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Abstract—Access control mechanisms protect sensitive information from unauthorized users. However, when sensitive information is

shared and a Privacy Protection Mechanism (PPM) is not in place, an authorized user can still compromise the privacy of a person

leading to identity disclosure. A PPM can use suppression and generalization of relational data to anonymize and satisfy privacy

requirements, e.g., k-anonymity and l-diversity, against identity and attribute disclosure. However, privacy is achieved at the cost of

precision of authorized information. In this paper, we propose an accuracy-constrained privacy-preserving access control framework.

The access control policies define selection predicates available to roles while the privacy requirement is to satisfy the k-anonymity or

l-diversity. An additional constraint that needs to be satisfied by the PPM is the imprecision bound for each selection predicate. The

techniques for workload-aware anonymization for selection predicates have been discussed in the literature. However, to the best of

our knowledge, the problem of satisfying the accuracy constraints for multiple roles has not been studied before. In our formulation of

the aforementioned problem, we propose heuristics for anonymization algorithms and show empirically that the proposed approach

satisfies imprecision bounds for more permissions and has lower total imprecision than the current state of the art.

Index Terms—Access control, privacy, k-anonymity, query evaluation

Ç

1 INTRODUCTION

ORGANIZATIONS collect and analyze consumer data to
improve their services. Access Control Mechanisms

(ACM) are used to ensure that only authorized information
is available to users. However, sensitive information can
still be misused by authorized users to compromise the pri-
vacy of consumers. The concept of privacy-preservation for
sensitive data can require the enforcement of privacy poli-
cies or the protection against identity disclosure by satisfy-
ing some privacy requirements [1]. In this paper, we
investigate privacy-preservation from the anonymity
aspect. The sensitive information, even after the removal of
identifying attributes, is still susceptible to linking attacks
by the authorized users [2]. This problem has been studied
extensively in the area of micro data publishing [3] and pri-
vacy definitions, e.g., k-anonymity [2], l-diversity [4], and
variance diversity [5]. Anonymization algorithms use sup-
pression and generalization of records to satisfy privacy
requirements with minimal distortion of micro data. The

anonymity techniques can be used with an access control
mechanism to ensure both security and privacy of the sensi-
tive information. The privacy is achieved at the cost of accu-
racy and imprecision is introduced in the authorized
information under an access control policy.

We use the concept of imprecision bound for each
permission to define a threshold on the amount of
imprecision that can be tolerated. Existing workload-
aware anonymization techniques [5], [6] minimize the
imprecision aggregate for all queries and the imprecision
added to each permission/query in the anonymized
micro data is not known. Making the privacy require-
ment more stringent (e.g., increasing the value of k or l)
results in additional imprecision for queries. However,
the problem of satisfying accuracy constraints for indi-
vidual permissions in a policy/workload has not been
studied before. The heuristics proposed in this paper for
accuracy-constrained privacy-preserving access control
are also relevant in the context of workload-aware ano-
nymization. The anonymization for continuous data pub-
lishing has been studied in literature [3]. In this paper
the focus is on a static relational table that is anony-
mized only once. To exemplify our approach, role-based
access control is assumed. However, the concept of accu-
racy constraints for permissions can be applied to any
privacy-preserving security policy, e.g., discretionary
access control.

Example 1 (Motivating Scenario). Syndromic surveil-
lance systems are used at the state and federal levels to
detect and monitor threats to public health [7]. The
department of health in a state collects the emergency
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department data (age, gender, location, time of arrival,
symptoms, etc.) from county hospitals daily. Generally,
each daily update consists of a static instance that is
classified into syndrome categories by the department
of health. Then, the surveillance data is anonymized
and shared with departments of health at each county.
An access control policy is given in Fig. 1 that allows
the roles to access the tuples under the authorized
predicate, e.g., Role CE1 can access tuples under Per-
mission P1. The epidemiologists at the state and
county level suggest community containment meas-
ures, e.g., isolation or quarantine according to the
number of persons infected in case of a flu outbreak.
According to the population density in a county, an
epidemiologist can advise isolation if the number of
persons reported with influenza are greater than 1,000
and quarantine if that number is greater than 3,000 in
a single day. The anonymization adds imprecision to
the query results and the imprecision bound for each
query ensures that the results are within the tolerance
required. If the imprecision bounds are not satisfied
then unnecessary false alarms are generated due to the
high rate of false positives.

The contributions of the paper are as follows. First, we
formulate the accuracy and privacy constraints as the prob-
lem of k-anonymous Partitioning with Imprecision Bounds
(k-PIB) and give hardness results. Second, we introduce the
concept of accuracy-constrained privacy-preserving access
control for relational data. Third, we propose heuristics to
approximate the solution of the k-PIB problem and conduct
empirical evaluation.

The remainder of this paper proceeds as follows. In
Section 2, relevant background is discussed. The problem
formulation and access control framework are presented
in Section 3. Section 4 covers the proposed top-down
heuristics for multi-dimensional partitioning to satisfy
imprecision bounds. Experimental results are in Section 5,
and in Section 6, an additional step to reduce the num-
ber of permissions violating imprecision bounds is pro-
posed. The related work is presented in Section 7 and
Section 8 concludes the paper.

2 BACKGROUND

In this section, role-based access control and privacy
definitions based on anonymity are over-viewed. Query

evaluation semantics, imprecision, and the Selection
Mondrian algorithm [5] are briefly explained.

Given a relation T ¼ fA1; A2; . . . ; Ang, where Ai is an
attribute, T � is the anonymized version of the relation T .
We assume that T is a static relational table. The attributes
can be of the following types:

� Identifier. Attributes, e.g., name and social security,
that can uniquely identify an individual. These
attributes are completely removed from the anony-
mized relation.

� Quasi-identifier (QI). Attributes, e.g., gender, zip
code, birth date, that can potentially identify an indi-
vidual based on other information available to an
adversary. QI attributes are generalized to satisfy the
anonymity requirements.

� Sensitive attribute. Attributes, e.g., disease or salary,
that if associated to a unique individual will cause a
privacy breach.

2.1 Access Control for Relational Data

Fine-grained access control for relational data allows to
define tuple-level permissions, e.g., Oracle VPD [8] and
SQL [9]. For evaluating user queries, most approaches
assume a Truman model [10]. In this model, a user query is
modified by the access control mechanism and only the
authorized tuples are returned. Column level access control
allows queries to execute on the authorized column of the
relational data only [8], [11]. Cell level access control for
relational data is implemented by replacing the unautho-
rized cell values by NULL values [12].

Role-based Access Control (RBAC) allows defining per-
missions on objects based on roles in an organization. An
RBAC policy configuration is composed of a set of Users
(U), a set of Roles (R), and a set of Permissions (P). For the
relational RBAC model, we assume that the selection predi-
cates on the QI attributes define a permission [11]. UA is a
user-to-role (U �R) assignment relation and PA is a role-
to-permission (R� P ) assignment relation. A role hierarchy
(RH) defines an inheritance relationship among roles and is
a partial order on roles (R� R) [13]. Each permission defines
a hyper-rectangle in the tuple space and all the tuples
enclosed by this hyper-rectangle are authorized to the role
assigned to the permission. In practice, when a user
assigned to a role executes a query, the tuples satisfying the
conjunction of the query predicate and the permission are
returned [1], [10].

2.2 Anonymity Definitions

In this section, privacy definitions related to anonymity are
introduced.

Definition 1 (Equivalence Class (EC)). An equivalence class is
a set of tuples having the same QI attribute values.

Definition 2 (k-anonymity Property). A table T � satisfies the
k-anonymity property if each equivalence class has k or more
tuples [2].

k-anonymity is prone to homogeneity attacks when the
sensitive value for all the tuples in an equivalence class is
the same. To counter this shortcoming, l-diversity has
been proposed [4] and requires that each equivalence

Fig. 1. Access control policy.

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXX 2014



IE
EE

Pr
oo

f

class of T � contain at least l distinct values of the sensitive
attribute. For sensitive numeric attributes, an l-diverse
equivalence class can still leak information if the numeric
values are close to each other. For such cases, variance
diversity [5] has been proposed that requires the variance
of each equivalence class to be greater than a given vari-
ance diversity parameter.

The table in Fig. 2a does not satisfy k-anonymity
because knowing the age and zip code of a person allows
associating a disease to that person. The table in Fig. 2b is
a 2-anonymous and 2-diverse version of table in Fig. 2a.
The ID attribute is removed in the anonymized table and
is shown only for identification of tuples. Here, for any
combination of selection predicates on the zip code and
age attributes, there are at least two tuples in each equiva-
lence class. In Section 4, algorithms are presented for k-
anonymity only. However, the experiments are per-
formed for both l-diversity and variance diversity using
the proposed heuristics for partitioning.

2.3 Predicate Evaluation and Imprecision

In this section the query predicate evaluation semantics
have been discussed. For query predicate evaluation over a
table, say T , a tuple is included in the result if all the attri-
bute values satisfy the query predicate. Here, we only con-
sider conjunctive queries (The disjunctive queries can be
expressed as a union of conjunctive queries), where each
query can be expressed as a d-dimensional hyper-rectangle.
The semantics for query evaluation on an anonymized table
T � needs to be defined. When the equivalence class partition
(Each equivalence class can be represented as a d-dimen-
sional hyper-rectangle) is fully enclosed inside the query
region, all tuples in the equivalence class are part of the
query result. Uncertainty in query evaluation arises when a
partition overlaps the query region but is not fully enclosed.
In this case, there can be many possible semantics. We dis-
cuss the following three choices:

1. Uniform. Assuming the uniform distribution of
tuples in the overlapping partitions, include tuples
from all partitions according to the ratio of overlap
between the query and the partition. Query evalua-
tion under this option might under-count or over-
count the query result depending upon the original
distribution of tuples in the partition region. Most of
the literature uses this uniform distribution seman-
tics to compare anonymity techniques over selection
tasks [6], [14]. However, the choice of the sensitive

attribute value for the selected tuples from an over-
lapping partition is not defined under uniform
semantics. For access control, a tuple’s QI attribute
values along with the sensitive attribute value need
to be returned.

2. Overlap. Include all tuples in all partitions that over-
lap the query region. This option will add false posi-
tives to the original query result.

3. Enclosed. Discard all tuples in all partitions that
partially overlap the query region. This option
will have false negatives with respect to the origi-
nal query result.

The imprecision under any query evaluation scheme is
reduced if the number of tuples in the partitions that over-
lap the query region can be minimized. For the remainder
of this paper, we assume Overlap semantics. The impreci-
sion quality metric definition using Overlap semantics is as
follows [5]:

Definition 3 (Query Imprecision). Query Imprecision is
defined as the difference between the number of tuples returned
by a query evaluated on an anonymized relation T � and the
number of tuples for the same query on the original relation T .
The imprecision for query Qi is denoted by impQi ,

impQi ¼ jQiðT �Þj � jQiðT Þj; where

jQiðT �Þj ¼
X

EC overlaps Qi

jECj: (1)

The query Qi is evaluated over T � by including all the
tuples in the equivalence classes that overlap the query region.

Example 2. Consider a range Query Q1(0-25, 5-20) for the
table given in Fig. 2. jQ1ðT Þj ¼ 2 as tuples 1 and 4 in
Fig. 2a satisfy the query. jQ1ðT �Þj ¼ 5 as the first two
equivalence classes given in Fig. 2b overlap the query
range. Then, the query imprecision for Q1 is 3 according
to Equation (1).

2.4 Top Down Selection Mondrian

Top Down Selection Mondrian (TDSM) algorithm is pro-
posed by LeFevre et al. [5], [14] for a given query work-
load. This is the current state of the art for query-
workload-based anonymization. The objective of TDSM is
to minimize the total imprecision for all queries while the
imprecision bounds for queries have not been considered.
The anonymization for a given query workload with
imprecision bounds has not investigated before to the
best of our knowledge. We compare our results with
TDSM in the experiments section. The algorithm pre-
sented in [14] is similar to the kd-tree construction [15].
TDSM starts with the whole tuple space as one partition
and then partitions are recursively divided till the time
new partitions meet the privacy requirement. To divide a
partition, two decisions need to be made, i) Choosing a
split value along each dimension, and ii) Choosing a
dimension along which to split. In the TDSM algorithm
[5], the split value is chosen along the median and then
the dimension is selected along which the sum of impreci-
sion for all queries is minimum. The time complexity of
TDSM has not been reported in [5] and is OðdjQjnlgnÞ,
where d is the number of dimensions of a tuple, Q is the

Fig. 2. Generalization for k-anonymity and l-diversity.
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set of queries, and n is the total number of tuples. The
expression is derived by multiplying the height of the kd-
tree with the work done at each level. The median cut
generates a balanced tree with height lgn and the work
done at each level is djQjn. The partitions created by
TDSM have dimensions along the median of the parent
partition. A compaction procedure has been proposed in
[6] where the created partitions are replaced by minimum
bounding boxes. This step improves the precision of the
anonymized table for any given query workload by
reducing the overlapping partitions. In Section 5, compac-
tion is carried out for all the algorithms and then the
results are compared.

3 ANONYMIZATION WITH IMPRECISION BOUNDS

In this section, we formulate the problem of k-anony-
mous Partitioning with Imprecision Bounds and present
an accuracy-constrained privacy-preserving access con-
trol framework.

3.1 Definitions

Let ti be a tuple in Table T with d QI attributes. Tuple ti can

be expressed as a d-dimensional vector fvti1 ; . . . ; vtid g, where

vi is the value of the ith attribute. Let DQIi be the domain of

quasi-identifier attribute QIi, then ti 2 DQI1 � � � � �DQId .

Any d-dimensional Partition Pi of the QI attribute domain

space can be defined as a d-dimensional vector of closed

intervals fIPi1 ; . . . ; IPid g. The closed Interval IPij is further

defined as ½aPij ; b
Pi
j �, where aPij is the start of the interval and

b
Pi
j is the end of the interval, and the length of the interval

l
Pi
j is b

Pi
j � a

Pi
j . A multidimensional global recoding function,

e.g., Mondrian [14], first divides the d-dimensional QI attri-

bute domain space into non-overlapping partitions Pi 2 P ,

where each Pi is a d-dimensional rectangle. In the second

step, the d-dimensional vector fv1; . . . ; vdg for each tuple is

replaced by the intervals fIPi1 ; . . . ; IPid g of the partition to

which the tuple belongs. A Tuple, say tj, belongs to a Parti-

tion, say Pl, if 8vtji ; v
tj
i 2 I

Pl
i : a

Pl
i � v

tj
i � b

Pl
i .

Consider a set of queries Q, where Qi 2 Q is defined by a

Boolean function of predicates on quasi-identifier attributes

fQI1; . . . ; QIdg. A query defines a space in the domain of

quasi-identifier attributes DQI1 � � � � �DQId and can be rep-

resented by a d-dimensional rectangle or a set of non-over-

lapping d-dimensional rectangles. To simplify the notation,

we assume that Query Qi is a single d-dimensional rectangle

represented by fIQi1 ; . . . ; IQid g. A Tuple tj belongs to Query

Qi, if 8vtji ; v
tj
i 2 I

Qi
i : aQii � v

tj
i � b

Qi
i . Query Qj and Partition

Pl overlap if 8IQji 8I
Pl
i ; a

Qj
i 2 I

Pl
i or a

Pl
i 2 I

Qj
i .

Definition 4 (Query Imprecision Bound). The query
imprecision bound, denoted by BQi , is the total imprecision
acceptable for a query predicate Qi and is preset by the
access control administrator.

Example 3. Assume two range queries as given in Fig. 3.
The queries are the shaded rectangles with solid lines
while the partitions are the regions enclosed by

rectangles with dashed lines. The imprecision bounds for
Queries Q1 and Q2 are preset to 2 and 0. The partitioning
given in Fig. 2b does not satisfy the imprecision bounds.
However, the partitioning given in Fig. 3 satisfies the
bounds for Queries Q1 and Q2 as the imprecision for Q1

and Q2 is 2 and 0, respectively.

Definition 5 (Query Imprecision Slack). The query impreci-
sion slack, denoted by sQi for a Query, say Qi, is defined as the
difference between the query imprecision bound and the actual
query imprecision.

sQi ¼
BQi � impQi ; if impQi � BQi;

0; otherwise:

�
(2)

Definition 6 (Partition Imprecision Cost (PIC)). The parti-
tion imprecision cost is a vector ficQ1

Pi
; . . . ; icQnPi g, where ic

Qj
Pi

is the imprecision cost of a Partition Pi 2 P with respect to a
Query Qj. This cost is the number of tuples that are present in
the partition but not in the query, i.e.,

ic
Qj
Pi
¼ Pi �Qj

�� ��; (3)

where the minus sign denotes the set difference. The impre-
cision for a query impQj , defined in Equation (1), can also
be expressed in terms of ic

Qj
Pi

as

impQj ¼
X

Pi2P
ic
Qj
Pi
:

The TDSM algorithm uses the median value along a
dimension to split a partition. In the proposed heuristics in
Section 4, query intervals are used to split the partitions that
are defined as query cuts.

Definition 7 (Query Cut). A query cut is defined as the splitting
of a partition along the query interval values. For a query cut
using Query Qi, both the start of the query interval (aQij ) and
the end of the query interval (bQij ) are considered to split a par-
tition along the jth dimension.

Example 4. A comparison of median cut and query cut is
given in Fig. 4 for 3-anonymity. The rectangle with solid
lines represents Query Q1. While, the rectangles with
dotted lines represent partitions. In Fig. 4a the tuples are
partitioned according to the median cut and even after
dividing the tuple space into four partitions there is no
reduction in imprecision for the Query Q1. However, for
query cuts in Fig. 4b the imprecision is reduced to zero
as partitions are either non-overlapping or fully enclosed
inside the query region.

Fig. 3. Anonymization satisfying imprecision bounds.
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3.2 The k-PIB Problem

The optimal k-anonymity problem has been shown to be
NP-complete for suppression [16] and generalization [17].
The hardness result for k-PIB follows the construction of
LeFevre et al. [14] that shows the hardness of k-anonymous
multi-dimensional partitioning with the smallest average
equivalence class size. We show that finding k-anonymous
partitioning that violates imprecision bounds for minimum
number of queries is also NP-hard. A multiset of tuples is
transformed into an equivalent set of distinct ðtuple; countÞ
pairs. The cardinality of Query Qi is the sum of count val-
ues of tuples falling inside the query hyper-rectangle. The
constant qv defines an upper bound for the number of
queries that can violate the bounds. The decision version of
the k-PIB problem is as follows:

Definition 8 (Decisional k-anonymity with Imprecision
Bounds). Given a set t 2 T of unique ðtuple; countÞ pairs
with tuples in the d-dimensional space and a set of queries
Qi 2 Q with imprecision bounds BQi , does there exist a multi-
dimensional partitioning for T such that the size of every mul-
tidimensional partition Ri is greater than or equal to k and the
number of queries violating imprecision bounds is less than the
positive constant qv?

Theorem 3.1. Decisional k-anonymity with Imprecision Bounds
is NP-complete.

Proof. Refer to Appendix, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputer-
society.org/10.1109/TKDE.2013.71. tu

3.3 Accuracy-Constrained Privacy-Preserving
Access Control

An accuracy-constrained privacy-preserving access con-
trol mechanism, illustrated in Fig. 5 (arrows represent the
direction of information flow), is proposed. The privacy
protection mechanism ensures that the privacy and accu-
racy goals are met before the sensitive data is available to
the access control mechanism. The permissions in the
access control policy are based on selection predicates on
the QI attributes. The policy administrator defines the
permissions along with the imprecision bound for each
permission/query, user-to-role assignments, and role-to-
permission assignments [18]. The specification of the
imprecision bound ensures that the authorized data has
the desired level of accuracy. The imprecision bound
information is not shared with the users because knowing

the imprecision bound can result in violating the
privacy requirement. The privacy protection mechanism
is required to meet the privacy requirement along with
the imprecision bound for each permission.

3.3.1 Access Control Enforcement

The exact tuple values in a relation are replaced by the gen-
eralized values after the anonymization. In this case, access
control enforcement over the generalized data needs to be
defined. In this section, we discuss the Relaxed and Strict
access control enforcement mechanisms over anonymized
data. The access control enforcement by reference monitor
can be of the following two types:

1. Relaxed. Use overlap semantics to allow access to all
partitions that are overlapping the permission.

2. Strict. Use enclosed semantics to allow access to only
those partitions that are fully enclosed by the
permission.

Both schemes have their own pros and cons. Relaxed
enforcement violates the authorization predicate by giv-
ing access to extra tuples but is beneficial for applications
where low cost of a false alarm is tolerable as compared
to the risk associated with a missed event. Examples
include epidemic surveillance and airport security. On
the other hand, strict enforcement is suitable for applica-
tions where a high risk is associated with a false alarm as
compared to the cost of a missed event. An example is a
false arrest in case of shoplifting. In this paper, the focus
is on relaxed enforcement. However the proposed meth-
ods for anonymization are also valid for strict enforce-
ment because the proposed heuristics reduce the overlap
between partitions and queries. We further assume that
under relaxed enforcement if the imprecision bound is
violated for a permission then that permission is not
assigned to any role.

3.3.2 Probabilistic Analysis for Access Control

Enforcement

In this section, the relaxed enforcement of access control
is analyzed probabilistically. The access control policy
administrator sets the imprecision bound BQi for each
query, and requires that the imprecision bound for the

Fig. 5. Accuracy-constrained privacy-preserving access control
mechanism.

Fig. 4. Comparison of median and query cut.
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least number of queries be violated by PPM. The policy
administrator might revise the imprecision bounds for
queries and further relax the access control policy if it is
known with a high probability that a large number of
queries will violate the bounds and access requests for
roles will be denied. From this perspective, we are inter-
ested in answering the following two questions:

1. What is the average imprecision for a given query?
2. Given a set of queries with imprecision bounds, how

many queries are expected to violate the bounds?
Given n tuples, it is assumed that the tuples are uni-

formly distributed in the domain space of the QI attributes.
In order to estimate the expected imprecision for a ran-
domly selected query, first the expected number of parti-
tions overlapping the query needs to be found. We use the
approach by Otoo et al. [19], where they find overlapping
intervals in each dimension and then compute the product
to get the expected number of overlapping partitions. How-
ever, we still need to find the expected partition size jPej
and expected length of intervals lPei . We use the domain
length of each attribute in the domain space and then divide
this length of the first QI attribute by 2. The length of inter-
val lPe1 is updated and the new partition will now contain n

2
tuples. For the next division, another QI attribute is selected
and the process is repeated until the expected partition size
is k � jPej < 2k.

Lemma 3.2. Let IQj be a non-negative random variable that
denotes the query imprecision. Then, the expected imprecision
for a query Qj is

EðIQjÞ �
��Yd

i¼1

�
l
Qj
i þ l

Pe
i

lPei

��
� jPej

	
� jQjj: (4)

In this equation, we round-up the fraction (l
Qj
i divided by

lPei ) and then take the floor in each dimension. Multiplying
the number of partitions with the expected size of each par-
tition gives the expected number of tuples in the query
jQjðT �Þj. Subtracting the original size jQjj of the query gives
the expected imprecision.

Example 5. Consider a query with range 10-21 and 5-10 for
two attributes and a query size of 50. If the expected par-
tition length for the two attributes is 3 and 2 and the
expected partition size is 6, then 12 partitions are
expected to overlap the query. The expected query
imprecision will be 22 (12 � 6� 50) tuples.

Given an imprecision bound BQi for a Query Qi, for
the second question, we are interested in finding the
expected number of queries that will violate the bounds.
Let X1; . . . ; Xn be a set of independent random variables
such that PrðXi ¼ 1Þ ¼ pi and PrðXi ¼ 0Þ ¼ 1� pi where,
0 � pi � 1. Xi is a random variable that is equal to 1 if
the Query Qi violates the imprecision bound BQi other-
wise is equal to 0. The total number of queries violating
their imprecision bounds is X ¼

Pn
i¼1 Xi. X1; . . . ; Xn are

called a Poisson trial and follow a Poisson binomial distri-
bution. The expected number of queries violating their
imprecision bounds E½X� ¼ m ¼

Pn
i¼1 pi[20]. Dependen-

cies exist among the queries but for our analysis we
assume that queries are independent.

Theorem 3.3. Let IQi be a non-negative random variable that
denotes the query imprecision. Let X1; . . . ; Xn be an indepen-
dent Poisson trial, where Xi is a random variable that is equal
to 1 if a query, say Qi, violates the imprecision bound BQi oth-
erwise is equal to 0. For X ¼

Pn
i¼1 Xi and BQi > 0, we have

E½X� ¼
Xn

i¼1

pi �
Xn

i¼1

EðIQiÞ
ðBQi þ 1Þ: (5)

Proof. Refer to Appendix, available in the online supple-
mental material. tu

4 HEURISTICS FOR PARTITIONING

In this section, three algorithms based on greedy heuris-
tics are proposed. All three algorithms are based on kd-
tree construction [15]. Starting with the whole tuple
space the nodes in the kd-tree are recursively divided
till the partition size is between k and 2k. The leaf nodes
of the kd-tree are the output partitions that are mapped
to equivalence classes in the given table. Heuristic 1 and
2 have time complexity of OðdjQj2n2Þ. Heuristic 3 is a
modification over Heuristic 2 to have OðdjQjnlgnÞ com-
plexity, which is same as that of TDSM. The proposed
query cut can also be used to split partitions using bot-
tom-up (Rþ-tree) techniques [6].

4.1 Top-Down Heuristic 1 (TDH1)

In TDSM, the partitions are split along the median. Consider
a partition that overlaps a query. If the median also falls
inside the query then even after splitting the partition, the
imprecision for that query will not change as both the new
partitions still overlap the query as illustrated in Fig. 4. In
this heuristic, we propose to split the partition along the
query cut and then choose the dimension along which the
imprecision is minimum for all queries. If multiple queries
overlap a partition, then the query to be used for the cut
needs to be selected. The queries having imprecision greater
than zero for the partition are sorted based on the impreci-
sion bound and the query with minimum imprecision
bound is selected. The intuition behind this decision is that
the queries with smaller bounds have lower tolerance for
error and such a partition split ensures the decrease in
imprecision for the query with the smallest imprecision
bound. If no feasible cut satisfying the privacy requirement
is found, then the next query in the sorted list is used to
check for partition split. If none of the queries allow parti-
tion split, then that partition is split along the median and
the resulting partitions are added to the output after
compaction.

The TDH1 algorithm is listed in Algorithm 1. In the
first line, the whole tuple space is added to the set of can-
didate partitions. In the Lines 3-4, the query overlapping
the candidate partition with least imprecision bound and
imprecision greater than zero is selected. The while loop
in Lines 5-8 checks for a feasible split of the partition
along query intervals. If a feasible cut is found, then the
resulting partitions are added to CP . Otherwise, the can-
didate partition is checked for median cut in Line 12. A
feasible cut means that each partition resulting from split
should satisfy the privacy requirement. The traversal of
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the kd-tree for partitions to consider in Set CP can be
depth-first or breadth-first. However, the order of tra-
versal for TDH1 does not matter.

This heuristic of selecting cuts along minimum bound
queries favors queries with smaller bounds. This behav-
ior is also evident in the experiments in Section 5 for the
randomly selected query workload. However, this
approach creates imprecision slack in the queries with
smaller bounds that could have been used to satisfy
bounds of other queries.

Lemma 4.1. The time complexity of TDH1 is OðdjQj2n2Þ.
Proof. The time complexity is derived by multiplying the

height of the kd-tree with the work performed at each
level. The height of the kd-tree for TDH1 in the worst
case can be n

k, which occurs when each successive cut cre-
ates one partition of exactly size k. In the worst case, at
each level we might have to check all queries for a feasi-
ble cut, which leads to djQj2n. The total time complexity
is then OðdjQj2n2Þ. tu

4.2 Top-Down Heuristic 2 (TDH2)

In the Top-Down Heuristic 2 algorithm (TDH2, for short),
the query bounds are updated as the partitions are added to
the output. This update is carried out by subtracting the
ic
Qj
Pi

value from the imprecision bound BQj of each query,
for a Partition, say Pi, that is being added to the output. For
example, if a partition of size k has imprecision 5 and 10 for
Queries Q1 and Q2 with imprecision bound 100 and 200,
then the bounds are changed to 95 and 190, respectively.
The best results are achieved if the kd-tree traversal is
depth-first (preorder). Preorder traversal for the kd-tree
ensures that a given partition is recursively split till the leaf
node is reached. Then, the query bounds are updated. Ini-
tially, this approach favors queries with smaller bounds. As
more partitions are added to the output, all the queries are

treated fairly. During the query bound update, if the impre-
cision bound for any query gets violated, then that query is
put on low priority by replacing the query bound by the
query size. The intuition behind this decision is that what-
ever future partition splits TDH2 makes, the query bound
for this query cannot be satisfied. Hence, the focus should
be on the remaining queries.

The algorithm for TDH2 is listed in Algorithm 2. There
are two differences compared to TDH1. First, the kd-tree
traversal for the for loop in Lines 2-14 is preorder. Sec-
ond, in Line 14, the query bounds are updated as the par-
titions are being added to the output (P ). The time
complexity of TDH2 is OðdjQj2n2Þ, which is the same as
that of TDH1. In Section 4.3, we propose changes to
TDH2 that reduce the time complexity at the cost of
increased query imprecision.

4.3 Top-Down Heuristic 3 (TDH3)

The time complexity of the TDH2 algorithm is OðdjQj2n2Þ,
which is not scalable for large data sets (greater than 10 mil-
lion tuples). In the Top-Down Heuristic 3 algorithm (TDH3,
for short), we modify TDH2 so that the time complexity of
OðdjQjnlgnÞ can be achieved at the cost of reduced precision
in the query results. Given a partition, TDH3 checks the
query cuts only for the query having the lowest imprecision
bound. Also, the second constraint is that the query cuts are
feasible only in the case when the size ratio of the resulting
partitions is not highly skewed. We use a skew ratio of 1:99
for TDH3 as a threshold. If a query cut results in one
partition having a size greater than hundred times the
other, then that cut is ignored. TDH3 algorithm is listed in
Algorithm 3. In Line 4 of Algorithm 3, we use only one
query for the candidate cut. In Line 6, the partition size ratio
condition needs to be satisfied for a feasible cut. If a feasible

PERVAIZ ET AL.: ACCURACY-CONSTRAINED PRIVACY-PRESERVING ACCESS CONTROL MECHANISM FOR RELATIONAL DATA 7
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query cut is not found, then the partition is split along the
median as in Line 11.

Lemma 4.2. The time complexity TDH3 is OðdjQjnlgnÞ.
Proof. The height of the kd-tree for TDH3 will be log 100

99
n. The

work performed at each level of the kd-tree is jQjn as only

one query is considered for a feasible cut. This gives a total

time complexity ofOðdjQjnlgnÞ. tu
The time complexity of TDH3 is OðdjQjnlgnÞ with a con-

stant factor of log 100
99

in comparison to TDSM.

5 EXPERIMENTS

The experiments have been carried out on two data sets for
the empirical evaluation of the proposed heuristics. The first
data set is the Adult data set from the UC Irvine Machine
Learning Repository [21] having 45,222 tuples and is the de
facto benchmark for k-anonymity research. The attributes in
the Adult data set are: Age, Work class, Education, Marital
status, Occupation, Race, and, Gender. The second data set
is the Census data set [22] from IPUMS. This data set is
extracted for Year 2001 using attributes: Age, Gender, Mari-
tal status, Race, Birth place, Language, Occupation, and
Income. The size of the data set is about 1.2 million tuples.
For the k-anonymity experiments, we use the first eight
attributes as the QI attributes. For the l-diversity experi-
ments, we use Attribute occupation as the sensitive
attribute and the first seven attributes as the QI attributes.
For the l-diversity experiments, all the tuples having the
occupation value as Not Applicable (0 in the data set) are
removed, which leaves about 700k tuples. In the case of the
variance diversity experiments, Attribute income is used as
the sensitive attribute and all the tuples having the income
value as Not Applicable (9,999,999 in the data set) are
removed, which leaves about 950k tuples.

We use 200 and 500 queries generated randomly as the
workload/permissions for the Adult data set and Census
data set, respectively. The experiments have been con-
ducted for two types of query workloads. To avoid yielding
too many empty queries, the queries are generated ran-
domly using the approach by Iwuchukwu and Naughton
[6]. In this approach, two tuples are selected randomly from
the tuple space and a query is formed by making a bound-
ing box of these two tuples. To simulate the permissions for
an access control policy, the query selectivity for both the
data sets is set to range from 0.5 to 5 percent. For the first
workload, if the query output is between 500 to 5,500 tuples
for the Adult data set and 1,000 to 50,000 for the Census
data set, the query is added to the workload. For the second
workload (we will refer to this workload as the uniform
query workload) this range (1,000 to 50,000 for Census data
set) is divided into ten equal intervals and we add only
50 queries from each interval to the workload. Similarly, for
the Adult data set, 20 queries are added from each size
interval. The first workload is used for the l-diversity and
variance diversity experiments. The average query size for
the Adult data set is 3,000 and for the Census data set is
25,000 for the uniform query workload. The imprecision
bounds for all queries are set based on the query size for the
current experiment. Otherwise, bounds for queries can be
set according to the precision required by the access control
administrator. The intuition behind setting bounds as a fac-
tor of the query size is that imprecision added to the query
is proportional to the query size. Further, as no real rela-
tional policy data is available, we believe this approach can
allow researchers to reproduce our workload and compare
their results with the approaches presented in this paper.

For the k-anonymity experiments, we fix the value of
k and change the query imprecision bounds from 5 to
30 percent with increments of 5. Then, we find the number
of queries whose bounds have not been satisfied by each
algorithm for the uniform query workload. The results
for k-anonymity are given in Fig. 6 for the Adult data set
for k values of 3, 5, 7 and 9. Heuristic TDH2 has the least
number of query bound violations and is better than

Fig. 6. No of queries violating bounds for k-anonymity for the Adult
data set.
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TDH1 because of TDH2’s query-bound update step. TDH3
with added constraints and reduced complexity also per-
forms better than TDSM. The number of queries violating
imprecision bounds increases as the value of k increases.
The focus is to maximize the number of queries satisfying
imprecision bounds even if the total imprecision as com-
pared to TDSM is increased. However, as in Fig. 7, even
the total imprecision for all the proposed heuristics is con-
siderably less than TDSM for all values of k. Due to limited
space, only the above results are discussed for the Adult
data set.

For k-anonymity, the number of queries for which the
imprecision bound is violated is given in Fig. 8 for the Census
data set using the uniform query workload of 500 queries.
The results have the same behavior as that for the Adult data
set. In both cases, TDH2 has the lowest number of queries
violating the imprecision bounds. The sum of imprecision
for all queries is given in Fig. 9, where TDH2 also has the
lowest total imprecision for all values of k. In Fig. 8, the total
number of violated queries is given. So, in Fig. 10, we plot
the number of queries against the margin by which they vio-
late the query bound (Imprecision bound is set as 25 percent
of the query size). Six query imprecision ranges have been
considered that are: imprecision is less than 10, 10-25, 25-50,
50-75, 75-100 percent and greater than 100 percent of the
bound. In Section 6, an algorithm is proposed to realign the

output partitions to satisfy the imprecision bounds of queries
that violate the bound by a less than 10 percent margin. The
reason for using the uniform query workload (50 randomly
selected queries from each size range having cardinality
between 0.5 to 5 percent of the data set) is that it helps
observe the behavior of the queries violating the bounds for
each algorithm. Intuitively, there is more chance of violating
the imprecision bounds for a query having a smaller impreci-
sion bound. In Fig. 11, the number of queries violated for
each size range (10 size intervals in 1k-50k) are plotted. The
behavior of TDSM follows the intuition as more queries in
the smaller size range are violated. For TDH1, the heuristic
always favors the queries with smaller bounds when being
considered for a partition split. Thus, for TDH1, less queries
are violated of smaller bounds than of larger ones. TDH2
and TDH3 favor queries with smaller bounds initially. How-
ever, as partitions are added to the output, all queries are
treated fairly. Hence, the number of queries violated is
almost uniform in this case.

We use the same heuristics for the privacy requirements
of l-diversity and variance diversity. The experiments
are conducted for l values of 7 and 9. For each value of
l, we change the query imprecision bounds from 5 to
30 percent with increments of 5 and find the number of
queries whose bounds are not satisfied by each algorithm.
The results for l values of 7 and 9 are given in Fig. 12. The

Fig. 7. Total imprecision for all queries for the Adult data set.

Fig. 8. No of queries violating bounds for k-anonymity for the Census
data set.

Fig. 9. Total imprecision for all queries for the Census data set.

Fig. 10. Distribution of queries (wrt bound) violating bound at 25 percent
for k-anonymity for the Census data set.
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results show that TDH2 violates the bound for a less num-
ber of queries for l-diversity.

In the case of variance diversity the experiments are con-
ducted for the variance values V

200 and V
100, where V is the vari-

ance of the sensitive attribute in the data set. For a variance
diversity value, we change the query imprecision bounds
from 5 to 30 percent and find the number of queries whose
bounds are violated by each algorithm. The results for vari-
ance diversity are given in Fig. 13. For variance diversity,
TDH2 gives the best results.

In the next experiment, all the algorithms are com-
pared with respect to the size of the given query set.
The size of the query set is changed from 32 to 1,024 for
a k value of 5 and a query imprecision bound of 30 per-
cent. Observe in Fig. 14 that as the size of query work-
load is increased bounds for more queries are violated.
However, the proposed heuristics still violate bounds of
less queries than TDSM.

While the intention is to satisfy the imprecision bounds
for as many queries as possible from the given set of
queries, it is as important to maintain the utility of all
other queries. In this experiment, after partitioning for a
given set of queries, we generate 1,000 new random
queries and compare the number of queries satisfied at
30 percent imprecision bound by each algorithm. The
results are given in Fig. 15. Observe that the performance
of all the algorithms is similar. The slightly better results

in case of TDH1, TDH2, and TDH3 are due to the fact
that more queries are picked from high density tuple
regions for which partitioning is already optimized for
the proposed heuristics.

The proposed techniques do not provide any perfor-
mance guarantees. However, we compare the performance
of the proposed heuristics with the optimal solution using a
smaller subset of the Adult data set. We use three attributes
(Work Class, Marital Status, and, Race) and pick 1,000 tuples
randomly from the Adult data set. The heuristic algorithms
are executed using a workload of 1,000 randomly selected
queries with an imprecision bound of 20 percent of the size
of query. For the optimal partitioning, all possible partitions
are created based on the selected three attributes. In the
next step, the partitions having less than k tuples or more
than 2dðk� 1Þ þ fmax [14] are rejected, where fmax is the
maximum frequency of any tuple in the partition. For
the remaining partitions, an integer programming model in
General Algebraic Modeling System (GAMS) is executed to
select a set of partitions containing all the tuples while vio-
lating the imprecision bound for the minimum number of
queries. The comparison of the optimal partitioning for the
least number of query imprecision bound violations against
TDSM and TDH2 is given in Fig. 16. Observe that as the
value of k is increased, the gap between TDH2 and the opti-
mal solution increases suggesting that the quality factor is
dependent on k.

The visual representation of the partitions resulting
from the proposed heuristic TDH2 and TDSM is given in
Fig. 17. Here, 1,000 tuples with two attributes are ran-
domly selected (Normal distribution with m ¼ 50, s ¼ 10,
and cardinality ¼ 100). 10 random queries are also
selected (Query selectivity is from 10 to 50 percent) and

Fig. 13. Number of queries violating bound for variance-diversity for the
Census data set.

Fig. 14. Varying the size of given query workload for the Census
data set.

Fig. 11. Distribution of queries (wrt size) violating bound at 15 percent for
k-anonymity for the Census data set.

Fig. 12. Number of queries violating bound for l-diversity for the Census
data set.
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the query imprecision bound is set to 10 percent of the
query size. The rectangles with the blue (darker) lines are
the queries while the rectangles with red (lighter) lines
are partitions generated by the heuristics at k ¼ 5.
Observe that in Fig. 17, less partitions are overlapping
the query region for TDH2 as compared to TDSM, e.g.,
Query Q2 (range: 32-54, 30-43) has zero imprecision
under TDH2 and all the partitions are fully enclosed by
the query region.

6 IMPROVING THE NUMBER OF QUERIES

SATISFYING THE IMPRECISION BOUNDS

In Section 3, the query imprecision slack is defined as the
difference between the query bound and query impreci-
sion. This query imprecision slack can help satisfy queries
that violate the bounds by only a small margin by increas-
ing the imprecision of the queries having more slack. The
margin by which queries violate the bounds is given in
Fig. 10. In this repartitioning step, we consider only the
first two groups of queries that fall within 10 percent and
10-25 percent of the bound only and these queries are
added to the Candidate Query set (CQ), while all queries
satisfying the bounds are added to the query set SQ. The
output partitions are all the leaf nodes in the kd-tree. For
repartitioning, we only consider those pairs of partitions
from the output that are siblings in the kd-tree and have
imprecision greater than zero for the queries in the candi-
date query set. These pairs of partitions are then added to
the candidate partition set for repartitioning. Merging
such a pair of sibling leaf nodes ensures that we still get a
hyper-rectangle and the merged partition is non-overlap-
ping with any other output partition. The repartitioning is
first performed for the set of queries within 10 percent of
the bound. The partitions that are modified are removed
from the candidate set and then the second group of
queries is checked. The algorithm for repartitioning is
listed as Algorithm 4. In Lines 6-9, we check if a query cut
along any dimension exists that reduces the total impreci-
sion for the queries in CQ Set while still satisfying the
bounds of the queries in SQ. If such a cut exists, then the
old partitions are removed and the new ones are added to
Output P in Lines 11-12. After every iteration, the impreci-
sion of the queries in Set CQ is checked. If the imprecision
is less than the bound for any query, then as in Line 15,
that query is moved from Set CQ to SQ. The proposed

algorithm in the experiments satisfies most of the queries
from the first group and only a few queries from the sec-
ond group. This repartitioning step is equivalent to parti-
tioning all the leaf nodes that in the worst case can take
OðjQjnÞ time for each candidate query set.

In the experiments, we set the value of k to 5 and 7
with a query imprecision bound of 30 percent of the
query size. The results for repartitioning are given in
Fig. 18. TDH2p and TDH3p are the results after the
repartitioning step. Observe that most of the queries in
the 10 percent group have been satisfied, while for the
10-25 percent group, some of these have been satisfied
while the others have moved into the first group. Repar-
titioning of the other groups of queries reduces the total
imprecision but the gains in terms of having more
queries satisfying bounds are not worthwhile.

Fig. 15. Performance for a different query workload for the Census
data set.

Fig. 16. Comparison with optimal solution.
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7 RELATED WORK

Access control mechanisms for databases allow queries only
on the authorized part of the database [8], [10]. Predicate-
based fine-grained access control has further been pro-
posed, where user authorization is limited to pre-defined
predicates [11]. Enforcement of access control and privacy
policies have been studied in [23]. However, studying the
interaction between the access control mechanisms and the
privacy protection mechanisms has been missing. Recently,
Chaudhuri et al. have studied access control with privacy
mechanisms [24]. They use the definition of differential pri-
vacy [25] whereby random noise is added to original query
results to satisfy privacy constraints. However, they have
not considered the accuracy constraints for permissions. We
define the privacy requirement in terms of k-anonymity. It
has been shown by Li et al. [26] that after sampling, k-ano-
nymity offers similar privacy guarantees as those of differen-
tial privacy. The proposed accuracy-constrained privacy-
preserving access control framework allows the access con-
trol administrator to specify imprecision constraints that the

privacy protection mechanism is required to meet along
with the privacy requirements.

The challenges of privacy-aware access control are simi-
lar to the problem of workload-aware anonymization. In
our analysis of the related work, we focus on query-aware
anonymization. For the state of the art in k-anonymity tech-
niques and algorithms, we refer the reader to a recent sur-
vey paper [3]. Workload-aware anonymization is first
studied by LeFevre et al. [5]. They have proposed the Selec-
tion Mondrian algorithm, which is a modification to the
greedy multidimensional partitioning algorithm Mondrian
[14]. In their algorithm, based on the given query-workload,
the greedy splitting heuristic minimizes the sum of impreci-
sion for all queries. Iwuchukwu and Naughton have pro-
posed an Rþ-tree based anonymization algorithm [6]. The
authors illustrate by experiments that anonymized data
using biased Rþ-tree based on the given query workload is
more accurate for those queries than for an unbiased algo-
rithm. Ghinita et al. have proposed algorithms based on
space filling curves for k-anonymity and l-diversity [27].
They also introduce the problem of accuracy-constrained
anonymization for a given bound of acceptable information
loss for each equivalence class [28]. Similarly, Xiao et al. [29]
propose to add noise to queries according to the size of the
queries in a given workload to satisfy differential privacy.
However, bounds for query imprecision have not been con-
sidered. The existing literature on workload-aware ano-
nymization has a focus to minimize the overall imprecision
for a given set of queries. However, anonymization with
imprecision constraints for individual queries has not been
studied before. We follow the imprecision definition of
LeFevre et al. [5] and introduce the constraint of imprecision
bound for each query in a given query workload.

8 CONCLUSIONS

An accuracy-constrained privacy-preserving access control
framework for relational data has been proposed. The frame-
work is a combination of access control and privacy protec-
tion mechanisms. The access control mechanism allows only
authorized query predicates on sensitive data. The privacy-
preserving module anonymizes the data to meet privacy
requirements and imprecision constraints on predicates set
by the access control mechanism. We formulate this interac-
tion as the problem of k-anonymous Partitioning with Impre-
cision Bounds (k-PIB). We give hardness results for the k-PIB
problem and present heuristics for partitioning the data to
the satisfy the privacy constraints and the imprecision
bounds. In the current work, static access control and

Fig. 17. Anonymization for two attributes with discrete normal distribution
(m ¼ 50; s ¼ 10).

Fig. 18. Improvements after repartitioning for k-anonymity for the
Census data set.
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relational data model has been assumed. For future work, we
plan to extend the proposed privacy-preserving access con-
trol to incremental data and cell level access control.
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