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Abstract. This paper presents a framework for building and continu-
ously maintaining spatio-temporal histograms (ST-Histograms, for short).
ST-Histograms are used for selectivity estimation of continuous pipelined
query operators. Unlike traditional histograms that examine and/or sam-
ple all incoming data tuples, ST-Histograms are built by monitoring the
actual selectivities of the outstanding continuous queries. ST-Histograms
have three main features: (1) The ST-Histograms are built with (almost)
no overhead to the system. We use only feedback (i.e., the actual selec-
tivity) from the existing continuous queries. (2) Rather than wasting
system resources in maintaining accurate histograms for the whole spa-
tial space, we only maintain accurate histograms for that part of the
space that is relevant to the current existing queries. The rest of the
space has less accurate histograms. (3) The ST-Histograms are equipped
with a periodicity detection procedure that predicts the future execution
of the continuous queries. Hence, the query processing engine can con-
tinuously adapt the continuous query pipeline to reflect this prediction.
Experimental results based on a real implementation inside a data stream
management system show a superior performance of ST-Histograms in
terms of providing accurate operator selectivity estimations with no ex-
tra overhead.

1 Introduction

The rapid increase in spatio-temporal applications calls for new query processing
and query optimization techniques to deal with both the spatial and temporal
domains. Examples of these applications include location-aware services [34],
traffic monitoring [37], and enhanced 911 service [1]. These applications have
two main characteristics: (1) A highly dynamic environment where data from
mobile objects (e.g., moving vehicles in road networks) are received continuously.
(2) Queries in these spatio-temporal applications are mostly continuous (e.g.,
monitoring queries). Continuous queries require continuous evaluation as the
query area and/or the data are continuously moving.

Most of the previous work on continuous spatio-temporal queries (e.g.,
see [19, 22, 25–27, 42, 44, 47, 48]) focus on developing out-of-the-box algorithms
(i.e., algorithms built on top of database management systems (DBMSs)). Hav-
ing out-of-the-box algorithms bypass completely the role of the query optimizer
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in DBMSs, thus severely limiting the query performance. Recently, within the
PLACE server (Pervasive Location-Aware Computing Environments) [35], more
attention is given to embed the functionality of continuous query processing
into existing database and data stream query engines. The main idea is to fur-
nish existing query processors with a set of spatio-temporal operators that can
be combined with traditional operators to support efficient execution of a wide
variety of continuous spatio-temporal queries. Our previous work in PLACE
widens the scope of research in continuous spatio-temporal queries to include
system-oriented support for continuous spatio-temporal queries (e.g., query op-
timization, adaptive query processing, and query scalability [35]).

In this paper, we focus on query optimization for continuous spatio-temporal
queries. In particular, we are concerned with two main functionalities for opti-
mizing the execution of continuous spatio-temporal queries: (1) Building a new
optimal query plan for each newly submitted continuous query, and (2) Contin-
uously monitoring the performance of continuous queries to make sure that the
original optimal query plan maintains its optimality. Once the query optimizer
discovers that the original query plan become suboptimal, the query optimizer
tunes the suboptimal plan to another optimal one. To support these functionali-
ties, we propose to build and continuously maintain spatio-temporal histograms
(ST-Histograms, for short). Instead of monitoring the whole spatial space as in
traditional histograms, ST-Histograms are query-driven where they monitor only
the spatial space that is covered by at least one outstanding continuous spatio-
temporal query. ST-histograms continuously maintain spatio-temporal selectivity

estimations that are used by the query optimizer to decide on the optimality of
various candidate query execution plans.

The proposed ST-Histograms start by an initial estimate of the spatio-

temporal selectivity of the underlying spatial space. The accuracy of the initial
estimation is continuously enhanced based on monitoring the execution of the
continuous outstanding spatio-temporal queries. One of the attractive features
of an ST-Histogram is that its accuracy (and hence the efficiency of the query
execution) increases with the increase in the number of outstanding continuous
queries. Moreover, the ST-Histogram consults some data mining techniques for
periodicity detection (e.g., [13]) to provide better spatio-temporal selectivity with
less overhead. All the algorithms and ideas in this paper are implemented as part
of the PLACE project [4, 35] currently being developed at Purdue University.

1.1 Motivation

Spatio-temporal databases provide the ideal infrastructure for keeping track of
and answering continuous queries on moving objects. To find an execution plan
for a continuous query, the query optimizer needs to know (estimates of) the
selectivity of any range that a query covers.

The distribution of the moving objects change with time. For instance, many
cars go to downtown from 9am to 5pm leaving the suburbs with fewer cars.
At night, most of the cars park, and hence deregister from the database. Con-
sequently the number of the cars in the database is less. Obviously, building a



SELECT M.ID

FROM MovingObjects M

WHERE M.Type = "Truck"

INSIDE Area A

Fig. 1. Query Q

histogram once and using it for a long period is not enough. We need to maintain
a spatio-temporal histogram and to reflect the change in the objects distribution
on the histogram.

Not only the density of the moving objects change with time, but also there
is some kind of periodicity in their behavior (as time repeats itself). For exam-
ple, many people travel on weekends, yielding more traffic on the highways on
Friday and Sunday evenings than on other week-evenings. Also, lots of traffic
and congestion occur during the rush hour everyday. By detecting such patterns
in the distribution of the moving objects, we believe that we can enhance the
selectivity estimation.

We illustrate the importance of having an ST-Histogram by the following
example. Consider the query Q in Figure 1 that returns the ID of any truck whose
location is inside an area A. The INSIDE query operator is proposed in [33] to
check whether or not a moving object is in a certain range. Initially, at time t1,
the query optimizer finds that the selectivity of the INSIDE operator is less than
the selectivity of the WHERE clause (Figure 2(a)). Thus the query optimizer
picks up the query execution plan in Figure 2(b) to be used to answer the query.
At time t2, many vehicles enter the area A and this increases the selectivity of the
INSIDE operator, and meanwhile the number of trucks decreases (Figure 2(c)).
Using an ST-Histogram, the query optimizer is able to recognize that the current
plan is suboptimal. The query optimizer calls for changing the current execution
plan to the plan in Figure 2(d). Notice that query re-optimization is a non-trivial
process, especially that the space of the possible execution plans is large.

1.2 Challenges and Paper Outline

The main challenges for ST-Histograms are the following:

– The large number of the moving objects, which is a computing challenge and
a scalability challenge.

– Keeping the overhead of maintaining the ST-Histograms low and not to hurt
the execution of the continuous queries.

– Having an accurate selectivity estimation with the frequent change in the
data distribution over the time.

The rest of this paper is organized as follows. Section 2 highlights some of
the related work in the areas of maintaining histograms and continuous queries.
The architecture of our spatio-temporal histogram is given in Section 3. The role
of the query executor is shown in Section 4. Section 5 introduces the histogram
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(a) At time t1

INSIDE A

Type = Truck
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Fig. 2. Moving vehicles (T = truck, O = other) on the spatial space and the corre-
sponding query execution plan.

manager and the theory behind constructing and refining ST-Histograms. We
discuss some query optimization issues in Section 6. In Section 7, we demonstrate
by experiments the accuracy of ST-Histograms. Finally, Section 8 concludes the
paper.

2 Related Work

Traditional histograms have been used extensively as a means for selectivity
estimation in relational databases (e.g., [10, 11, 15, 17, 18, 24, 28, 29, 31, 32, 36, 38–
41]). Currently, state-of-the-art histograms are query-driven (e.g. [2, 21, 23]). The
main idea is to use a feedback from the query execution engine to estimate the
data distribution. Thus, the cost of building the histograms is reduced where
histograms are built during the regular process of query execution.

With the emergence of spatial applications, several approaches are proposed
for the selectivity estimation of spatial operations (e.g., [3, 5–7, 14, 30, 43, 46]).



Fig. 3. The big picture

These approaches deal with the selectivity estimation in various data structures,
e.g., selectivity estimation for quad trees [5], selectivity estimation for R-tree [6],
and selectivity estimation for point data [8].

Recently, many research efforts focus on developing spatio-temporal his-
tograms for various spatio-temporal operations. Spatio-temporal histograms are
first proposed to provide selectivity estimation for predictive spatio-temporal
queries [12]. The main focus is on one-dimensional moving objects. The selec-
tivity estimation of multi-dimensional objects is computed by multiplying the
selectivity estimations of each single dimension. Similar idea in the context of
predictive spatio-temporal queries is introduced in [48]. However, the main focus
is on multi-dimensional moving rectangles. Other work on selectivity estimation
of spatio-temporal queries relies on duality transformation [20], the existence of
a secondary index structure [20], or clustering approaches [50]. The state-of-the-
art approach for spatio-temporal selectivity estimation is Venn sampling [49].
Venn sampling is a sampling technique that is not based on histograms where it
aims to reduce the number of samples needed for perfect estimation. The main
idea is allow each moving object to be aware of a set of some pivot queries.
Moving objects update their locations and speed only when they start/cease to
satisfy pivot queries.

3 Architecture

Figure 3 gives the big picture. Spatio-temporal queries are submitted to the
query optimizer to generate adequate query execution plans. The query optimizer
(e.g., System R [45] and Volcano [16]) picks the best execution plan based on
the total cost. ST-Histograms provide the query optimizer with the selectivity
estimates used in calculating the total cost. During the execution of a spatio-
temporal query, feedbacks are sent to the histogram manager. These feedbacks



are typically the actual query selectivity; i.e., the fraction of the input data that
is part of the query answer.

The histogram manager uses these feedbacks to refine the selectivity esti-
mates online. The online refinement serves both the new incoming queries and
the outstanding continuous queries. New incoming queries find a more accurate
histogram, whereas the execution plan of outstanding continuous queries may
be changed adaptively when the environment changes.

The ST-Histograms proposed in this paper consult an online periodicity min-
ing technique (Section 6.1) to see if a periodic pattern appears in the selectivity
of any region. Whenever such periodicity is detected, ST-Histograms take it into
account to get more accurate selectivity estimates.

4 Query Executor

The spatial space is mapped with an NxN grid. When a moving object registers
with a grid cell, the moving object sends periodic updates about its location.
Hence, each grid cell is only aware of the objects inside it. Also, when a query
registers with the system, the grid cells that overlap with the query are notified.
Only when a change in the moving objects happens in those grid cells, the thread
that executes this query is notified. In other words, each grid cell is aware of only
the objects that are inside it and the queries that overlaps with it.

The query executor uses the plan provided by the optimizer to execute the
query on the input data (Figure 3). Each INSIDE operator keeps track of the
ratio of the number of its output tuples to the number of its input tuples. In
PLACE [35], this ratio is part of the logic of the INSIDE operator. Thus this
does not invoke substantial overhead on the executor. Periodically, such ratio is
reported to the histogram manager as the selectivity of the INSIDE operator.

5 Histogram Manager

For streaming applications, we cannot afford storing the incoming data. The
continuous query model does not allow for scanning the whole data in order to
build the histogram. In fact, an ST-Histogram is built and refined progressively.
We use feedback from the query result to update the spatio-temporal histogram
online. Periodically, each operator reports the actual selectivity of its monitored
range. These statistics are inherently computed in the operators. They do not
impose additional overhead on the query executor.

Definition 1. Dark cell: is a grid cell corresponding to a region with which no

query overlaps.

Definition 2. Lit cell: is a grid cell corresponding to a region with which one

or more queries overlap.



Initially, the whole space is assumed to be dark, where darkness represents
the unawareness of the selectivity. Queries act as spots of light. They light up
a region with their feedback about the region’s selectivity. We distribute this
selectivity uniformly over the lit region. For the remaining dark regions, we
consult the online periodicity mining technique (Section 6.1). If a region exhibits
some kind of periodicity, its current selectivity can be estimated according to
such periodicity. In other words, the periodic behavior of a region shades this
region with little light when the corresponding grid cell is currently dark. The
regions that neither fall inside the query regions nor exhibit any periodicity will
stay dark. The selectivities of the remaining dark regions are estimated such that
they complement the selectivities of those lit and shaded regions. This estimate
is uniformly distributed over the ST-Histogram buckets that correspond to the
dark regions.

The ST-Histogram is represented by a two-dimensional array. Each element
of the array holds the selectivity of the corresponding histogram cell. We assume
that a variable holds the total number of moving objects in the database.

5.1 Constructing the histogram

The ST-Histogram is grid-based of size NxN grid cells. The grid divides the
universe uniformly into a number of disjoint cells. We denote the current view
of the ST-Histogram with H, where H[r, c] is the selectivity estimate of the
grid cell G[r, c]. Starting with all grid cells being dark, the selectivity estimate of
each bucket is initialized uniformly according to Equation 1. With the successive
feedbacks from the operators, better selectivity estimates are obtained due to a
clearer view of the coverage area.

H[r, c] =
1

N2
for all r, c ∈ {1, 2, . . . , N} (1)

A query q is represented by a rectilinear rectangular region Rq . Let Fq(r, c)
be a scalar function that returns the fraction of the grid cell G[r, c] that is
covered by Rq . Hence, the selectivity estimate of a query q is calculated as
in Equation 2. Similarly, let Fdark(i, j) be the dark fraction of G[r, c]. Thus the
selectivity estimate of the whole dark area is calculated as in Equation 3.

SelEst(q) =
N

∑

i=1

N
∑

j=1

H[i, j]Fq(i, j) (2)

SelEst(dark) =

N
∑

i=1

N
∑

j=1

H[i, j]Fdark(i, j) (3)

5.2 Refining the histogram

When the histogram manager receives feedback from the query engine, it up-
dates the histogram to reflect the newly reported statistics. Queries act as light



RefineHistogram(H, q,S)
Diff = S − SelEst(q);
if Diff > 0

Diff = min(Diff , SelEst(dark));
AddDiff(H, q,Diff );
AddDiff(H,dark,−Diff );

AddDiff(H, q,Diff )
for i = 1 : N

for j = 1 : N

H(i, j) = H[i, j] + Rq(i, j) ∗ Diff ;

Fig. 4. Procedure for refining the ST-Histogram

spots; they eliminate the darkness from a histogram region. The intensity of the
light spot a query offers to a histogram region is proportional to the fraction
of the histogram region illuminated by the query. When queries overlap, many
light spots are directed on the overlapped histogram region. The more the light
intensity of a histogram region, the better accuracy of the refinement of the
selectivity estimate of this histogram region.

Definition 3. The normalized rate of a query q for a grid cell G[r, c] is defined

as the ratio between the selectivity estimation of the part of q that overlaps G[r, c]
and the selectivity estimation of q. We denote this normalized rate by Rq(r, c).

Rq(r, c) =
Fq(r, c)H[r, c]

∑N

i=1

∑N

j=1
Fq(i, j)H[i, j]

=
Fq(r, c)H[r, c]

SelEst(q)
(4)

Rq(r, c) =
Fq(r, c)

∑N

i=1

∑N

j=1
Fq(i, j)

When SelEst(q) = 0 (5)

The actual selectivity that a query reports is assumed to be distributed uni-
formly on the query range. Figure 4 gives the procedure to refine the histogram
when a feedback from the query engine reports the actual selectivity S of a query
q.

First, the grid cells overlapped by q will have their values changed according
to the difference of S and the current selectivity estimate of q. Typically, this dif-
ference is distributed according to the normalized rate of q for each of these grid
cells. Next, all the grid cells that have dark portions will be modified similarly
to conform with the unity invariance of H (

∑N

i=1

∑N

j=1
H[i, j] = 1). Hence, the

selectivity estimation of the dark portions is the upper bound for the difference
when the difference is positive.

Example. We illustrate the histogram refinement by the example given in
Figure 5(a). In this example, we have six continuous queries mapped to a 5x5
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(b) Initial ST-Histogram

Fig. 5. Example of six continuous queries with an initial histogram

grid buckets. Each of these queries returns the vehicles of type ”Truck” in its
covering region (Figure 1). Q2 is overlapped by Q1, Q3, and Q4. Q6 is contained
in Q5. Each grid bucket starts with a selectivity estimate of 4% (Figure 5(b)).
Consider when the histogram manager receives feedback from the query executor
that Q1 reports its selectivity as 10%.

The selectivity estimate of Q1 is 6% according to Equation 2. The difference
10-6 = 4% is distributed among those grid cells overlapped by Q1. Consider the
upper left grid cell Cul. The normalized rate of Q1 for Cul’s is 0.25*0.04/0.06 =
0.1667. Thus H[1, 1] = 0.04 + 0.1667*0.04 = 0.0467 = 4.67%. We still need to
modify the histogram in order to reach the unity invariance. The increase (or
decrease) of the selectivity estimate in a lit region should be accompanied with
the decrease (or increase) of the selectivity estimate in the dark region. So, we
decrease the selectivity estimate of the dark regions uniformly as much as the
increase in the lit regions (4%). For instance, the lower-right bucket, Clr , consists
of 1/13.25 of the dark area. The current normalized rate of the dark region for
Clr is 0.0755. The new value for H[5, 5] will be 0.04 - 0.0755*0.04 = 0.0370 =
3.70%. Figure 6(a) gives the histogram after refinement. The upper-left bucket
has also a dark portion that results in decreasing H[1, 1].

Figures 6(b) and 6(f) give the successive updates to the histogram due to the
subsequent feedbacks that the histogram manager receives as follows: Q2 reports
20%, Q3 reports 15%, Q4 reports 10%, Q5 reports 10%, and Q6 reports 3%.

As a validity check, note that after refining the histogram, we just get a
better selectivity estimate for the query. The new estimate is not the same as
S. Also, better selectivity estimates are obtained for the dark regions. With
the succession of the feedbacks that report (almost) the same selectivity, the
estimate for the query converges to the feedback.
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Fig. 6. Successive refinements of the ST-Histogram after receiving the feedback.



6 Query Optimization Issues

Inspired by the fact that time repeats itself, we use online periodicity detection to
detect periodic patterns in the distribution of the moving objects over the time.
This helps in enhancing the selectivity estimation in ST-Histograms. In fact, this
is an instance of where data mining can fit evenly in query optimization.

6.1 Online Periodicity Mining

Periodicity mining is defined as the process of discovering frequent periodic
patterns in an attempt towards predicting the future behavior in time series
data [13]. In our context, a time series for each region in the space is formed
by collecting the selectivity values over time, whether they are exact values col-
lected from the queries, or estimates computed by the previous technique. If the
selectivity values are quantized into nominal levels, and each level (e.g., high,
medium, low) is denoted by a symbol (e.g., a, b, c), then the time series can be
considered a sequence over a finite alphabet Σ = {a, b, c, · · · }.

Periodically, the histogram manager tries to see if any periodic pattern exists
in any cell of the histogram. We use the periodicity mining technique in [13].
When we detect a periodic pattern in a dark cell of the grid, we no longer
compute its selectivity estimate as being uniformly distributed on all the dark
regions. Indeed, we call such cell “a shaded cell”. Shaded cells are treated as if
there is a query that covers the whole cell. Such query reports the selectivity of
the cell according to the periodic pattern of its selectivity.

Note that the periodicity behavior of a region is considered only if this region
does not fall inside any query. In other words, the intense of the periodicity light
is too little to affect the total light intensity of an already lighted region, yet is
enough to shade a dark region.

6.2 Dynamic Query Optimization

The equipment of the DBMS with ST-Histograms enables the existence of an
adaptive query processor. With the online update of the ST-Histograms, we are
able to detect when the currently executed query plan is suboptimal. In this case,
a need to re-optimize flag is raised and the optimizer is reinvoked to compute a
new optimal query execution plan to continue with. Hence, the already existing
queries tune their pipeline for the current workload. Moreover, the new queries
get benefit of the enhanced selectivity estimations (versus having one static
histogram).

7 Experimental Results

We perform experiments to illustrate the efficiency of predicting the selectivity
estimation using ST-Histograms. We use the Network-based Generator of Mov-
ing Objects [9] to generate a set of moving objects. The input to the generator is



Fig. 7. Road network map of the Greater Lafayette Area City

the road map of the Greater Lafayette Area (Home of Purdue University) given
in Figure 7. The output of the generator is a set of moving points that move on
the road network of the given city. Moving objects can be cars, cyclists, pedes-
trians, etc. We generate 5K moving objects and up to 80 continuous queries
over 10x10 grid. Each moving object or query reports its new information (if
changed) every 10 seconds.

7.1 Effect of Query Size on The Prediction

We measure the accuracy of the selectivity estimation of the existing queries by
monitoring the relative error in estimating their selectivities. Let Si and Ei be
the actual and estimated selectivity of the ith query (1 ≤ i ≤ M), respectively,
where M is the number of the queries. Equation 6 gives the relative error of
estimating the selectivities of the existing queries.

α =

√

√

√

√

1

M

M
∑

i=1

(Si − Ei

Si

)2

(6)

Figures 8(a) and 8(b) give the performance of estimating the selectivity of
the existing queries. α measures how accurate the prediction of the selectivity of
the existing queries. From this experiment, we notice that smaller queries suffer
from less accuracy than moderate to larger queries. When the queries are too
small, many moving objects enter and exit the query range with high frequency.
The high frequency of moving in and out the query range results in larger relative
error. For a query of size 0.25% of the whole area, the average relative error is
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Fig. 8. Performance of estimating the selectivity of the existing queries.

91.1% whereas for a query size of 0.5% the average relative error is 67.4%. This
error is due to the existence of big dark portions in the grid cells corresponding
to the queries. The smaller the dark portion, the less the relative error.

Moderate sized queries do not suffer from the fast moving objects. For mod-
erate sized queries (1% of the whole range), the histogram manager is able to
estimate the selectivity of the existing queries with an average relative error of
8.5%. The larger the query size the more accurate the estimation. Queries of size
4% give a relative error of 3.1%.

7.2 Coverage and The Prediction

A new query may come to the system in any area, whether lit or dark. We
measure the accuracy of the prediction process for the selectivity of the new
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queries using the accuracy of the whole ST-Histogram. Equation 7 gives the
average of the ratio between the estimated and the actual selectivities of all the
histogram buckets, where Sij is the actual selectivity of the grid cell G[i, j].

β =
1

N2

N
∑

i=1

N
∑

j=1

H[i, j]

Sij

(7)

The selectivity estimate of existing queries is calculated by consulting lit
buckets in the ST-Histogram. However, to get a selectivity estimate for a new
arriving queries, dark buckets in the ST-Histogram may be consulted, yielding
to higher relative error. Figure 9 gives the performance of estimating the selec-
tivity of a bucket in an ST-Histogram (averaged over all buckets). β measures
how accurate the selectivity estimates of any new arriving query. The histogram
manager is able to estimate the current selectivity for any new query with an
average error of 39% when the coverage are is 20%. In this experiment, the value
of the error is due to a large number of grid cells totally dark (about 80% of the
grid cells). The selectivity estimate of the dark region is uniformly distributed
among those dark grid cells. The more spread the queries are on the space, the
less number of complete dark cells, the less the relative error. When the coverage
is 40%, the error is 31%. For coverage of 60%, the error is 25%, whereas the error
is 11% for 80% coverage.



8 Conclusion

In this paper, we explored the usage of spatio-temporal histograms for selectivity
estimation of spatio-temporal operators. We presented a general framework for
building and continuously maintaining spatio-temporal histograms. The main
idea of our proposed spatio-temporal histograms is to use a continuous feed-

back from the outstanding continuous queries to maintain a spatio-temporal
histogram for only those parts of the spatial space that are of interest to at
least one outstanding continuous query. Parts of the spatial space that are not
of interest to any of the outstanding queries do not participate in maintaining
the spatio-temporal histograms, thus the overhead of continuously maintaining
our spatio-temporal histograms is reduced. Our proposed spatio-temporal his-
tograms utilize periodicity detection techniques to discover temporal periodic
patterns. Discovering temporal patterns provides pre-computation of the opti-
mal query plan over the course of execution of continuous queries. Experimental
results show that our spatio-temporal histograms provide only 8.5% error for
the existing queries of size 1%. An average error of 25% for new queries when
the existing query coverage is 60%.
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