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Abstract

Emerging database applications require the use of new
indexing structures beyond B-trees and R-trees. Examples
are the k-D tree, the trie, the quadtree, and their variants.
They are often proposed as supporting structures in data
mining, GIS, and CAD/CAM applications. A common fea-
ture of all these indexes is that they recursively divide the
space into partitions. A new extensible index structure,
termed SP-GiST, is presented that supports this class of
data structures, mainly the class of space partitioning un-
balanced trees. Simple method implementations are pro-
vided that demonstrate how SP-GiST can behave as a k-
D tree, a trie, a quadtree, or any of their variants. Issues
related to clustering tree nodes into pages as well as con-
currency control for SP-GiST are addressed. A dynamic
minimum-height clustering technique is applied to minimize
disk accesses and to make using such trees in database sys-
tems possible and efficient. A prototype implementation of
SP-GiST is presented as well as performance studies of the
various SP-GiST’s tuning parameters.

1. Introduction

Emerging database applications require the use of new
indexing structures beyond B+-trees. The new applica-
tions may need different index structures to suit the big
variety of data being supported e.g., video, image, and
multidimensional data. Example applications are cartog-
raphy, CAD, GIS, telemedicine, and multimedia applica-
tions. For example, the quadtree [17, 28] is used in the
Sloan Digital Sky Survey to build indexes for different
views of the sky (a multi-terabyte database archive) [44],
the linear quadtree [20] is used in the recently released
Oracle spatial product [9], the trie data structure is used
in [1] to index handwritten databases. The reader is referred
to [9, 13, 15, 16, 19, 23, 37, 39, 42] for additional database
applications that use different spatial and non-traditional
tree structures.

Having a single framework to cover a wide range of
these tree structures is very attractive from the point of
view of database system implementation. Because of
the need for non-traditional indexes, tree structures, e.g.,
quadtrees [17, 28], k-D trees [5], tries [10, 18], and Patricia
tries [29] are now highly needed as index structures [19]
to support emerging database applications. Designing a
database indexing technique that has this flexibility of sup-
porting various tree structure indexes is hindered by two
main problems. The first problem is the storage/structure
characteristics of spatial trees. Most of the unbalanced
spatial tree structures are not optimized for I/O, which is
a crucial issue for database systems. Quadtrees, tries, and
k-D trees can be so skinny and long. Unless the problem
of appropriately clustering the tree nodes into pages is ad-
dressed properly, this would lead to many I/O accesses be-
fore getting the required query answer. Compare this to the
B+-tree, that in most cases has a height of 2-3 levels, and
to the R-tree [24] and its variants, the R*-tree [4] and the
R+-tree [43] that play an important role as spatial database
indexes [6, 11, 38]. The second problem is the implementa-
tion effort of building indexes. Hard wiring the implemen-
tation of a full fledged index structure with the appropri-
ate concurrency and recovery mechanisms into the database
engine is a non-trivial process. Repeating this process for
each spatial tree that can be more appealing for a certain
application requires major changes in the DBMS core code.
After all, one may still need a new structure that will cause,
rewriting/augmenting significant portions of the DBMS en-
gine to add the new tree index. The Generalized Search Tree
(GiST) [25], was introduced in order to provide single im-
plementation for B-tree-like indexes, e.g., the B+-tree [29],
the R-tree [24], and the RD-tree [26]. Although practi-
cally useful, the class of unbalanced spatial indexes, e.g.,
the quadtree, the trie, and the k-D tree, is not supported by
GiST because of the structure characteristics mentioned.

One important common feature of the quadtree, the trie,
and the k-D tree family of indexes is that at each level of
the tree, the underlying space gets partitioned into disjoint
partitions. For example, in the case of a two-dimensional



quadtree, at each level of decomposition, the space covered
by a node is decomposed into four disjoint blocks. Simi-
larly, in the case of the trie (assuming that we store a dic-
tionary of words), the space covered by a node in the trie
gets decomposed into 26 disjoint regions (each region cor-
responds to one letter of the alphabet). The k-D tree exhibits
similar behavior. We use the term space-partitioning trees
to represent the class of hierarchical data structures that de-
composes a certain space into disjoint partitions. The num-
ber of partitions and the way the space is decomposed differ
from one tree to the other.

In this paper we study the common features among the
members of the spatial space partitioning trees aiming at
developing a framework that is capable of representing the
different tree structures and overcoming the difficulties that
prevent such useful trees from being used in database en-
gines. The DBMS will then be able to provide a large num-
ber of index structures with simple method plug-ins. As
demonstrated in the paper, for the framework of space parti-
tioning trees, we furnish in the DBMS (only once) the com-
mon functionalities such as the insertion, deletion, and up-
dating algorithms, concurrency control and recovery tech-
niques and I/O access optimization. For example, in a mul-
timedia or a data mining application, we may then freely
choose the best way to index each feature depending on the
application semantics. By writing the right extensions to
the extensible single implementation, a quadtree, a trie, a
k-D tree, or other spatial structures can be made available
without messing with the DBMS internal code.

The rest of the paper is organized as follows. Section 2
presents the class of space-partitioning trees. In Section 3,
the SP-GiST framework is presented. Section 3 also in-
cludes a description of SP-GiST external user interface, and
illustrates the realization of various tree structures using it.
This includes a realization of the k-D tree and the Patri-
cia trie. Section 4 gives the implementation of the internal
methods of SP-GiST. Concurrency control and recovery for
SP-GiST are discussed in Section 5. Node clustering in SP-
GiST is presented in Section 6. Implementation and experi-
mental results for the various tuning parameters of SP-GiST
are given in Section 7. Section 8 contains some concluding
remarks.

2. The Class of Space Partitioning Trees

The term space-partitioning tree refers to the class of
hierarchical data structures that recursively decomposes a
certain space into disjoint partitions. It is important to
point out the difference between data-driven and space-
driven decompositions of space. If the principle of de-
composing the space is dependent on the input data, it is
called data-driven decomposition, while if it is dependent
solely on the space, it is called space-driven decomposi-

tion. Examples of the first category are the k-D tree [5]
and the point quadtree [28]. Examples of the second cat-
egory are the trie index [10, 18], the fixed grid [35], the
universal B-tree [3], the region quadtree [17], and other
quadtree variants (e.g., the MX-CIF quadtree [27], the bin-
tree, the PM quadtree [41], the PR quadtree [36] and the
PMR quadtree [34]).

There are common underlying features among these spa-
tial data structures. The term quadtrie was introduced
in [39] to reflect the structure similarity between the trie and
the quadtree. Similarly, the k-D tree and the MX quadtree
have many structural similarities, e.g., both structures re-
cursively partition the space into a number of disjoint parti-
tions. On the other hand, the two trees differ in the number
of partitions to divide the space and also in the decomposi-
tion principle. The decomposition is data-driven in the case
of the k-D tree, while it is space-driven in the case of the
MX quadtree.

The structural and behavioral similarities among many
spatial trees create the class of space-partitioning trees. In
contrast, the differences among these trees enable their use
in a variety of emerging applications. The nature of spatial
data that the application is dealing with, as well as the types
of queries that need to be supported, aid in deciding which
space-partitioning tree to use.

Space-partitioning trees can be differentiated on the fol-
lowing basis:

� Structural differences�����
: Type of data they represent.�����
: Decomposition fan-out (number of partitions).�����
: Resolution (variable or not).���
	
: Structure constraints (allowing single child).�����
: The use of buckets (allowing more than one data

item to reside in a tree node)

� Behavioral differences� � �
: The decomposition principle (data or space

driven partitioning).

The structural differences or design options can be
viewed as Shape Parameters for the realized tree. For exam-
ple, in the realization of the PR quadtree or more precisely
the PR-quadtrie, the represented data is “point” (

��� �
). The

decomposition depends on the space not on the data inserted
(compare to the k-D tree) (

� � �
). Each time a partitioning

of the space quadrant into four equal quadrants (
�� �

and���
	
) takes place to divide the quadrant that has two points

so that each point is attached with one quadrant. The de-
composition resolution is “variable” in the sense that the
partitioning stops whenever one data point resides in the
quadrant (

�����
). Figure 1 shows an example PR quadtree.

At the leaf level, nodes can be “white” (i.e., contains no data
) or “black” (i.e., contains one data point (

��� �
) ).



Figure 1. An example PR quadtree.

Using the same analogy, we can analyze the structure
and behavior of the trie. The data represented in a trie is of
type “word” (

����
). The decomposition of the trie is space-

dependent (
� � �

), as we always decompose the space into
26 partitions (

��� �
); one partition for each letter of the al-

phabet. In one variant of the trie, the resolution is “not vari-
able” (

�� �
) as we need to decompose the space until we

consume all the letters of the inserted word (refer to Fig-
ure 2a for illustration). This is in contrast to stopping the
decomposition only when a space partition uniquely iden-
tifies the inserted word (see Figure 2b). The same analysis
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Figure 2. Two variants of the trie data struc-
ture : (a) resolution is not variable (b) resolu-
tion is variable.

can be applied to realize other quadtree and trie variants, the
k-D tree, and the bin-tree.

In the following sections, we will introduce a general
framework, termed SP-GiST, where we can use it to imple-
ment a big collection of space-partitioning trees. SP-GiST
has one core implementation as well as user plug-ins that
reflect the required structural and behavioral characteristics.
The existence of such a framework will facilitate the adap-
tion of this class of space-partitioning trees into database
engines.

3. SP-GiST Framework Interface

SP-GiST is a general index framework that covers a wide
range of tree indexes representing the large class of space-
partitioning search trees represented in Section 2.

The structural characteristics of space-partitioning trees
that distinguish them from other tree classes are: (1) Space-
partitioning trees decompose the space recursively. Each
time, a fixed number of disjoint partitions is produced.
(2) Space-partitioning trees are unbalanced trees (3) Space-
partitioning trees suffer from limited fan-out, e.g., the
quadtree has only a fan-out of four. So, space-partitioning
trees can be skinny and long. (4) Two different types of
nodes exist in a space-partitioning tree, namely, index nodes
(internal nodes) and data nodes (leaf nodes). The frame-
work reflects these facts by having two main parts; the in-
ternal tree methods that reflect the similarities among all
members of the class of space-partitioning tree, and the ex-
ternal interface that enables us to identify the features spe-
cific to a particular tree reflecting the differences listed in
Section 2.

By specifying user access methods as in GiST [25], SP-
GiST has some interface parameters and methods that allow
it to represent the class of space-partitioning trees and re-
flect the structural and behavioral differences among them.

3.1 Interface Parameters

The following interface parameters are the way a user
can realize a particular space-partitioning tree.

� NodePredicate: This parameter gives the predicate to
be used in the index nodes of the tree (addresses the
structural difference

����
). For example, a quadrant

in a quadtree or a letter in a trie are predicates that are
associated with an index node.

� Key Type: This parameter gives the type of the data in
the leaf level of the tree. For example, “Point” will be
the key type in an MX quadtree while “Word” will be
the key type of a trie. The data type Point and the data
type Word have to be pre-defined by the user.

� NumberOfSpacePartitions: This parameter gives the
number of disjoint partitions produced at each decom-
position (

�����
). It also represents the number of items

in index nodes. For example, quadtrees will have four
space partitions, a trie of the English alphabet will have
26 space partitions, the k-D tree will have only two
space partitions at each decomposition.

� Resolution and ShrinkPolicy: Resolution is the maxi-
mum number of space decompositions and is set de-
pending on the space and the granularity required. For
space-partitioning trees, recursive decomposition can



lead to long sparse structures. Parameter ShrinkPol-
icy is useful in limiting the number of times the space
is recursively decomposed in response to data inser-
tion. ShrinkPolicy can be one of three different poli-
cies (refer to Figure 3 for an illustration of the use of
ShrinkPolicy in the context of the trie):
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Figure 3. The effect of the parameter ShrinkPol-
icy on the trie : (a) Never Shrink, (b) Leaf
Shrink, and (c) Tree Shrink.

– Never Shrink: Data is inserted in the node that
corresponds to the maximum resolution of the
space. This may result in multiple recursive de-
compositions of the space.

– Leaf Shrink: Data is inserted at the first available
leaf node. Decomposition will not depend on the
maximum possible resolution. In this strategy, no
index node will have one leaf node as we decom-
pose only when there is no room for the newly
inserted data item.

– Tree Shrink: The internal nodes are merged to-
gether to eliminate all single child internal nodes.
This strategy is adapted from structures like the
Patricia trie that aim at reducing the height of the
tree as much as possible.

For example, in the case of ShrinkPolicy =“Never
Shrink”, when storing the word “implementation” in
the trie, the word will be stored in a leaf after a 14-
nodes path, one level per input character. On the other
hand, in the case of ShrinkPolicy =“ Leaf Shrink”, the
input word may be stored in a leaf after the three-node
path “i”, “m”, “p”, and “lementation”, since based on
the current words in the trie, splitting up to the letter
“p” makes a unique leaf entry for the word “implemen-
tation”. Finally, in the case of ShrinkPolicy = “Tree
Shrink”, the input word may be stored in a leaf after a
three-node path “i”, “mp”, l, “ementation”. Since the

only child of the index node ”m” is the index node ”p”,
both nodes are merged together to reduce path length.

ShrinkPolicy is the way the framework uses to map
the structural differences

��� �
and

��� 	
. As shown,

many variants of spatial tree can be realized according
to these structural differences.

� BucketSize : This parameter gives the maximum num-
ber of data items a data node can hold. It also repre-
sents the Split Threshold for data nodes. For exam-
ple, quadtrees have the notion of a bucket size that
determines when to split a node (e.g., as in the PMR
quadtree [34]). The use of buckets (

��� �
) is an at-

tractive design options for many database applications
where we are concerned about storing multiple data
items per bucket for storage performance efficiency.

3.2. External Methods (Behavior)

The external methods are the second part of the SP-GiST
interface that allows the user to specify the behavior of each
tree. The main purpose is to map the behavioral difference� � �

in Section 2. Note the similarity between the names
of the first two methods and the ones introduced in the GiST
framework [25] although they are different in their function-
alities.

Let E : (p, ptr) be an entry in an SP-GiST node, where
p is a node predicate or a leaf data key and ptr is a pointer.
When p is a node predicate, ptr points to the child node
corresponding to its predicate. When p is a leaf data key,
ptr points to the data record associated with this key.

� Consistent(Entry E, Query Predicate q, level): A
Boolean function that is false when (E.p

�
q) is guaran-

teed unsatisfiable, and is true otherwise. This method
will be used by the tree search method as a navigation
guide through the tree. Argument level is used in order
to determine consistency depending on the current de-
composition level. For example, in a quadtree, a query
of a data point (x,y) is consistent only with the entry
that points to the quadrant containing this point.

� PickSplit(P, level, splitnodes, splitpredicates): Re-
turns Boolean, where P is a set of BucketSize+1 en-
tries that cannot fit in a node. PickSplit defines a
way of splitting the entries into a number of parti-
tions equal to NumberOfSpacePartitions and returns a
Boolean value indicating whether further partitioning
should take place or not. The parameter level is used in
the splitting criterion because splitting will depend on
the current decomposition level of the tree. For exam-
ple, in a trie of English words, at level i, splitting will
be according to the i

���

character of each word in the
over-full node. PickSplit will return the entries of the



split nodes in the output parameter splitnodes, which
is an array of buckets, where each bucket contains the
elements that should be inserted in the corresponding
child node. The predicates of the children are also re-
turned in splitpredicates.

� Cluster(): This method defines how tree nodes are
clustered into disk pages. The method is explained in
more detail in Section 6.

The interface methods realize the behavioral design op-
tions listed in 2. Methods Consistent and PickSplit deter-
mine if the tree follows the space-driven or the data-driven
partitioning. For example, in a k-D tree, which is a data-
driven space partitioning tree, method Consistent compares
the coordinates of the query point (the point to be inserted
or searched for) against the coordinates of the point attached
to the index node. The values of these coordinates are deter-
mined based on data that is inserted earlier into the k-D tree.
On the other hand, method Consistent for a space-driven
space partitioning tree, e.g., the trie, will only depend on
the letters of the newly inserted word. The comparison is
performed against the letter associated with the index node
entry, which is space-dependent, and is independent of the
previously inserted data. We can also show that method
PickSplit completes the specification of the behavioral de-
sign option by specifying the way to distribute nodes entries
among the produced partitions. Examples of PickSplit for
various tree structures are given in Section 3.3.

3.3. Realization of Space-Partitioning Trees

Using the SP-GiST interface, given in the previous sec-
tions, we demonstrate how to realize some commonly used
space-partitioning indexes. More specifically, we present
the realization of the k-D tree and the Patricia trie. The re-
alization of many other space partitioning trees including
the trie and some quadtree variants can be found in [2].

The k-D tree: k-D trees [5] are a special kind of search
trees, useful for answering range queries about a set of
points in the k-dimensional space. The k-D tree uses a data-
driven decomposition of the space (see Section 2). The tree
is constructed by partitioning the space into two halves with
respect to one of the dimensions at each tree level.

The algorithm for the two-dimensional case (i.e., ����� )
with points in the ��� plane is as follows: The algorithm
selects any point and draws a line through it, parallel to the
� -axis. This line partitions the plane vertically into two half-
planes. Another point is selected and is used to horizontally
partition the half-plane in which it lies. In general, a point
that falls in a region created by a horizontal partition will
divide this region vertically, and vice versa. This division
process induces a binary tree structure, (e.g.,see Figure 4).
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Figure 4. An example k-D Tree.

Parameters ShrinkPolicy = Leaf Shrink
BucketSize = 1
NoOfSpacePartitions = 2
Node Predicate = ”left”, ”right”, or blank.
Key Type = Point

Consistent(E,q,level) IF (level is odd AND q.x satisfies E.p.x)
OR

(level is even AND q.y satisfies E.p.y)
RETURN TRUE
ELSE RETURN FALSE

PickSplit(P,level) Put the old point in a child
node with predicate ”blank”

Put the new point in a child
node with predicate ”left” or ”right”,

RETURN FALSE

Table 1. Realization of the k-D Tree using SP-
GiST.

The realization of the k-D tree is given in Table 1.
ShrinkPolicy is set to ”Leaf Shrink” because we put each
input point at the first available place depending on the pre-
viously inserted points. Each node will hold only one point,
(BucketSize = 1). We have only two space partitions for the
“right” and “left” to a point (NoOfSpacePartitions = 2 ).

The Patricia Trie: A trie [10, 18] is a tree in which the
branching at any level is determined by only a portion of
the key. The trie contains two types of nodes; index and
data nodes. In the trie of Figure 5, each index node contains
27 link fields. In the Figure, index nodes are represented
by rectangles, while data nodes are represented by ovals.
All characters in the key values are assumed to be one of
the 26 letters of the alphabet. A blank is used to terminate
a key value. At level 1, all key values are partitioned into
27 disjoint classes depending on their first character. Thus,
LINK(T,i) points to a subtrie containing all key values be-
ginning with the �

���

letter (T is the root of the trie). On the	 ���
level the branching is determined by the

	 ���
character.

When a subtrie contains only one key value, it is replaced
by a node of type data. This node contains the key value, to-
gether with other relevant information such as the address of
the record with this key value, etc. The Patricia trie [33, 29]



is a special trie structure. It has the property that all nodes
which have only one arc are merged with their parent nodes.
To avoid false matches each node in the Patricia trie must
have either the counter for the number of eliminated nodes
or a pointer to the eliminated symbols. For example, Fig-
ure 5 shows a trie and a particia trie with a bucket size of
2. Inserting the words, ”abate”,”abacus”, and ”abort” will
cause node splitting in both trees in a different way.
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blank  a  b ......

blank  a  b ......

abate,  abacus abort

blank a  b  ....o .........

root

a

b
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Depth
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blank a  b  ....o .........

ab

abate,  abacus abort

Figure 5. The Trie and the Patricia Trie.

In the Patricia trie, unlike the k-D tree, data nodes can
hold many data items, say ”B” items. This is because it is a
space-driven space-partitioning tree. The number of space
partitions is equal to the size of the alphabet set. When
Nodepredicate is “BLANK”, this leaf node will hold all
words of length equal to tree depth. ShrinkPolicy is set to
“Tree Shrink”. When splitting a node, we search for the
common prefix of all words, the common prefix is returned
as the predicate of the parent node, while splitting is per-
formed based on the next letter after that prefix. The real-
ization of the Patricia trie using SP-GiST is given in Table 2.

4. SP-GiST Internal Methods

The methods for insertion, deletion, and search in SP-
GiST are internal operations that are implemented inside
the SP-GiST index engine. These methods are used in con-
junction with the external methods to realize specific space-
partitioning trees. The user of SP-GiST provides only the
external methods, while the internal methods are hard coded
into the SP-GiST index engine. The internal methods are
general for the class of space-partitioning trees, and their
behavior is tuned by making use of the user-defined exter-
nal methods and parameters.

The internal methods are designed to accommodate
for the space-partitioning, recursive decomposition, bucket
sizes, insertion resolution, and node clustering (refer to
the structural and behavioral characteristics of space-
partitioning trees, given in Section 2).

Recall that unlike the GiST structure, SP-GiST has to

Parameters ShrinkPolicy = Tree Shrink
BucketSize = B
NoOfSpacePartitions = 26
Node Predicate = letter or Blank
Key Type = String

Consistent(E,q,level) IF (q[level] == E.letter) OR
(E.letter == BLANK
AND level � length(q))

RETURN TRUE
ELSE RETURN FALSE

PickSplit(P,level) Find a Common prefix among words � P
Update level =

level+length of the common prefix
Let P predicate = the common prefix
Partition data strings in P according to

the character values at position “level”
IF any data string has length � level,

insert data string in Partition “blank”
IF any of the partitions is still over full
RETURN TRUE
ELSE RETURN FALSE

Table 2. Realization of the Patricia Trie using
SP-GiST.

support two distinct types of nodes; index and data nodes.
Index nodes (non-leaf nodes) hold the various space parti-
tions at each level. Each entry in an index node is a root of a
subtree that holds all the entries that lie in this partition. The
space partitions are disjoint. Besides having a slot for each
space partition, the index node contains an extra blank slot
to point to data nodes attached to the partition represented
by this node. On the other hand, data nodes (leaf nodes)
hold the key data and other pointer information to physical
data records. We can think of data nodes as Buckets of data
entries. Thus, a splitting strategy determined by PickSplit
will be applied to split over-full data nodes.

The insert algorithm, given in Table 3, depends on
the following interface parameters and external methods:
(1) Parameter ShrinkPolicy specifies how deep we should
proceed with the space decomposition. (2) Method Consis-
tent specifies which branch to follow. (3) Method PickSplit
to split over-full nodes. The return value of PickSplit tells
us when we should stop the splitting process. Method Insert
begins by checking Parameter ShrinkPolicy. If ShrinkPolicy
is set to “Never Shrink”, method Insert performs a succes-
sive creation of index nodes to the maximum space reso-
lution. If the parameter is set to “Leaf Shrink” or “Tree
Shrink”, the insertion algorithm searches for the first leaf
node with a predicate that is Consistent with the key to be
inserted. In the case of “Tree Shrink”, some eliminated in-
dex nodes may be needed while locating the leaf. Hence, an
internal split is performed to “expand” the eliminated index
nodes. If the leaf node is over-full, then method PickSplit
will be invoked continuously to distribute the entries among



ALGORITHM INSERT (TreeNode root, Key, level)
CurrentNode =root /* Initially root is null */

(1)IF ShrinkPolicy is “Never Shrink” THEN
LOOP WHILE level � SpaceResolution

AND level � Key length
IF node is NULL
THEN E = Create a new node of type INDEX.
FOR i=1 TO NumberOfSpacePartitions LOOP

IF (Consistent(E[i],key,level)) THEN index=i
CurrentNode = E[index].ptr.
/* the child pointed by entry E[index]*/
level = level +1

(2)IF CurrentNode is INDEX node /* pick a child to go */
FOR i=1 TO NumberOfSpacePartitions LOOP

IF (Consistent(E[i], key, level)) THEN index=i
IF None Of them is consistent

AND ShrinkPolicy is “Tree Shrink”
THEN Compare the key with the CurrentNode predicate.

IF there is a common prefix THEN
Change CurrentNode predicate to the common prefix
Create a new INDEX node.
Let CurrentNode be the new index node.
Repeat the search for a consistent entry.

CurrentNode=CurrentNode[index].ptr
INSERT (CurrentNode, key, level+1) /* recursive */

/* node is of type DATA and may need to be split*/
(3)IF CurrentNode is full THEN

LOOP WHILE PickSplit(node,level)
n=Create new node of type INDEX
Create Children for the split entries
Parent(n) = Parent(CurrentNode)
Adjust branches of ’n’ to point to the new children.
level = level +1

ELSE insert the key in CurrentNode /* not a full node */
(4)Cluster() /* to recluster the tree nodes in pages */

Table 3. SP-GiST insertion algorithm.

non over-full children or until it reaches the maximum res-
olution of the underlying space. Notice that method Insert
invokes method cluster to dynamically re-cluster the nodes
properly after insertion. Clustering is further explained in
Section 6.

The Search method in SP-GiST is exactly similar to that
of the GiST scheme, and hence is not shown here for brevity
(see [25]). Method Search uses method Consistent as the
main navigation guide. Starting from the root, the algorithm
will check the search item against all branches using the
method Consistent till reaching leaf nodes.

The algorithm for method Delete in SP-GiST uses logi-
cal deletion. Deleted items are marked deleted and are not
physically removed from the tree. This will save the ef-
fort of reorganizing trees at each deletion specially, for data-
driven space-partitioning trees. A rebuild is used from time
to time as a clean procedure.

5. Concurrency and Recovery in SP-GiST

Concurrency and recovery in GiST have been addressed
in [8, 31]. In [31] the authors provide general algorithms for
concurrency control in tree-based access methods as well
as a recovery protocol and a mechanism for ensuring re-
peatable read isolation [21]. They suggest the use of Node
Sequence Number (NSN) for concurrency control, first in-
troduced in [30].

For SP-GiST, a split (only at the leaf level) transforms
a data node into an index node. Data is then distributed
among new leaf nodes rooted at that split node. This fact
simplifies the concurrency control mechanism significantly.
As an example, consider the case when a search for a key is
interleaved with an insertion that causes the splitting of the
target node. By the time the search reaches the target node,
it can not falsely conclude the non-existence of the searched
key (as in a B-Tree scenario), because the new node is an
index node. In that case, no right links need to be main-
tained between leaves (refer to the B-link algorithm [32]).
The search will need to continue deeper in the tree not on
the siblings level. Thus, no special sequence number (as in
GiST) is needed for the concurrent operation to know that
the node in question has been split. The operation will di-
rectly continue working with the child nodes.

Phantom protection in GiST has also been addressed in
two different techniques. Predicate locking [14] is used
in [31] while Chakrabarti and Mehrotra in [8] propose a
dynamic granular locking approach (GL/GiST) to phan-
tom protection. We adopt the granular locking technique
since it is more preferable and less expensive than predicate
locking. The fact that a “Containment Hierarchy” exists
in space-partitioning trees, represented by SP-GiST, will
make the algorithm introduced in [7, 8] highly applicable
and much simpler. Hence, in SP-GiST, because the node
predicates form a containment hierarchy, we simply use the
node predicates for granular locks.

The main difference in SP-GiST is that a page may con-
tain multiple SP-GiST nodes. A clustering algorithm will
hold the mapping between nodes and pages. In this con-
text, we assume that the node size is smaller than or equal
to the page size. Hence the problem transforms to locking
on a finer granularity. Treating nodes clustered in pages as
records, granular locks [22] are used. The recovery tech-
nique used in [31] is directly applicable to SP-GiST.

6. Node Clustering in SP-GiST

Node clustering means choosing the group of nodes that
will reside together in the same disk page. Considering
physical storage of the tree nodes, a direct and simple im-
plementation of a node is to assign a disk page for each



node. However, for very sparse nodes, this simple assign-
ment will not be efficient for database use [12]. We provide
to the user a default node clustering method that is shown to
perform well in the dynamic case [12]. However, we allow
the user to override the default clustering method and pro-
vide a different node clustering policy that is more suitable
for the type and nature of the operations to be performed on
the constructed index. This will enhance the query response
time of SP-GiST. We propose the interface method Cluster
for this purpose.

Introducing new nodes in the tree structure will inter-
nally invoke the dynamic clustering algorithm defined in
Cluster to reconstruct the tree disk page structure and reflect
the change. However, for unexperienced users or for typical
database applications, SP-GiST has a default node cluster-
ing algorithm that achieves minimum height and hence min-
imum I/O access. The dynamic clustering algorithm in [12]
is a good clustering algorithm and we use it as our default in
SP-GiST. The pseudo code and a brief outline of the clus-
tering algorithm is given in [2].

The user can choose other clustering algorithms that re-
flect the application semantics specially for non-traditional
data types like in multimedia databases or video databases.
Some possibilities are: (1) Fill-Factor Clustering: Tries
to keep each page half-full for space utilization efficiency.
(2) Deep Clustering: Chooses the longest linked subtree
from the collection of page nodes to be stored together in
the same page. This will enhance performance for depth-
first traversal of trees. (3) Breadth Clustering: Chooses
the maximum number of siblings of the same parent to be
stored together in the same page.

7. Implementation and Experimental Results

We implemented SP-GiST using C++ on SunOS 5.6
(Sparc). As a proof of concept, using SP-GiST, we imple-
mented the extensions for some data structures namely, the
MX quadtree, the PR quadtree, the trie, and the Patricia trie.
The implementation has proven the feasibility of represent-
ing space-partitioning trees using the interface proposed by
SP-GiST and the settings in the tables in Section 3.3. We
performed experiments on various settings of the tunable in-
terface parameters; BucketSize and ShrinkPolicy. In our im-
plementation we adopt the minimal Height clustering tech-
nique in [12]. Results show that applying this clustering
technique reduces the path length in terms of pages signifi-
cantly.

As explained in Section 3.1, the interface parameter
ShrinkPolicy can take one of three values; “Never Shrink”,
“Leaf Shrink“, or “Tree Shrink”. For the trie, setting
ShrinkPolicy to “Never Shrink” will have the effect of re-
alizing the original trie, where splitting is performed to the
maximum resolution of the space, leading to a long sparse

tree. Setting ShrinkPolicy to “Leaf Shrink” will realize a
common variant of the trie where data can be put in the first
available node. On the other hand, if ShrinkPolicy is set to
“Tree Shrink”, it will realize the Patricia implementation of
the trie where no single-arc nodes are allowed.

Figure 6 gives the effect of this parameter on the trie
data structure for various settings of BucketSize for a dataset
of 10000 records with “string” keys. As expected, for the
trie and the Patricia trie, the path length and the number of
pages improve as the bucket size increases since less split-
ting takes place. On the other hand, the bucket size does not
have an effect on the original trie. In this case, splitting will
take place not because of the bucket size limit but to decom-
pose the space to the maximum resolution. In the case of the
original trie, each record will fall in a single node regardless
of the setting of the bucket size.

For the quadtree, the same argument holds. Experi-
mental results for point datasets of 10000 points are given
in Figure 7. In this case, setting ShrinkPolicy to “Never
Shrink” will have the effect of realizing the MX quadtree
while setting it to “Leaf Shrink” will realize the PR quadtree
where data can be put in the first available node. Exper-
iments with setting ShrinkPolicy to “Tree Shrink” show
the realization of another variant of quadtree, where all
white nodes are eliminated [40], making it more attractive
for databases and solving the problem of long degenerate
quadtrees when the workload is highly skewed.

8. Conclusion

SP-GiST is a generalized space-partitioning tree imple-
mentation of a wide range of tree data structures that are
not I/O-optimized for databases. This makes it possible
to have single tree index implementation to cover various
types of trees that suit different applications. Emerging
database applications will require this availability of vari-
ous index structures due to the heterogeneous collection of
data types they deal with. SP-GiST is an interesting choice
for multimedia databases, spatial databases, GIS, and other
modern database systems. We have shown how to augment
SP-GiST with parameters and methods that will enable the
coverage of this class of space-partitioning trees. Cluster-
ing methods were also addressed to realize the use of these
structures in practice, in non-traditional database applica-
tions.

Concurrency and recovery for SP-GiST are addressed to
enable the realization of SP-GiST in commercial database
systems. Experiments proved the concept of SP-GiST and
provided some insight on the effect of the tunable interface
parameters on the tree structure and performance.
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Figure 6. Effect of BucketSize on maximum path length for different settings of ShrinkPolicy for the trie.
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