
Optimizing In-Order Execution of Continuous Queries over Streamed Sensor
Data

Moustafa A. Hammad
University of Calgary

Calgary, Alberta, Canada T2N 1N4
hammad@cpsc.ucalgary.ca

Walid G. Aref ∗ Ahmed K. Elmagarmid ∗

Purdue University
West Lafayette, IN 47907, USA

{aref,ake}@cs.purdue.edu

Abstract

In this paper we study the problem of providing ordered
execution of time-based sliding window queries over input
streams of sensor data with inherent delays. We present
three approaches to achieve the ordered execution. The
first approach enforces ordered processing at the input side
of the query execution plan. In the second approach we
utilize the advantage of out-of-order execution to optimize
query operators and enforce an ordered release of the out-
put results. The third approach is adaptive and switches be-
tween the first and second approaches to achieve the best
overall performance with current input arrival rates and
level of multiprogramming. We study the performance of
the proposed approaches both analytically and experimen-
tally while using various system configurations. Our per-
formance study is based on an extensive set of experiments
using a realization of the proposed approaches in Nile, a
prototype stream query processing system.

1. Introduction

Continuous queries on streaming applications depend on
windows to limit the scope of interest over the infinite in-
put streams. Several forms of windowed execution are cur-
rently proposed in the literature, of which, time-based slid-
ing windows are commonly used by several stream data sys-
tems [1, 2, 6, 7]. Figure 1(A) gives the pipelined evaluation
of an example continuous query Q that computes the on-
line total count of the items sold in common by two differ-
ent department stores. Q uses a window w time units. In the
figure, the output from joining S and T is streamed as input
to the DISTINCT and then to the COUNT operators at the
top of the pipeline.

∗This research was supported in part by the National Science Founda-
tion under Grants: IIS-0093116, IIS-0209120, and 0010044-CCR.

(B)

a 3f

4c2d

5a

6b

7c 9b 10c

 4 10c ><c ,

8a

5a > 8<a ,

1a 3f

4c2d

5a

6b

7c

8a

9b 10c

5a > 8<a ,

 4 10c ><c ,

W

S T

COUNT

DISTINCT

(A)

Time

Time

T

S

<b , 9b > 6

Delay

Time

Time

T

S

w

<b , 9b > 6

(C)

1

Figure 1. Motivating example.

The operation of the join over a sliding window (W-
join) is described as follows [3, 4, 6]: Tuple tk in Stream
S joins with tuple tj in Stream T iff (1) tk and tj sat-
isfy the join predicate (i.e., the WHERE clause in the SQL
query), (2) the timestamp of tuple tk is within window size
from the timestamp of tj . Old tuples, say to, from one in-
put stream is expired (dropped from the window) iff to is
far by more than window size from any new tuples in the
other stream. Figure 1(B) gives an example of W-join be-
tween streams S and T. The ticks on the time line of S or
T are equally spaced at one time unit between two con-
secutive ticks. We assume that each tuple is indexed by
its maximum timestamp (i.e., T imeStamp(ak) = k and
T imeStamp(< ai, aj >) = max(i, j)). As a8 arrives,
W-join drops a1 and produces the output tuple < a8, a5 >.
Similarly, as b9 and c10 arrive, W-join drops d2 and pro-
duces the output tuples < b6, b9 > and < c4, c10 >, respec-
tively.

W-join as described in the previous paragraph can poten-
tially produce an unordered output stream. For example, in
Figure 1(C), tuple a8 in Stream S is delayed 3 time units
while tuples b9 and c10 in stream T arrive without delays.
In this case, W-join will process tuples b9 and c10 before
processing the earlier tuple a8. This will result in an out-

T

c2d 6b 8a 12a

1a 3f 5a 7c 9b 10c
 4<c ,

9 6 b ><b ,
5a > 8<a ,

c >10

tp

2+2tp
3+tp

Output TulpeArrival

11
9

10

Time
11+tp
12+tp
12+2tp

Release
Time

Delay
Delay

Time

Time
tp : time to process a new tuple

S 4

Figure 2. The Sync-Filter approach of W-join.

of-order release of the output tuples (i.e., tuples < b6, b9 >

and < c4, c10 > will be released before tuple < a8, a5 >).

The notion of ordered output is crucial in the pipelined
evaluation, mainly for two reasons: (1) The decision of ex-
piring an old tuple from a stored state (e.g., a stored win-
dow of tuples in an online sliding-window COUNT oper-
ation) depends on receiving an ordered arrival of the input
tuples. Otherwise, we may expire an old tuple early (e.g.,
potentially report an erroneous sequence of count values).
(2) Some important applications over data streams, e.g., as
in feedback control, periodicity detection, and trend predic-
tion, require processing the input of their queries in-order
(and therefore, produce ordered output). One approach to
provide in-order execution of input tuples is to synchronize
the processing of W-join over the input streams [7]. We
call this approach the Sync-Filter approach (for synchronize
then filter). In this approach, and using the example in Fig-
ure 1(C), W-join will delay the processing of b9 and c10

from stream T until verifying that a new tuple from Stream
S arrives and has a larger timestamp. The obvious drawback
of the Sync-Filter approach is that W-join will block waiting
for new tuples at both streams before every join step. This
will result in increased response times of output tuples.

In this paper, we study the Sync-Filter approach in
terms of the average response time. Then, we propose a
new approach, termed the Filter-Order approach, and pro-
vide a closed form representation of the average response
time. Based on the analytical study, we propose a third ap-
proach, termed the Adaptive approach, that has the advan-
tages of the two previous approaches while avoiding their
drawbacks. We study the three approaches experimentally
using our prototype system, Nile, which is a centralized
stream data system that executes time-based sliding win-
dow queries [6]. The experimental study validates our an-
alytical results and shows that the Adaptive approach can
always achieve the targeted improvement in response time
by switching between the Sync-Filter and the Filter-Order
approaches.

The rest of the paper is organized as follows. Section 2
presents the Sync-Filter approach of W-join. Sections 3
and 4 introduce our proposed approaches, namely the Filter-
Order approach and the Adaptive approach of W-join. We
present the performance study in Section 5. Section 6 con-
tains concluding remarks.

2 The Sync-Filter Approach

One straightforward approach to get ordered output
from the W-join operator is by enforcing ordered pro-
cessing of input tuples. In other words, for any two tu-
ples ti and ti+1 that are processed in sequence by W-join,
T imeStamp(ti) ≤ T imeStamp(ti+1). Note that ti and
ti+1 may not necessarily belong to the same stream.

Figure 2 gives the execution of the Sync-Filter approach
for the example of Figure 1(C). As b9 in Stream T arrives,
W-join blocks waiting for another tuple from Stream S. At
time 11, a8 arrives in Stream S. W-join processes a8 and
removes a1 from Stream T since a8 and a1 are far by more
than window (6 time units). Finally, W-join produces the
output tuple < a8, a5 >. Notice that W-join processes b9

and c10 only when tuple a12 arrives in Stream S. At time
12, W-join processes b9 and produces the output tuple <

b6, b9 > at time 12 + tp, where tp is the time to process
an input tuple by the W-join. Then, W-join processes c10

and produces the output tuple < c4, c10 > at time 12 + 2tp.
The delay in processing every tuple is given in the rightmost
column of the table in Figure 2.

The advantage of the Sync-Filter approach, besides its
simplicity and guaranteed provision of ordered output, is
that W-join needs to store only those tuples that are within
window from each other. Notice that tuples b9 and c10 are
not stored in the buffer of Stream T . Instead, b9 and c10

are kept in the input queue 1. In addition, W-join drops old
tuples as new tuples are processed (e.g., dropping a1 when
W-join processes a8). Therefore, the Sync-Filter approach
eliminates the need to check the window condition (i.e., that
tuples are within window from each other) while scanning
the buffer of the joined stream.

One drawback of the previous approach is that W-join
blocks while waiting for a delayed tuple from one stream
(e.g., a8) even though some tuples (e.g., b9 and c10) could
be waiting to join in the other stream. A better approach
is to overlap the time of processing the waiting tuples with
the waiting time to receive the delayed tuple. Apparently,
this new approach has to prevent the out-of-order release of
output tuples (see the example in Figure 1(C)).

3 The Filter-Order W-join Algorithm

In the Filter-Order W-join Algorithm (Filter-Order, for
short), W-join processes input tuples independent of their
global order. Furthermore, W-join buffers the output tuples
before releasing them in-order.

Figure 3 gives the execution of W-join using the Filter-
Order approach. W-join processes b9 once b9 arrives (with-
out blocking to wait for a8). The output tuple < b6, b9 >

1Notice that the input queue of T will not increase indefinitely since
we always assume that tuples from Stream S will eventually arrive.

S
c2d 6b 8a 12a

1a 3f 5a 7c 9b 10c
5a > 8<a ,
9 6 b ><b ,

 4 10c ><c ,

11+tp

12

12

tp

3

2

Delay

T
Time

Time

Time

11

9

10

Arrival Output Tulpe Release
Time Delay

tp : time to process a new tuple

4

Figure 3. The Filter-Order approach of W-join.

is stored in the hold buffer and is not released immediately.
Similarly, W-join processes c10 and stores the output tuple
< c4, c10 > in the hold buffer. W-join cannot release the
two output tuples since the minimum timestamp of the last
tuple seen from Streams S or T , TStrigger , equals 6 (< 9).
As tuple a8 arrives at time 11, W-join updates TStrigger

to 8, produces < a8, a5 > and releases this tuple immedi-
ately since (T imeStamp(< a8, a5 >) = 8) ≤ TStrigger .
At time 12, tuple a12 arrives and TStrigger is set to 10.
W-join can now release the output tuples < b6, b9 > and
< c4, c10 >. Notice that the time to produce < b6, b9 > and
< c4, c10 > is overlapped with the waiting time to receive
a12 and the total delay to receive the three output tuples is
lower than that of the Sync-Filter approach by 3 tp.

By comparing the average response time of the Filter-
Order approach with that of the Sync-Filter approach, it
is clear that the processing time overlaps the waiting time.
Therefore, the average output response time is expected to
improve when using the Filter-Order approach. Let the time
to perform a join operation between two tuples be c. Let λ1

tuples/second be the average arrival rate of Stream S and
let λ2 tuples/second be the average arrival rate of Stream T.
Let |w| is the window size in seconds. The relative improve-
ment in average response time when using the Filter-Order
approach over the Sync-Filter approach2, IRel, is:

IRel =
c|w|λ1λ2

1 + c|w|λ1λ2

(1)

4 The Adaptive Algorithm

Equation 1 shows that the relative performance improve-
ment when using the Filter-Order approach is significant at
specific ranges of arrival rates and processing speeds. Oth-
erwise, the Sync-Filter approach is a valuable option espe-
cially as we consider the low memory overhead in the Sync-
Filter approach. In this section we introduce the Adap-
tive approach that switches between the Sync-Filter and
the Filter-Order approaches to achieve the best average re-
sponse time. Initially the Adaptive W-join algorithm adopts
the Sync-Filter approach, while performing two extra steps.
Step 1: Monitor λ1 and λ2 (the arrival rates at the input data
streams S and T, respectively.) Step 2: Verify the following
condition: c|w|λ1λ2 ≥ α, where 0 ≤ α < 1. α is a user-
input parameter and indicates the required relative perfor-

2The details of the equations’s derivation is presented in [5].

mance. When the condition in Step 2 is fulfilled, the Adap-
tive approach switches to the Filter-Order approach while
continuing to perform the above two steps. The Adaptive
approach switches back to Sync-Filter when the test condi-
tion in Step 2 is FALSE. For example, when α equals 0.9
and the condition in Step 2 is TRUE, a relative improve-
ment of at least α

1+α
3 or 0.47 is achieved when using the

Filter-Order approach.

5 Performance Study

The experiments are performed on a prototype stream
query processor, Nile, and uses a hash-based implementa-
tion of the W-join [6]. The join buffers are structured as
hash tables that have the join attribute as the hash key. We
have implemented the proposed algorithms in Sections 2,
3, and 4. Our measure of performance is the average re-
sponse time per input tuple, which is the average time to
completely process an input tuple by W-join. This time in-
cludes the waiting time, the processing time, and the time
to produce an output tuple (if any). We perform our experi-
ments on synthetic data streams, where each stream consists
of a sequence of integers. In the experiments, the inter-
arrival time between two consecutive tuples of an input data
stream follows the Exponential distribution with mean 1

λ
.

All the experiments are run on an Intel Pentium 4 CPU 2.4
GHz with 512 MB RAM running Windows XP.
Varying the Number of Concurrent Queries. In this ex-
periment, we study the performance of the proposed ap-
proaches as we vary the number of concurrent queries. Our
workload is a set of concurrent W-join queries over two data
streams, S1 and S2. We measure the time to process a sin-
gle W-join operation per query (parameter c in Section 3)
as we increase the number of concurrent queries. Since c is
directly proportional to the number of concurrent queries in
our workload, we vary the value of c by varying the number
of concurrent queries. We use a window of size one minute.
The average stream arrival rate in S1 (the slow stream) and
S2 (the fast stream) are 1 tuple/second and 10 tuples/second,
respectively. We set α of the Adaptive approach to 0.3 (i.e.,
we would like to switch to Filter-Order if the relative im-
provement is greater or equal to 0.3

1+0.3
or ≈ 25%). We col-

lected the average response time of the input tuples during
the lifetime of the experiment (20 minutes for each run).
Figure 4 (a) gives the average response time when increas-
ing c from 1 microsecond to 1 millisecond. Y-axis is the
average response time per input tuple. With all process-
ing times, Sync-Filter has the worst average response time.
At large processing times, the difference between Sync-
Filter and Filter-Order is significant and the difference gets
smaller at small processing times. This can be interpreted

3The term is obtained by substituting c|w|λ1λ2 in Equation 1 by α.

0.0 0.2 0.4 0.6 0.8 1.0
Time to perform a single join (milliseconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
A

ve
ra

ge
 r

es
po

ns
e

tim
e

(s
ec

on
ds

)

Sync−Filter
Filter−Order
Adaptive

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Average arrival rate at Stream S2 (tuples/second)

0.0

10.0

20.0

30.0

40.0

50.0

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(s

ec
on

ds
)

Sync−Filter
Filter−Order
Adaptive

(b)
Figure 4. The average response time while (a)
varying the number of concurrent queries, (b)
varying the input rate of S1 (the slow stream)

.as follows: Using Sync-Filter while increasing the process-
ing time per join tuple, leads to excessive delays of tuples in
the fast stream (i.e., S2). This is the case as new tuples from
S2 must wait for a new tuple from the slow stream (i.e.,
S1) to proceed in W-join. On the other hand, Filter-Order
shows small or no variations in the average response time as
we increase the processing time. This is mainly a result of
overlapping the processing of tuples from S2 while waiting
for new tuples from S1. The Adaptive approach behaves
similar to Sync-Filter in our first three measurements since
c|w|λ1λ2 < α. At c = 0.5 milliseconds, c|w|λ1λ2 = 0.3
(i.e., ≥ α). Therefore, the Adaptive approach switches to
the Filter-Order approach.
Changing Input Rate. In this experiment, we study the
effect of the proposed approaches on the average response
time while varying the arrival rate of the slow stream. We
use a binary W-join with a window size of one minute as
in the previous experiment. We fix the input rate of the
fast stream (S2) at 10 tuples/second and increase the input
rate of the slow stream (S1) from 0.01 to one tuple/second.
As in the previous experiment, the Adaptive approach uses
α = 0.3. We fix the multiprogramming level such that
c ≈ 0.5 milliseconds. Figure 4 (b) gives the average re-

sponse time. In all the proposed approaches, the average re-
sponse time increases significantly (more than one minute)
at small arrival rates of the slow stream. However, the
increase in Sync-Filter is larger than that of Filter-Order
for the same reasons, as explained in the previous experi-
ment. Similar to the behavior in the previous experiment,
the Adaptive approach switches between Sync-Filter and
Filter-Order when the rate of the slow stream is one tu-
ple/second. Having smaller α will shift the switching point
to a small arrival rate of the slow stream.

6. Conclusion

In this paper, we studied the problem of providing or-
dered execution of window joins over data streams. We
showed that the Sync-Filter approach that enforces ordered
processing of input tuples to guarantee ordered output can
result in increased response time. We then proposed the
Filter-Order approach that applied the filter step of the win-
dow join followed by the buffering and ordering steps. In
this way, the processing time of input tuples from one
stream overlaps the waiting time to receive delayed tuples
from the other stream. We studied both Sync-Filter and
Filter-Order analytically and based on this analysis, we pro-
posed the Adaptive approach that switches between Sync-
Filter and Filter-Order to achieve a given performance goal.
We showed through real implementation of the approaches
on Nile the superiority of our proposed approaches over the
Sync-Filter approach.

References

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, and et al. The Design
of the Borealis Stream Processing Engine. In Proc. of the
CIDR Conf. Jan., 2005.

[2] S. Chandrasekaran, O. Cooper, A. Deshpande, and et al. Tele-
graphCQ: Continuous dataflow processing for an uncertain
world. In Proc. of the CIDR Conf., Jan., 2003.

[3] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An evalu-
ation of non-equijoin algorithms. In Proc. of the VLDB Conf.,
Sep., 1991.

[4] L. Golab and M. T. Ozsu. Processing sliding window multi-
joins in continuous queries over data streams. In Proc. of the
VLDB Conf., Sep., 2003.

[5] M. A. Hammad, W. G. Aref, and A. K. Elmagarmid. Optimiz-
ing In-Order Execution of Continuous Queries over Streamed
Sensor Data. In University of Calgary, Department of Com-
puter Science TR#2004-766-31, Apr., 2005.

[6] M. A. Hammad, M. F. Mokbel, M. H. Ali, and et al. Nile:
A query processing engine for data streams. In Proc. of the
ICDE Conf., Mar., 2004.

[7] U. Srivastava and J. Widom. Flexible time management in
data stream systems. In Proc. of the PODS Conf., Jun., 2004.

