework, there
are two types of temporal constraints. First is the interval

Fig. 15. Average query-bound violation versus Time for the Census
dataset

Fig. 16. Anonymization for two attributes with discrete normal distribution
(m ¼ 50; s ¼ 10).
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constraint during which the role can access stream data.
Second is the window constraint that limits access to the
data stream for each role according to the authorized view
defined by the sliding-window query predicate. They con-
sider two types of privileges over the authorized data that is
read privilege for selection and projection operations and
aggregate privilege for Min, Max, Count, Avg, and Sum
operations. In the current paper, we follow the access con-
trol specification of Nehme et al. and Carminati et al. but
further consider the privacy-preservation along with the
precision-bounded access control.

Cao et al. have proposed CASTLE for continuously ano-
nymizing data streams [7]. They extend the definition of
k-anonymity for data streams and propose a clustering
algorithm that publishes anonymized clusters before a
given maximum delay deadline. The measure used to
assess the quality of published clusters is the information
loss metric that does not consider the loss due to delay in
publishing. To overcome this shortcoming, Zhou et al. pro-
posed a delay-based anonymization quality measure that
increases the information loss as the publishing delay
increases [8]. They propose a randomized-algorithm based
on the R-tree. The data stream tuples are added to the
active R-tree and the leaf nodes of the tree due at each
time instance are published. The due time for each node is
evaluated randomly based on the information loss. They
further use the distribution density of the data stream to
improve the algorithm. Both Cao et al. and Zhou et al. sup-
press the time-stamp attribute in the anonymized stream.
However, the time-stamp attribute is required to evaluate
any sliding-window query over the anonymized stream.

Dwork et al. have proposed differential privacy for data
streams considering a single aggregate query [29]. Cao et al.
further extend the model to sliding-window queries over
binary data streams [30]. Differential privacy is achieved by
adding random noise to original query results and offers
better privacy guarantees than generalization, however syn-
tactic anonymization techniques (e.g., generalization) pro-
vide better precision [31]. The Differential privacy model for
relational data streams is still to be developed. In the current
paper our focus is on generalization and we introduce
precision bounds for sliding-window queries over privacy-
preserving data streams.

Access control and privacy techniques have been investi-
gated for static relational data. LeFevre et al. [10], [18] and
Iwuchukwu et al. [26] have proposed workload-aware ano-
nymization for micro data publishing. Work has been done
on micro data anonymization with accuracy and privacy
constraints [16], [32], [33]. We have proposed the concept of
imprecision bounds for accuracy-constrained access control
on relational data [16]. However, the access control on data

streams presents different challenges because of the tempo-
ral constraints defined by sliding-window query predicates.
In the data stream literature, access control and privacy-
preserving publishing have been considered in isolation.
However, we propose a unified precision-bounded access
control framework for privacy-preserving data streams.

7 CONCLUSIONS

In this paper precision-bounded access control for privacy-
preserving data streams has been proposed. The access con-
trol administrator defines the permitted view of the data
stream along with the required precision. The privacy pro-
tection mechanism applies generalization to the stream data
such that the privacy requirement is met and imprecision
bound for the maximum number of sliding-window queries
is satisfied. An algorithm has been proposed to minimize
the total imprecision and experiments have been performed
to compare the performance. In future work, we plan to
extend the access control enforcement to Enclosed semantics.
Also, in this paper, syntactic anonymization techniques
have been considered. We plan to extend the differential pri-
vacy model for sliding-window queries over binary data
streams [30] proposed by Cao et al. to relational data
streams.
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