
The Similarity-aware Relational Intersect
Database Operator

Wadha J. Al Marri1, Qutaibah Malluhi1, Mourad Ouzzani2, Mingjie Tang3,
and Walid G. Aref3

1 Qatar University, Doha, Qatar
200450064@student.qu.edu.qa, qmalluhi@qu.edu.qa
2 Qatar Computing Research Institute, Doha, Qatar

mouzzani@qf.org.qa
3 Purdue University, West Lafayette, IN, USA
tang49@purdue.edu, aref@cs.purdue.edu

Abstract. Identifying similarities in large datasets is an essential op-
eration in many applications such as bioinformatics, pattern recogni-
tion, and data integration. To make the underlying database system
similarity-aware, the core relational operators have to be extended. Sev-
eral similarity-aware relational operators have been proposed that intro-
duce similarity processing at the database engine level, e.g., similarity
joins and similarity group-by. This paper extends the semantics of the
set intersection operator to operate over similar values. The paper de-
scribes the semantics of the similarity-based set intersection operator,
and develops an efficient query processing algorithm for evaluating it.
The proposed operator is implemented inside an open-source database
system, namely PostgreSQL. Several queries from the TPC-H benchmark
are extended to include similarity-based set intersetion predicates. Per-
formance results demonstrate up to three orders of magnitude speedup in
performance over equivalent queries that only employ regular operators.

1 Introduction

Diverse applications, e.g., bioinformatics [1], data compression [2], data integra-
tion [3], and statistical classification [4] mandate that their underlying database
systems provide similarity-aware capabilities as a means for identifying similar
objects. Several similarity-aware relational operators have been proposed that
introduce similarity processing at the database engine level, e.g., similarity joins
and similarity group-by’s [5], [6], [7]. In this paper, we introduce similarity-aware
set intersection as an extended relational database operator.

In standard SQL, relational set operations are based on exact matching.
However, assume that we want to find common readings that are produced by
two sensors. Assume further that the sensor readings are stored in two separate
tables. The standard SQL set intersect operator is not suitable for intersecting
these two tables to get the common sensor readings; sensor readings may be
similar but not necessarily identical. Thus, it is desirable to perform similarity

set intersection to find similar readings in the two tables. While the focus of
this paper is on the similarity set intersection operator, we study the other
similarity set operators, namely similarity-based set union and similarity-based
set difference in [8]. We omit their description for space limitation.

Several relational database operators have introduced similarity into SQL.
The similarity group-by operator assigns every object to a group based on a
similarity condition, e.g., as in [9, 10, 3]. Similarity join retrieves pairs of objects
that overlap based on a join attribute using a predefined threshold. Several types
of similarity join have been proposed, e.g., [11, 12, 5, 13, 14]. While the similariy
join reports the joining objects, similarity intersection requires union-compatible
input relations and returns all similar objects from both relations. An extension
to SQL to support nearest-neighbor queries has been studied extensively, e.g.,
see [15]. k-Nearest-neighbor can be viewed as one form of similarity as each point
or tuple is connected with its k-closest (or most similar) values. SIREN [16, 17]
allows expressing similarity queries in SQL and executing them via a similarity
retrieval engine. SIREN is a middle-tier implemented between an RDBMS and
application programs that processes and answers similarity-based SQL queries
issued by the application. In [18], extensions to SQL make similarity operators
first-class database operators by implementing the operators inside the database
engine. None of the previous work addresses similarity-based set interesection,
which is the focus of our paper.

The contributions of this paper are as follows. (1) We introduce the Similarity-
aware Set Intersection Operator that extends the standard SQL set intersection
to produce results based on similarity rather than on equality (Section 2). (2) We
develop an efficient algorithm for the proposed operator (Section 3) and im-
plement it inside PostgreSQL, an open-source relational database management
system [19]. (3) We evaluate the performance of the proposed algorithm and
its scalability properties using the TPC-H benchmark [?]. We extend several
queries from the TPC-H benchmark to include similarity-based set intersetion
predicates. Performance results demonstrate up to three orders of magnitude
enhancement in performance over equivalent queries that only employ regular
relational operators (Section 4).

2 Semantics of Similarity-based Relational Intersect

Let Q (resp. P) be a relation with k attributes denoted by a1, a2, . . . , ak (resp.
b) and n (resp. m) tuples A1, A2, . . . , An (resp. B), where the schemas of P
and Q are compatible. To express the similarity between two tuples, one may
use several possible functions to describe the distance between each pair of cor-
responding attribute values, e.g., edit distance, p-norm, or Jaccard distance.
Let D = {dis1, dis2, . . . , disr} be r distance functions. For any dist ∈ D, let
dist(Ai.at, Bj .bt) be the distance corresponding to Attribute at between the tu-
ple pair (Ai, Bj) using the distance function dist.

In this paper, we adopt the following similarity predicate: Given r thresh-
olds ε1, ε2, ..., εr that are assigned to each of the attributes a1, a2, . . . , ar,

respectively, where r ≤ k, we say two tuples Ai and Bj match iff:
pred(Ai, Bj) = dis1(Ai.a1, Bj .b1) ≤ ε1 AND dis2(Ai.a2, Bj .b2) ≤ ε2 . . . AND
disr(Ai.ar, Bj .br) ≤ εr. If r < k, the set of thresholds εr+1, . . . , εk are assumed
to have the value zero. An εi of value zero has to be assigned explicitly if at least
one later attribute is assigned an ε >0. Furthermore, an εi can be assigned an
infinity value.

Similarity-aware Set Intersection takes the tuples of two tables as input and
returns only those tuple pairs that are similar within a threshold from both
tables. More formally, given two tables, say P and Q, that have identical (or
compatible) schemas, and a smilarity predicate pred(A,B), the similarity-aware
set intersection operation is defined as follows.

Q ∩̃ P = {A | A ∈ Q, ∃ B ∈ P : pred(A,B)}
∪

{B | B ∈ P, ∃ A ∈ Q : pred(A,B)}

(1)

Example: Consider the following two tables Q and P ; each having a single
compatible attribute, where attribute values x and x̃ are assumed to be sim-
ilar. Q = {a, b, c, d, e, f, g, z} and P = {ã, b̃, c̃, h, i, j, k, l, z} For all calculated

pred(t1, t2) such that t1 ∈ P and t2 ∈ Q, only pred(a, ã), pred(b, b̃), pred(c, c̃),

and pred(z, z) evaluate to true. Thus, P ∩̃ Q = {a, b, c, ã, b̃, c̃, z}.
Three-way similarity-aware set intersection, denoted by ∩̃, is defined as fol-

lows. Let Q, P and R be three tables such that ∩̃(Q,P,R) = U . Each tuple in
U exists in at least one table and has two similar tuples in the two other tables
such that these two tuples are also similar to each other. This can easily be ex-
tended to more than three tables. We skip the formal definition of the three-way
and multi-way similarity intersect operators for brevity.
Example: In addition to the tables P and Q, given in the previous example,

let R = {˜̃a, ˜̃b, v, y}. Assume further that pred(a, ˜̃a), pred(ã, ˜̃a), and pred(b,
˜̃
b)

hold. Thus, applying the three-way similarity set intersect operator produces:

∩̃(P,Q,R)={a, ã, ˜̃a}. Notice that because pred(̃b,
˜̃
b) does not hold, b, b̃,

˜̃
b are not

part of the answer.
We extend SQL to introduce the similarity-aware set intersect operator in

the following way.

(SELECT a1, a2, ... FROM table1
INTERSECT
SELECT a1, a2, ... FROM table2
INTERSECT
...
SELECT a1, a2, ... FROM tablen
) WITHIN VALUES (ε1,ε2,...)

where the phrase WITHIN VALUES provides the similarity thresholds for
each of the attributes participating in the similarity intersection operation. No-
tice that the similarity intersect operator can be expressed using standard rela-
tional operators as the query evaluation tree in Fig. 1 demonstrates.

Result

∪

ΠQ.a1,Q.a2,...

./pred(A,B)

Q P

ΠP.a1,P.a2,...

./pred(A,B)

Q P

Fig. 1: Expressing Similarity Set Intersection Using Relational Operators.

3 Processing the Similarity-aware Intersect Operator

In this section, we present how the proposed similarity-aware set intersect oper-
ator is evaluated. The query processing algorithm for similarity intersect is an
extension of the sort-merge join algorithm. So, the first step of the algorithm
sorts both input tables unless they are already sorted. In high-level terms, simi-
larity intersect compares tuples based on a Mark/Restore mechanism that avoids
the O(n2) complexity that would result from a nested-loops implementation. To
find matching tuples between two relations (named the outer and inner tables),
the Mark/Restore mechanism marks the position of a tuple that may need to be
restored later if some condition is satisfied as explained next.

The semantics of the similarity intersect operator is implementation inde-
pendent. Therefore, the order of processing these relations will not impact the
result. However, the order can impact the performance and therefore it should
be part of query optimization. The current implementation simply uses left asso-
ciativity to processes the relations. Since the binary and multi-way similarity set
intersection operators work in the same way, we develop one algorithm for both.
The result of a multi-way similarity intersect is constructed in stages, where
each stage has a binary operator that produces an intermediate result that is
sent to the next stage. In the first stage (first level), the intermediate result is
constructed in such a way that each similar outer and inner tuples are consecu-
tive, i.e., are next to each other in the order of emission. Similarly, results of the
second stage are constructed such that the three similar tuples from the three
input relations of the multi-way similarity intersect are produced in consecutive
order similar to the order of the relations (i.e., the first tuple is from the first
relation, the second tuple is from the second relation, and so on).

Algorithm 1 realizes the similarity-aware set intersection operator. Lines 1
and 2 initialize the outer and inner tuples. Both input relations are assumed to
be sorted. Lines 4-11 advance the current inner and outer tuple(s) until a match
based on the first attribute is found, i.e., when dist(outer[0], inner[0]) ≤ ε1,
where 0 refers to the index of the first attribute. Once a match is found, Line 12
marks the inner tuple position. Marking a tuple allows repositioning the inner
cursor to the marked tuple later in the process.

Algorithm 1 SimIntersect(inner, outer, nodeLevel)

Input: outer relation, inner relation and the level of the similarity set intersection.
Output: similarity set intersection result.

1: get initial outer tuple
2: get initial inner tuple
3: do forever {
4: while outer[0]! ∼ inner[0] do
5: if outer[0] < inner[0] then
6: level← nodeLevel
7: advanceOuter(outer,level)
8: else
9: advance inner

10: end if
11: end while
12: mark inner position
13: do forever {
14: do{
15: count← compare(outer,inner,nodeLevel)
16: level← nodeLevel
17: if count = level then
18: ReportMatchingTuples(inner,outer,level)
19: end if
20: prevInner ← inner
21: advance inner
22: }
23: while inner[0] ∼ outer[0]
24: level← nodeLevel
25: advanceOuter(outer,level)
26: if outer[0] ∼ prevInner[0] then
27: restore inner position to mark
28: end if
29: break
30: }
31: }

This procedure is demonstrated in Figure 2 that illustrates the similarity
intersection of the three tables P , Q, and R. Level 1 performs the similarity
intersect between Q and P , and the result is intersected with R in Level 2. The
threshold isually determined by the application requirements. For this example,
the threshold is selected to be approximately 10% of the attribute range of
values, i.e., list={0.5,5}. Initially the outer points to the tuple (0.9,10) and the
inner points to the tuple (0.1,5). Based on the value of the first attribute, the
outer and the inner are advanced until the outer reaches (2,30) and the inner
reaches (1.5,15). Then, the inner position is marked because both tuples match
on the first attribute. Lines 14-23 are executed to report only the matching
tuples while advancing the inner because the first attribute’s value is within the
outer’s corresponding value and assign to prevInner a copy of the current inner

location before advancing the inner cursor. Notice that the matching tuples are
reported consecutively, i.e., tuple(s) from the outer then tuples from the inner.
The reason is that in the next level, the consecutive tuples will be reported if
a tuple of the next relation is similar to these consecutive similar tuples. This
loop finishes when the inner reaches (5,50) as dist(2, 5) > 0.5. Then, the outer
is advanced and is compared to the previous inner, and if both match on the
first attribute, the inner cursor is restored to the marked position (as in lines 25-
28). In the running example, this happens when the outer is advanced to Tuple
(2.5,20) and is compared to the prevInner’s tuple (2.3,25). The inner is restored
to the marked tuple because dist(2.5, 2.3) ≤ 0.5. Then, the process repeats the
search for other matching tuples.

	 a	 	 b	
2	 	 30	
2.2	 35	
	 2	 30	
2.3	 25	
2.5	 20	
2.3	 25	

	 a	 	 b	

	 0.9	 	 10	

	 2	 	 30	

	 2.5	 	 20	

	 4	 	 40	

	 a	 	 b	

	 0.1	 	 5	

	 1.5	 15	

	 2.2	 35	

	 2.3	 25	

5	 50	

!!

outer	

inner	

prevInner	

mark	

	 a	 	 b	
2	 	 30	
2.2	 35	
	 2	 30	
2.3	 25	

!!
	 a	 	 b	
0.5	 	 10	
2.1	 29	
	 2.1	 50	
2.1	 33	
2.8	 65	
7	 60	

mark	

inner	

prevInner	

	 a	 	 b	
2	 	 30	
2.2	 35	
2.1	 33	

outer	

	 a	 	 b	
2	 	 30	
2.2	 35	
	 2.1	 33	
2	 30	
2.3	 25	
2.1	 29	

	 a	 	 b	
2	 	 30	
2.1	 29	
	 2.2	 35	
2.3	 25	

LEVEL	 1	

LEVEL	 2	

A<er	 repor=ng	 	
all	 matching	 tuples	

{	 Consecu=ve	
	 tuples	

A<er	 repor=ng	 	
all	 matching	 tuples	 Filter	

Q	 P	

R	

Fig. 2: Sample execution: Sim-Intersect. Threshold list={0.5,5}

The functions ADVANCEOUTER, COMPARE, and REPORTMATCHING-
TUPLES, as presented in Algorithms 2, 3, and 4, respectively, work based on
the level of the similarity intersection operator. In Level1, the outer is advanced
once to perform any process, while in Level2, the outer is advanced twice, and
so on. The reason is that the similar tuples of the outer are consecutive to each
other in the pipeline. When comparing the inner tuple to the outer, if the pro-
cess is in Level1, the inner is only compared to the current outer whereas if the
process is in Level2, the inner is compared to the current and the next outer
tuples (i.e., the consecutive similar tuples). Referring to our example, the inner
tuple (2.1,33) is similar to the outer consecutive tuples (2,30) and (2.2,35) in
Level2. REPORTMATCHINGTUPLES produces the output by first reporting

the two similar consecutive outer tuples (2,30) and (2.2,35), because they are
in Level2, then it reports the current matching inner tuple, which is (2.1,33).
Then, these three similar tuples are pipelined into Level3 for further similarity
intersections, if any.

Algorithm 2 Advance Outer

1: function advanceOuter(outer,level)
2: while level 6= 0 do
3: advance outer
4: level← level − 1
5: end while
6: end function

Algorithm 3 Compare Tuples

1: function compare(inner,outer,level)
2: mark outer position
3: count← 0
4: while level 6= 0 do
5: if outer ∼ inner then
6: count← count+ 1
7: level← level − 1
8: advance outer
9: else

10: break
11: end if
12: end while
13: restore outer
14: return count
15: end function

Algorithm 4 Report Matching Tuples

1: function ReportMatchingTuples(inner,outer,level)
2: while level 6= 0 do
3: report outer
4: advance outer
5: level← level − 1
6: end while
7: report inner
8: restore outer
9: end function

3.1 Analysis

As mentioned in the previous section, the proposed algorithm assumes sorted
inputs, and is based on a Mark/Restore mechanism that may lead to having a
nested loop in the worst case. The complexity is computed as follows:

– Sorting the input relations: Assume that the outer and inner relations have
n tuples, then the complexity is O(nlogn).

– Processing the similarity intersect operator: Assume that the n outer tuples
each iterates on average over c tuples of the inner relation, then the complex-
ity is O(n ∗ c). The best-case scenario happens if c = 1, the average case is
achieved when c is small with respect to the number of the inner tuples, and
the worst case occurs when c = n. The worst-case scenario may take place
when having a large similarity threshold, e.g., a big fraction of the domain
range. In our algorithm, the threshold assigned to the first attribute is the
one influencing the performance the most.

– Filtering the output: Filtering is usually performed by sorting the input,
then grouping the duplicates. Assume that there are k output tuples, then
the complexity is O(klogk + k).

Thus, the average case complexity is O(nlogn) while the worst case complexity
is O(n2), which is similar to sort-merge join. Typically, a threshold value is
expected to be small compared to the domain size. Therefore, the complexity
of the similarity intersect algorithm is closer to the average case. Thus, the
performance is comparable to that of the standard set intersect, as demonstrated
in the experimental section.

4 Experimental Results

We have modified PostgresSQL to support similarity intersect as an operator.
We extended the Parser, Optimizer, and Executor modules of PostgreSQL for
this purpose. We skip the details of how each of the PostgreSQL components is
extended to support similarity intersect. The reader is referred to [8] for more
details. Below, we present a summary of the performance results under various
real and synthetic data sets as well as using some extensions to the TPC-H
benchmark to support similarity queries.

Similarity-aware Set Op. Equivalent Query using Regular Ops.
(SELECT a1, a2, . . . , an
FROM tab1 INTERSECT
SELECT a1, a2, . . . , an
FROM tab2) WITHIN
VALUES (ε1, ε2, . . . , εn);

SELECT tab1.a1, tab1.a2, . . . , tab1.an FROM tab1, tab2 WHERE
abs(tab1.a1 − tab2.a2)≤ε1 and abs(tab1.a2 − tab2.a2)≤ε2
. . . and abs(tab1.an − tab2.an)≤εn UNION SELECT
tab2.a1, tab2.a2, . . . , tab2.an FROM tab1, tab2 WHERE
abs(tab1.a1 − tab2.a2)≤ε1 and abs(tab1.a2 − tab2.a2)≤ε2. . .
and abs(tab1.an − tab2.an)≤εn

Table 1: Equivalent regular operations.

We run the experiments on an Ubuntu Linux machine with a 2.4GHz In-
tel Core i5 CPU and 4GB memory. Experiments are performed on real data
sets [20], synthetic data, as well as using the TPC-H benchmark data [?]. We
use the edit distance in our computations. We first study the effect of varying
the number of attributes involved in the similarity intersect operator. Then, we
compare the performance of the similarity intersect operator against (i) the stan-
dard relational intersect to demonstrate that the overhead of similarity intersect
is acceptable, and (ii) the equivalent queries that use regular SQL operations to
produce the same results as the corresponding similarity-aware query to demon-
strate that similarity intersect yields better performance. The equivalent queries
are presented in Table 1.

Impact of the Number of Attributes. We use a public dataset [20] that
contains around 2.3 million readings gathered from 54 sensors deployed in the
Intel Berkeley Research lab. The purpose of this experiment is to study the per-
formance of similarity intersect as the number of involved attributes is increased.
We conduct this experiment by processing the following query:

(SELECT epoch, temp, humidity, voltage FROM sensors WHERE moteid=1
INTERSECT
SELECT epoch, temp, humidity, voltage FROM sensors WHERE moteid=2)
WITHIN VALUES (10,0.1,0.1,0.1);

This query returns similar readings from mote1 and mote2. We start by querying
based on one attribute, namely epoch. Then, we repeat the experiment by adding
each time one more attribute. Figure 3(a) illustrates that the execution time is
the highest when intersecting two datasets consisting of multiple attributes on
their first attribute only and the execution time decreases as we increase the
input attributes of these datasets. The reasons for this behavior are as follows.
Referring to the algorithm for the similarity-aware set intersection, the number
of internal comparison loops is the same for one or more attributes because the
algorithm is based on the first attribute value. What differs here is the number
of the returned matching tuples. When intersecting on one attribute, it is more
likely to have more matching output tuples than when intersecting on two or
more attributes. As the number of the output matching tuples increases, the
time spent by the sort and the duplicate elimination processes increase.

Similarity Intersect using only Standard Relational Operators. In this
experiment, we study the performance of the proposed similarity intersect op-
erator against an equivalent query that performs the same functionality and
that produces the same output but that uses only standard SQL operators. We
vary the data size and the similarity threshold value while using the TPC-H
data set [?]. We run the queries presented in Table 2. Through these queries,
we can identify similar customer profiles from two countries. We may consider
customer profiles to be defined by the amount of money spent. For this case, we
can run queries that use one attribute (total price). However, some customers

1 1.5 2 2.5 3 3.5 4
1000

1500

2000

2500

Number of Attributes

Q
u
er

y
 T

im
e(

m
il

li
se

co
n
d
s)

sim-intersect

(a) Performance of similarity-aware inter-
sect operator while increasing the number
of attributes.

(b) Similarity-aware set intersection vs.
standard set intersection.

Fig. 3: Effect of the number of attributes and the output size.

may spend a large amount of money on a small quantity of items or may spend
a small amount of money on a large quantity of items. Therefore, we run a more
precise query that uses two attributes (total price and total quantity) to repre-
sent the customer profile. Notice that the assigned threshold to custkey attribute
is -1. This value is used to express the infinity value because we want to count
the customers with similar profiles regardless of whether their customer keys
match or not.

We study the performance of similarity intersect when varying the similarity
threshold value from 0.01% to 10% of the attribute domain range. We vary the
threshold of the first attribute only because the algorithm is influenced highly
by its value. The threshold assigned to the second attribute is fixed to be 0.1%
of the attribute domain range. Specifically, the customer total price domain and
total quantity domain use values in the range [11020, 6289000] and [10, 4000],
respectively. We vary the input size by repeating the experiment using different
TPCH scale factors (from SF=1 to SF=8).

The results are given in Figure 4 that demonstrate a substantial query pro-
cessing speedup of the similarity set intersection query over the equivalent query
that only employs regular operators. The speedup ranges between 1000 and 4
times for similarity threshold values ranging between 0.01% and 10% of the
attribute domain range, respectively.

Comparison with Standard Queries This section evaluates the performance
of similarity intersct operator when compared to the standard SQL set intersec-
tion operator. We compare queries that have similar selectivities (i.e., queries
that produce a similar output size for a given input size). We control the output
cardinality by careful generation of synthetic input data. The details of how the
data is generated are omitted due to space limitation. The reader is referred

0.01
0.1

1
10 1

2

4

8

10

10−1

100

101

102

103

104

−
3.

12

−
1.

63 0.
49 2.

06

3.
11

3.
12

3.
25

3.
52

−
2.

06 −
0.

36 2.
03 3.

51

4.
47

4.
48

4.
63

4.
88

−
0.

83 1.
1

3.
55 5.

12

5.
88

5.
89

6.
05

6.
35

0.
47

2.
53

5.
28 6.
62

7.
33

7.
49

7.
65

7.
84

ε (% domain)

Scale Factor(SF)

E
x
ec

u
ti

o
n

T
im

e(
s)

Sim-Intersect RegOps

Fig. 4: Similarity-aware set intersection vs. regular operations.

to [8] for further detail. From Figure 3(b), the similarity intersect operator adds
a 20% overhead in the case of one-attribute-based similarity while it varies from
20% to 44% when increasing the output size from 16k to 128k in the case of the
two-attribute-based similarity.

5 Conclusion

We introduced the semantics and extended SQL syntax of the similarity-based
set intersection operator. We developed an algorithm that is based on the
Mark/Restore mechanism to avoid the O(n2) complexity. We implemented this
algorithm inside PostgreSQL and evaluated its performance. Our implementa-
tion of the proposed operator outperforms the queries that produce the same
result using only regular operations. The speedup ranges between 1000 and 4
times for similarity threshold values ranging between 0.01% and 10% of the
attribute domain range. We also demonstrated that the added functionality is
achieved without a big overhead when compared to standard operators.

Acknowledgments.This work was supported by an NPRP grant 4-1534-1-247
from the Qatar National Research Fund (a member of Qatar Foundation) and
by the National Science Foundation Grants IIS 0916614, IIS 1117766, and IIS
0964639. The statements made herein are solely the responsibility of the authors.

References

1. Narayanan, M., Karp, R.M.: Gapped local similarity search with provable guaran-
tees. In: Proc. of the 4th Intl. Workshop on Algorithms in Bioinformatics. (2004)

2. Wang, J., Li, G., , Feng, J.: Fast-join: An efficient method for fuzzy token matching
based string similarity join. In: ICDE. (2011)

Operator Type Syntax
Similarity-aware SetOp, two
attributes

SELECT count(*) FROM ((SELECT p1.priceSum, p1.qtySum,
p1.custkey FROM (SELECT sum(o.o totalprice) as priceSum,
sum(q.qty) as qtySum, o.o custkey as custkey FROM orders
o, customer c, (SELECT l orderkey as o key, sum(l quantity)
as qty FROM lineitem GROUP BY l orderkey) q where
o.o orderkey=q.o key and c.c custkey=o.o custkey and
c.c nationkey=1 GROUP BY o.o custkey) p1 INTERSECT/EXCEPT
SELECT p2.priceSum,p2.qtySum,p2.custkey FROM (SELECT
sum(o.o totalprice) as priceSum, sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c, (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey) q
where o.o orderkey=q.o key and c.c custkey=o.o custkey and
c.c nationkey=2 GROUP BY o.o custkey) p2) WITHIN VALUES
(ε1,ε2,-1)) as result;

Equivalent Regular Opera-
tions to sim-intersect

SELECT count(*) FROM (SELECT p1.priceSum, p1.qtySum,
p1.custkey FROM (SELECT sum(o.o totalprice) as priceSum,
sum(q.qty) as qtySum, o.o custkey as custkey FROM orders o, cus-
tomer c, (SELECT l orderkey as o key, sum(l quantity) as qty FROM
lineitem GROUP BY l orderkey) q where o.o orderkey=q.o key
and c.c custkey=o.o custkey and c.c nationkey=1 GROUP BY
o.o custkey) p1, (SELECT sum(o.o totalprice) as priceSum,
sum(q.qty) as qtySum, o.o custkey as custkey FROM orders o, cus-
tomer c, (SELECT l orderkey as o key, sum(l quantity) as qty FROM
lineitem GROUP BY l orderkey) q where o.o orderkey=q.o key
and c.c custkey=o.o custkey and c.c nationkey=2 GROUP BY
o.o custkey) p2 WHERE abs(p1.priceSum-p2.priceSum)≤ ε1 AND
abs(p1.qtySum-p2.qtySum)≤ ε2 UNION SELECT p2.priceSum,
p2.qtySum, p2.custkey FROM (SELECT sum(o.o totalprice)
as priceSum, sum(q.qty) as qtySum, o.o custkey as custkey
FROM orders o, customer c, (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey)
q where o.o orderkey=q.o key and c.c custkey=o.o custkey
and c.c nationkey=1 GROUP BY o.o custkey) p1, (SELECT
sum(o.o totalprice) as priceSum, sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c, (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey)
q where o.o orderkey=q.o key and c.c custkey=o.o custkey
and c.c nationkey=2 GROUP BY o.o custkey) p2 WHERE
abs(p1.priceSum-p2.priceSum)≤ ε1 AND abs(p1.qtySum-
p2.qtySum)≤ ε2) as result;

Table 2: Similarity-based intersect queries using TPC-H data.

3. Schallehn, E., Sattler, K.U., Saake, G.: Efficient similarity-based operations for
data integration. Data and Knowledge Engineering 48(3) (2004)

4. Mills, P.: Efficient statistical classification of satellite measurements. International
Journal of Remote Sensing 32(21) (2011)

5. Silva, Y.N., Aref, W.G., Ali, M.H.: The similarity join database operator. In:
ICDE. (2010)

6. Silva, Y.N., Aref, W.G., Ali, M.H.: Similarity group-by. In: ICDE. (2009)

7. Silva, Y.N., Aref, W.G., Larson, P., Pearson, S., Ali, M.H.: Similarity queries: their
conceptual evaluation, transformations, and processing. VLDB J. 22(3) (2013)

8. Marri, W.J.A.: Similarity-aware set operators. Master’s thesis, Qatar University
(2009)

9. Wang, J., Li, G., Fe, J.: Fast-join: An efficient method for fuzzy token matching
based string similarity join. In: ICDE. (2011)

10. Schallehn, E., Sattler, K., Saake, G.: Advanced grouping and aggregation for data
integration. In: CIKM. (2001)

11. Yu, C., Cui, B., Wang, S., Su, J.: Efficient index-based knn join processing for
high-dimensional data. Journal of Information and Software Technology 49(4)
(2007)

12. Hjaltason, G., Samet, H.: Incremental distance join algorithms for spatial
databases. In: SIGMOD. (1998)

13. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: VLDB.
(2006)

14. Böhm, C., Krebs, F.: The k-nearest neighbour join: Turbo charging the kdd process.
Knowledge and Information Systems 6(6) (2004)

15. Gao, L., Wang, M., Wang, X.S., Padmanabhan, S.: Expressing and optimizing
similarity-based queries in sql. In: ER. (2004)

16. Barioni, M.C.N., Razente, H.L., Jr., C.T., Traina, A.J.M.: Querying complex ob-
jects by similarity in sql. In: SBBD. (2005)

17. Barioni, M.C.N., Razente, H.L., Traina, A.J.M., Jr., C.T.: Siren: A similarity
retrieval engine for complex data. In: VLDB. (2006)

18. Silva, Y.N., Aly, A.M., Aref, W.G., Larson, P.Å.: Simdb: a similarity-aware
database system. In: SIGMOD. (2010)

19. PostgreSQL Global Development Group: Postgresql (2014)
http://www.postgresql.org/.

20. Intel Berkeley Research lab: Intel lab data (2014)
http://db.csail.mit.edu/labdata/labdata.html.

