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ABSTRACT

The popularity of GPS-enabled cellular devices introduced
numerous applications, e.g., social networks, micro-blogs,
and crowd-powered reviews. These applications produce
large amounts of geo-tagged textual data that need to be
processed and queried. Nowadays, many complex spatio-
textual operators and their matching complex indexing struc-
tures are being proposed in the literature to process this
spatio-textual data. For example, there exist several com-
plex variations of the spatio-textual group queries that re-
trieve groups of objects that collectively satisfy certain spa-
tial and textual criteria. However, having complex opera-
tors is against the spirit of SQL and relational algebra. In
contrast to these complex spatio-textual operators, in rela-
tional algebra, simple relational operators are offered, e.g.,
relational selects, projects, order by, and group by, that are
composable to form more complex queries. In this paper,
we introduce Atlas, an SQL extension to express complex
spatial-keyword group queries. Atlas follows the philoso-
phy of SQL and relational algebra in that it uses simple
declarative spatial and textual building-block operators and
predicates to extend SQL. Not only that Atlas can repre-
sent spatio-textual group queries from the literature, but
also it can compose other important queries, e.g., retrieve
spatio-textual groups from subsets of object datasets where
the selected subset satisfies user-defined relational predicates
and the groups of close-by objects contain miss-spelled key-
words. We demonstrate that Atlas is able to represent a
wide range of spatial-keyword queries that existing indexes
and algorithms would not be able to address. The building-
block paradigm adopted by Atlas creates room for query
optimization, where multiple query execution plans can be
formed.
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1. INTRODUCTION
The popularity of GPS-enabled cellular devices has intro-

duced a new platform to host numerous applications, e.g.,
social networks, micro-blogs, crowd-powered navigation [1],
check-in, and crowd-powered reviews. These applications
produce large amounts of geo-tagged textual data that need
to be processed and queried in an efficient manner. Many
of these queries involve textual keywords and spatial pred-
icates. These queries are termed spatial-keyword queries.
One popular spatial-keyword query in Twitter is to retrieve
the most popular keywords of tweets near a specific location.
Another query from Google Maps, is to identify the points
of interest, e.g., hotels, in the vicinity of user’s location from
Google’s database of textually-tagged locations.

To address the needs for processing spatio-textual data,
many spatial-keyword queries have been proposed. One im-
portant class of spatial-keyword is the spatial-keyword group
queries [7, 17]. In group queries, it is required to retrieve a
group of objects that collectively satisfy specific spatial and
textual criteria. In general, the proposed queries are consid-
erably complex and target very specific use cases. Moreover,
every type of a spatial-keyword query has a corresponding
set of indexes that are fully optimized to address this spe-
cific type of query. However, an index that is efficient for
one type of query is not as efficient or even not usable for
another type of query. The survey of Chen et al. [10] con-
trasts fourteen different indexes to address only three types
of spatial-keyword queries. The survey provides experimen-
tal evaluation of the performance of the indexes against the
three query types. The survey also gives recommendations
on what is the best type of index to use for a certain type
of query under various workloads.

Using these query-specific tailored indexes to realize a
spatial-keyword query service is a complex and unscal-
able task. Adopting this ”complex-index-per-query-type”re-
quires to disambiguate among all types of spatial-keyword
queries. One will have to implement the most efficient in-
dex for every query type. This approach is not scalable.
Moreover, in many cases, one needs to select a subset from
a large spatial-keyword dataset, e.g., using relational predi-



cates (as in SQL), and then perform a spatial-keyword query
on the selected subset. This can make using these specific
and custom-tailored spatial keyword indexes not feasible,
or at least sub-optimal (e.g., we may have to execute the
spatial-keyword query on the entire data set in contrast to
executing it only on the relevant subset).

Spatial-keyword queries retrieve geo-tagged textual data
tuples that satisfy specific spatio-textual criteria. The
spatial-keyword queries can be categorized into the follow-
ing categories, namely: (1) filter, (2) top-k, (3) group, and
(4) other. The filter query category filters data tuples that
individually satisfy both the spatial and textual predicates
of the filter query. The top-k query category ranks the tu-
ples based on spatial and textual distance metrics. The
group query category identifies groups of tuples that col-
lectively satisfy specific spatial and textual criteria, e.g., a
group of tuples of minimal spatial diameter that collectively
contain all query keywords. The other category includes
queries that do not fall in aforementioned categories, e.g.,
the join query category which joins two or more geo-tagged
textual data sources. The join is based on both spatial rele-
vance, e.g., spatial distance and textual relevance, e.g., tex-
tual overlap among tuples.

There exists several extensions to standard SQL to sup-
port spatial only [15, 37, 32, 16, 4] and textual only
queries [32, 43]. However, these extensions are not expres-
sive enough to represent complex spatial-keyword queries.

In this paper, we propose an SQL extension to support
the class of spatial-keyword group queries. These extension
follow the spirit of the SQL query language and relational
algebra in the following sense. In relational algebra, sim-
ple relational operators are offered, e.g., relational selects,
projects, joins, and group-by, that are composable to form
more complex queries. Similarly, our SQL extension, termed
Atlas, extends the SQL query language by offering simple
declarative spatial, textual, and semantic building block op-
erators and predicates. These extensions are composable
along with the standard relational predicates (selects, joins,
etc.) to form complex spatial-keyword queries.

Existing spatial-keyword queries consider either exact or
approximate text matching. However, latent textual prop-
erties are of major importance, e.g., the semantics and the
sentiment of text. In Atlas, we propose predicates and func-
tions that consider latent textual properties.

In this paper, we demonstrate the expressiveness of Atlas
by representing complex spatial-keyword group queries from
the literature using Atlas’s simple combinations of predi-
cates. Also, we propose different query evaluation plans for
these queries using Atlas’s building-block operators.

The contributions of this paper are as follows:

• We introduce Atlas, an extension to the SQL query lan-
guage to efficiently support spatial-keyword group queries.

• We demonstrate the expressiveness of Altas by represent-
ing various spatial-keyword search queries addressed in the
literature.

• We present query evaluation plans for spatial-keyword
queries using Atlas’s building-block operators.

• We further introduce other predicates to support an in-
teresting class of spatial-keyword queries that include text
semantics and sentiment.

The rest of this paper proceeds as follows. Section 2 for-
mally defines the problem and class of group queries of in-
terest. Section 3 introduces Atlas and its extensions over
SQL in support of spatial-keyword group queries. In Sec-
tion 4, we use Atlas to express example grouping queries
from the literature, and provide the corresponding query
evaluation plans using the Atlas building-blocks. Section 5
describes novel predicates that support interesting spatial-
keyword queries. Section 6 discusses related work. Section 7
concludes the paper.

2. PRELIMINARIES
In this section, we present some definitions and notations

that are used throughout the paper. A spatial-keyword tu-
ple, say O, has the following format: O = [oid, loc, text, ...],
where oid is the tuple identifier, loc is the geo-location of the
tuple and text is the set of keywords associated with the tu-
ple. A data object may contain other relational attributes
such as the timestamp of tuple. The other relational at-
tributes are orthogonal to the spatial-keyword processing
and do not require special spatial-keyword handling. How-
ever, these relational attributes may be considered in the
spatial keyword query, e.g., the timestamp of a tuple may
be part of the where clause in a spatial-keyword query.

2.1 Spatial-keyword queries
In this paper, we study the class of spatial-keyword

queries. A spatial-keyword query retrieves a tuple or a set
of tuples that satisfy specific spatial and textual criteria. A
spatial-keyword group query retrieves a group of tuples that
collectively satisfy a group spatio-textual criteria. Notice
that a single tuple within the group may not satisfy the en-
tire group criteria. An example group query is to retrieve
the set of locations that are closest to a user’s locations and
collectively cover the keywords ”food, coffee, cinema”.

In the literature there exits three main types of group
queries namely;

• The clustered group query, e.g., the mCK query [17], re-
trieves the group of tuples that are closest in space and
collectively cover all query keywords.

• The single ranked group query, e.g., the collective keyword
query [8], retrieves the group of tuples that contain all
query keywords, close to each other in space and close to
a specific query location

• The multiple ranked groups query , e.g., the top-k relevant
groups query [40] is very similar to the single ranked group

query. However, this query retrieves a ranked list of k
groups. The groups of tuples are ranked based on the
groups’ spatio-textual relevance to the query.

3. LANGUAGE SPECIFICATION
In this section, we introduce Atlas, an extension to the

SQL query language that supports the language require-
ments described in Section 2. Atlas extends SQL to support
conditional LIMITs and the retrieval of groups of tuples.
The extended syntax of the SELECT statement is as fol-
lows:
SELECT {*|attr1 [AS alias][,attr2,...]}

FROM source_name1 [,source_name2,...]

[WHERE condition]



[ORDER BY F(arg_list)]

[LIMIT {k|condition}]

SELECT grp_attr1 [AS alias][,grp_attr2,...],

AGGR F [AS alias](attr_list)
FROM source_name1 [,source_name2,...]

[WHERE condition]

{PARTITION BY} grp_attr_list AS group_alias

[ORDER BY F(grp_arg_list)]

[LIMIT k]

[HAVING {condition}]

Atlas extends the standard SQL clauses and adds two new
constructs; the PARTITION BY and the conditional LIMIT.
These extended and new constructs support spatial and tex-
tual functions and predicates as we explain below. The OR-
DER BY clause specifies the ranking function for tuples or
groups of tuples. Ranking can be based on a function of
both the spatial and textual attributes of the tuples. In
top-K queries, it is beneficial to retrieve a ranked list of tu-
ples of size K. We use the LIMIT clause to support top-K
queries. We extend LIMIT to support conditions. The con-
ditional LIMIT adds ranked tuples into the query result-set
until a specific group condition is satisfied, e.g., to report the
nearest set of tuples that collectively contain all query key-
words. The conditional LIMIT can only be used along with
an ORDER BY clause.

The PARTITION BY1 clause behaves similar to the
traditional GROUP BY clause. However, PARTITION
BY reports groups of tuples not the aggregates on groups.
In the following sections, we present Atlas’s extensions to
the SQL query language.

3.1 Atlas Predicates and Functions
In this section, we introduce the main spatial and textual

functions and predicates that are crucial to the evaluation of
the spatial-keyword group queries. Some of these functions
and predicates already exit in other spatial and textual SQL
extensions. We list these predicates and functions here for
completeness of the discussion.
DIST(type,geometry1,geometry2)
This spatial function returns the spatial distance between
two tuples. The output of this function depends on the dis-
tance type argument. The distance type metric can either
be Euclidean, Manhattan, or road-network distances. Road-
network distance requires special support from the underly-
ing system.
OVERLAP(text1,text2)
This textual function returns the number of keywords shared
between text1 and text2. This function is meant for key-
word exact-matching. OVERLAP identifies and ranks tu-
ples based on textual relevance, e.g., OVERLAP(“food, cof-
fee, restaurant”,“restaurant, cafe, sale”) is 1.
CONTAINS(text1,text2)
This textual predicate returns TRUE if text1 contains all
keywords of text2. This functions is used to check if a
tuple or a group of tuples satisfies all the textual require-
ment of a query, e.g., CONTAINS(“food, coffee, restau-
rant”,“restaurant, cafe, sale”)=FALSE. CONTAINS(“food,
coffee, restaurant”,“restaurant”)=TRUE.

1The PARTITION BY clause already exists in the SQL ex-
tensions of ORACLE and SQLServer to retrieve groups of
tuples
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Figure 1: Example of WITHIN DIST(Euclidean, source.loc,
D)

3.2 GROUP BY/PARTITION BY Clause
In standard SQL, grouping is based on a set of relational

attributes. Atlas introduces new spatial and textual group-
ing techniques that account for both the spatial and textual
properties of the underlying data. Also, in standard SQL,
only aggregates of groups are reported. This does not sat-
isfy the needs of many spatial-keyword queries that require
retrieving groups of tuples satisfying certain spatial/textual
criteria. To support the retrieval of tuples within a spe-
cific group, Atlas utilizes the PARTITION BY. clause that
retrieves groups of tuples in contrast to only aggregates of
groups in traditional SQL. Atlas extensions to spatial and
textual grouping are detailed in the following:
WITHIN DIST(type,source.attr, D)
This operator, adopted from the similarity-group-by op-
erator [33], identifies groups of tuples that satisfy a spe-
cific spatial/textual distance criteria. Every two tuples in a
group have inter-distance that is upper-bounded by D. The
input arguments are: (1) the type of distance metric used,
e.g., Edit or Hamming for textual distance, and Euclidean
or Manhattan for spatial distance, (2) the attribute of tu-
ples to be grouped, and (3) the distance threshold between
any pair of tuples. In contrast to the traditional group-
by operator in which a tuple belongs to a single group, in
this distance-based grouping, a tuple can belong to multiple
groups. Figure 1 gives an example spatial grouping using
the WITHIN DIST operator. In this example, GroupA and
GroupB contain the maximal set of tuples that have a max-
imum inter-distance of D.
PARTITIONS(source.attr,{geometry1, geometry2,
...})
This spatial grouping technique has the following input ar-
guments: (1) the spatial attribute of tuples to be grouped,
and (2) the set of spatial partitions represented as a set of
GEOMETRY objects, e.g., minimum bounding rectangles
(MBRs) or polygons. A tuple, say t, belongs to a group
if t is inside the group’s partition. Sentiment analysis over
tweets within different states in the United States [44] is
an example of aggregates over partitions. The data source
is tweets, the grouping partitions are the boundaries of the
United States, and the aggregate function is the average of
the tweets’ sentiments.

3.3 Aggregates
In addition to the standard SQL aggregates, e.g., AVG,

MAX, MIN, COUNT, Atlas supports aggregates that are
specific to spatial and textual attributes. We introduce the
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Figure 2: Diameter example.

proposed aggregates in the following sections:
CENTROID([source.attr|{loc1,loc2,...}])
This operator finds the centroid of a set of GEOMETRY
points. The centroid point, say (xc,yc), of a set of points
(x1,y1),(x2,y2),...,(xn,yn) is calculated as follows:

xc =

∑
n

i=1
xi

n

yc =

∑
n

i=1
yi

n
DIAMETER(type,[source.attr|{loc1,loc2,...}])
This operator finds the maximum distance between any pair
of tuples in the input group. The first argument gives the
type of the spatial distance to be used. The second argument
specifies the group of tuples to be aggregated. Figure 2 gives
an example of the diameter aggregate. In this figure, the
aggregate value of the group is the distance between tuples
a and b as it is the maximal distance between any pair of
tuples.

3.4 The Conditional LIMIT
In standard SQL for relational data, TOP-K queries can

be represented using the ORDER BY and LIMIT clauses.
The following SQL statement resembles a TOP-K query,
e.g., select the top three salaried employees:
SELECT * FROM Employee AS E

ORDER BY E.salary

LIMIT 3

We extend this syntax to support Conditional LIMIT.
We set the stopping criteria of the LIMIT clause to be ei-
ther a number or a condition. This is useful in queries that
return groups of objects ranked according to spatial/textual
relevance and satisfy an overall group criteria. One exam-
ple is to retrieve the nearest set of objects that contain all
query keywords. In this example, the ORDER BY clause
will be based on the spatial distance. The LIMIT clause
will not report more tuples when the union of the keywords
of the reported tuples contains all the query keywords. This
is detailed in Section 4.

4. EXAMPLES
We use the following two example relations:

• Points of interest (POIs)
This relation represents identifiable and interesting loca-
tions on the map such as restaurants and attractions. The
relation is of the form <oid, loc, text>, where oid, loc, text
are the identifier, spatial location, and textual description
of the point of interest, respectively.

• Tweets
Tweets are assumed to be of the form <tid, loc, text, ts>,
where tid, loc, text, ts are the tweet identifier, spatial lo-
cation, textual content, and the timestamp of an incoming
tweet, respectively.
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Figure 3: Ranked group examples.

In the following, we discuss the main types of group queries.

4.1 Clustered group
In this type of query [17], it is required to retrieve objects

that are closest in space to each other and that collectively
contain query keywords. As an example, we use Atlas to
express the following query: find groups of POIs that col-
lectively contain “food, cinema, hotel” and that are within
4 miles of each other. Ranking of groups is based on each
group’s diameter.

To find and exact answer to his query is NP-Hard [17],
so we approximate this query using the WITHIN DIST
operator to identify groups of tuples that are close to each
other in space. Then, these groups will be ranked by the
DIAMETER of group.
SELECT * FROM POIs AS p

WHERE OVERLAP("food, cinema, hotel",p.text) >0

PARTITION BY WITHIN_DIST(Euclidean,p.loc,4) AS G

ORDER BY DIAMETER (Euclidean,G)

HAVING CONTAINS(UNION(G.text),"food, cinema, ho-

tel")

LIMIT 3

This query finds tuples that have overlap with query key-
words. This uses the PARTITION BY and WITHIN DIST
clauses to build groups of tuples that overlap with query
keywords. These groups of tuples are within a specific
distance from each other, e.g., 4 miles. These groups are
then filtered using the HAVING clause to only return
groups that contain all query keywords. Then groups are
ranked using the groups’ diameter. The three groups with
the least diameter are finally retrieved. Hence, this query
approximately satisfies the requirements of clustered group
queries [17] as it is able to identify groups of tuples within
a specific maximum distance ranked based on the closeness
of the groups’ tuples. This query gives an approximate
answer as we use a maximum distance threshold that does
not exist in the original version of the query.

Figure 5 gives an example result-set for this query. Groups
g1, g2 and g3 each contain all query keywords. Group g1
has the least diameter. Tuples belonging to any group are
within 4 miles of each other. Figure 4(a) gives the query
plan for this query.

4.2 Ranked groups
The difference between this type of query and the clus-
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Figure 5: Clustered group example.

tered group query is that, in this type, we require the group
of objects to be ranked by the distance to a specific query
location. This is not the case in the clustered group query.
In the ranked group query, it is required to find the set of tu-
ples that collectively contain the a query keywords and that
minimize the sum of distance to query location. Cao et al.
show that this exact solution of this problem is NP-complete
and provide approximations to answer such query.

We approximate this query by finding the closest group
of tuples to the query location say “q.loc”, such that the
tuples in the group collectively contain the query keywords.
SELECT * FROM POIs AS p

WHERE OVERLAP("food, cinema, hotel",p.text)>0

ORDER BY DIST(Euclidean,q.loc,p.loc)

LIMIT CONTAINS(UNION(p.text,"food, cinema, ho-

tel"))

Figure 3(a) gives an example of the result-set of this query.
Tuples in Group g1 are the closest to the query location
q.loc and collectively contain the keywords of the query.
Figure 4(b) gives the query plan for this query. This
query plan can benefit from a textual index on the textual
content of the POIs to select tuples that overlap the query
keywords. This query plan orders tuples based on the
distance between the tuple and the query focal point.

In traditional SQL query optimization, the query opti-
mizer may choose a specific query plan if one step in the
query plan produces data in an interesting order [36], e.g.,
having a clustered B+-tree index on a specific attribute that
is used in an ORDER BY clause. The B+-tree can be used
to retrieve tuples in the order required by the ORDER BY
clause.

Similarly, if there exists a clustered spatial index on the
spatial locations of POIs, an interesting order optimization

would be to use the spatial index to fetch tuples sorted
based on the spatial distance between the tuples’ location
and the query’s focal point. This optimization fetches
tuples in the order required by the ORDER BY clause and
avoids the need of a separate sorting step.

Another approximation to this query is to find K groups
of objects that have the following properties: (1) have their
maximum inter-tuple distance be at most d, (2) collectively
contain query keywords, and (3) are ranked according to
the group’s spatial distance to the query location.
SELECT * FROM POIs AS p

WHERE OVERLAP ("food, cinema, hotel", p.text) >0

PARTITION BY WITHIN_DIST(Euclidean,p.loc,3) AS G

ORDER BY DIST(Euclidean,CENTROID(G.loc),q.loc)

HAVING CONTAINS (UNION (P.text), "food, cinema,

hotel")

LIMIT 2

Figure 3(b) gives an example of the result-set of this query.
Groups g1 and g2 have a maximum inter-tuple distance
of 3. The two groups are ranked based on the distance
between the centroid of the group and the query location.
Figure 4(c) gives an example query plan for this query.
This query plan can benefit from a textual index on the
textual content of the POIs to select tuples that overlap
with the query keywords. This query plan orders groups of
tuples based on the distance between the centroid of the
group and the query focal point. Similar to the plan in
Figure 3(a), this plan in Figure 3(c) can benefit from an
interesting order optimization if there exists a clustered
spatial index on the spatial locations of POIs.

5. OTHER CONSTRUCTS
In addition to spatial-keyword group queries, there exist

other important types of queries such as filter and top-k
queries. These queries involve spatial predicates and tex-
tual predicates. In this section we list some relevant spatial
and textual predicates that allow the representation of gen-
eral spatial-keyword queries. Table 1 summarizes the Atlas
predicates and functions.

5.1 Spatial Constructs

• INSIDE(geometry1,geometry2)
This function determines whether geometry1 is inside ge-
ometry2. This function is useful in the filter query type.



Table 1: Atlas extensions to support spatial-keyword search queries.

Name Description

S
p
a
ti
a
l

INSIDE(geometry1,geometry2) Returns True if the first argument is inside the second argument.

OVERLAP(geometry1,geometry2) Returns the degree of overlap between input arguments.

DIST(type, geometry1,geometry2)
Returns the spatial distance between the first argument and the sec-
ond argument based on the spatial distance type argument, e.g., Eu-
clidean and Manhattan distances.

CENTROID([source.attr|{loc1,loc2,...}]) Returns the centroid point of the input arguments.

DIAMETER(type,[source.attr|{loc1,loc2,...}])
Returns the largest distance between any pair of points in the input
arguments. The type argument specifies the spatial distance metric
used.

PARTITIONS(source.attr,{geometry1, geometry2,...})
Returns groups of tuples using the spatial partition polygons given in
the second argument.

T
ex

tu
a
l

OVERLAP(text1,text2) Returns the number of shared keywords between texts lists text1 and
text2.

CONTAINS(text1,text2) Returns True if text1 contain all keywords in text2.

UNION([source.attr|{text1,text2,...}]) Returns the union of all keywords in the input arguments.

INTERSECTION([source.attr|{text1,text2,...}]) Returns the intersection of all keywords in the input arguments.

SEMANTIC SIM(text1,text2) Returns the semantic similarity score between the input text lists.

SENTIMENT(text) Returns the sentiment score of the input text list.

FREQUENT([source.attr|{text1,text2,...}],k) Returns the K most frequent keywords in the text of first argument.

TEXT DIST ANY(type,text1,text2)
Returns the minimum text distance between any pair of keywords
in the input arguments text1 and text2. The type of text distance
depends on the type argument.

TEXT DIST ALL(type,text1,text2)
Returns the minimum text distance between every keyword in text1
and any keyword in text2

H
y
b
ri
d LIMIT k|condition Returns a ranked list of tuples of either size K or when a condition is

satisfied.

WITHIN DIST(type,source.attr,D)
Returns groups of tuples, where every pair of tuple are within D dis-
tance of each other. The type argument specifies the distance metric
used, the source.attr specifies which attribute to group based upon.

• OVERLAP(geometry1,geometry2)
This function determines the degree of overlap between
two geometry objects. The OVERLAP function is usually
specified in the literature as a boolean function. How-
ever, we modify it to return the degree of overlap to allow
ranking tuples according to the spatial relevance in top-k
queries.

Other spatial functions, e.g., EQUAL, TOUCH, and DIS-
JOINT, that exist in spatial extensions of SQL, e.g., in OR-
ACLE [16] and SQL Server [2] spatial extensions. These
functions can be directly applied in Atlas similar to the IN-
SIDE, OVERLAP, and DIST functions.

5.2 Textual Constructs

• SEMANTIC SIM(text1,text2): Returns the seman-
tic similarity score between text1 and text2. The seman-
tic similarity score depends on the underlying semantic
similarity measures used. Several other scoring mecha-
nisms [13] have been developed to measure textual seman-
tic similarity. Any of these scoring mechanisms can be
applied in Atlas.

• SENTIMENT(text): Returns the sentiment score of
the input text. The sentiment score resembles how pos-
itive or negative the input text is. The returned senti-

ment score depends on the underlying sentiment measure
used [25].

• FREQUENT([source.attr|{text1,text2,...}],k)
This aggregate is a keyword-based aggregate. It identifies
the K most-frequent keywords in the group.

• UNION([source.attr|{text1,text2,...}])
Returns the union of all keywords of input text arguments.
The input argument to this function is either a set of
TEXT objects or the textual attribute of a relation to
be aggregated. For example, UNION({“food, sale”,“cafe,
sale”})=“food, sale, cafe”. Another example: assume you
have a data-source SRC1. Tuples of SRC1 are of the
form < id, loc, text >, where id is the tuple identifier,
loc is the location of the tuple, and text is the textual
content of the tuple. Assume that SRC1 has two tuples
<id1, loc1, “food, sale”> and <id2, loc2, “cafe, sale”>.
UNION(SRC1.text) returns “food, sale, cafe”.

• INTERSECTION([source.attr|text1, text2,...])
Returns the intersection of all keywords of input text ar-
guments. The input argument to this function is either a
set of TEXT objects or the textual attribute of a relation
to be aggregated. For example, INTERSECTION({“food,
sale”,“cafe, sale”})=“sale”. Another example: assume you
have a data-source SRC1. Tuples of SRC1 are of the



form < id, loc, text >, where id is the tuple identifier,
loc is the location of the tuple, and text is the textual
content of the tuple. Assume that SRC1 has two tuples
<id1, loc1, “food, sale”> and <id2, loc2, “cafe, sale”>.
INTERSECTION(SRC1.text) returns “sale”.

• TEXT DIST ANY(type, text1, text2)
Returns the minimum text distance between any pair of
keywords in text1 and text2. The type argument specifies
the textual distance metric used, e.g., Edit- or Hamming-
distance. This function measures the degree of overlap
between keywords of text1 and text2. The degree of
overlap is based on approximate string matching, e.g.,
TEXT DIST ANY( EDIT,“susi, sale, love”, “sushi, home,
coupon”) =1 where text1=“susi, sale, love” and text2 =
“sushi, home, coupon”. EDIT specifies that the text dis-
tance is the Edit distance. The minimum Edit distance
between any pair of keywords in text1 and text2 is 1 and
it is between keywords “susi” and “sushi”.

• TEXT DIST ALL(type, text1,text2)
Returns the maximum of all the minimum text dis-
tances between every keyword in text1 and any key-
word in text2. The type argument specifies the textual
distance metric used, e.g., Edit- or Hamming-distance.
This function measures the degree of containment of
keywords of text1 in text2. The degree of contain-
ment is based on approximate string matching, e.g.,
TEXT DIST ALL(EDIT,“suse, rstaurnt, home”, “sushi,
restaurant, home, coupon”) =2, where text1=“suse, rstau-
rnt, home” and text2=“sushi, restaurant, home, coupon”,
and EDIT specifies that the text distance is the Edit dis-
tance. For every keyword in text1 the minimum Edit dis-
tances are as follows:

• “suse”: has a minimum Edit distance of 2 to“sushi” from
text2.

• “rstaurnt”: has a minimum Edit distance of 2 to“restau-
rant” from text2.

• “home”: has a minimum Edit distance of 0 to “home”
from text2.

The overall maximum of all the minimum Edit distances
is 2.

The reason that we use the maximum of the minimum text
distances is to set an upper bound on the error for every
individual keyword. If we set the error threshold based on
other criteria, e.g., the sum of the minimum text distances,
this may result in retrieving tuples with keywords that
have high text distance from query keywords.

Other textual functions, e.g., STEM, that finds the lin-
guistic root of the keyword can also be applied in Atlas.

5.3 Examples of the Filter Queries
This category of spatial-keyword queries retrieves tuples

that satisfy both a spatial and a textual selection criteria.
The general form of this query is as follows:
SELECT * FROM source

WHERE spatial-filter-criteria

AND textual-filter criteria

Figure 6 gives three possible evaluation plans to process a
filter query. Plan1 applies the spatial filter first. Plan1 is
useful when there exists a spatial index and the selectivity
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Figure 6: Query plans for a spatial-keyword filter query.

of the filter criteria is high. An analogous argument applies
for Plan2. Plan3 is applicable when there exists a hybrid
index that makes use of spatial and textual pruning simul-
taneously.

Consider the following query: Find all points of interest in
MBR1 and that contain the following keywords ”restaurant,
deal”. This type of query has been addressed in [19, 14, 10].
A variation of this query that filters according to a spatial
direction [23] is also useful. We express this query as follows:
SELECT * FROM POIs AS p

WHERE INSIDE(p.loc, MBR1)

AND CONTAINS(p.text, "restaurant, deal")

In this query, the spatial filter criterion is INSIDE(p.loc,
MBR1). The textual filter criterion is CONTAINS( p.text,
“restaurant, deal”). The textual matching in the previous
query is containment with exact string matching. The filter
query has the following flavors:

• Overlap with exact string matching:
Retrieves tuples that have some overlap with the query
keywords. The textual filter criterion of this query is:
OVERLAP(p.text,“restaurant, deal”)≥ ǫ, where ǫ is the
minimum number of overlapping keywords needed to qual-
ify a tuple.

• Containment with approximate string matching:
Retrieves tuples that contain all query keywords [46, 3].
The textual content of the retrieved tuples may have
spelling errors, e.g., find all POIs within a specific spa-
tial range r and have a textual description similar to all
keyword “restaurant, deal”. In this query, the user wants
an object that is a “restaurant” with a “deal”. However,
there could be a typo in the query or in the textual de-
scription.

In this case, the textual filter criterion would be:
TEXT DIST ALL(“restaurant, deal”, p.text)≤ θ, where θ

is the maximum approximate string matching threshold.
Using this textual filter criterion ensures that a retrieved
object has all query keywords, or keywords that have at
most θ typos. An object with a textual description of
“restuarant, dael” can be retrieved if θ ≥ 2.

• Overlap with approximate string matching:
Retrieves tuples that contain some query keywords. The
textual content of the retrieved tuples may have spelling
errors. The spelling error of a keyword in the retrieved tu-
ple is bounded by a certain threshold. e.g., find all POIs
within a specific spatial range r and have a textual descrip-
tion similar to some keyword in “restaurant, cafe, hotel”.
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(d) Join plan

Figure 7: Query evaluation plans for TOP-K queries, τ is the ORDER BY symbol, , ρ is the rename operator, and γ is the
GROUP BY symbol.

The textual filter criterion is:
TEXT DIST ANY( p.text, “restaurant, cafe, hotel”)≤ θ,
where θ is the maximum approximate string matching
threshold. An object with a textual description of ”hotl”
can be retrieved if θ ≥ 1.

• Latent textual features:
Textual semantic or sentiment functions can also be used
as textual filter criteria. Consider the case when it is de-
sired to retrieve tuples that are semantically similar [30]
to query words. The textual filter criterion would be:
SEMANTIC SIM( p.text, “restaurant, deal”)≥ γ, where γ
is the minimum semantic similarity score required. This
query would retrieve tuples that not only contain “restau-
rant, deal” but also other tuples containing semantically
similar keywords, e.g., “cafe , sale”. Several text seman-
tic similarity scores [13, 31] have a range between 0 and
1, where 1 stands for complete semantic similarity of text
and 0 stands for total dissimilarity. In the example: SE-
MANTIC SIM( p.text, “restaurant, deal”)≥ γ, a high γ

value, e.g., 0.9, retrieves tuples with high text semantic
similarity and vice versa. A similar argument applies to
the SENTIMENT textual predicate [25].

5.4 Examples of the Top-K Queries

5.4.1 Top-K relevant tuples

In this type of queries, it is required to retrieve a ranked
list of the K-most relevant tuples [23]. Ranking is based on
a function, say F , of both spatial and textual relevance.
SELECT * FROM source

[WHERE spatial-filter-criteria

AND textual-filter criteria]

ORDER BY F(spatial-relevance,textual-relevance)

LIMIT K

One example is to retrieve the three closest restaurants to
the point q.loc that offer the most from the following words:
“pizza, sea food, pasta”. The SQL statement for this query
would be:
SELECT * FROM POIs p

WHERE OVERLAP(p.text,"pizza, sea food, pasta")>0

ORDER BY α * DIST(Euclidean,q.loc,p.loc)+

(1-α)*OVERLAP(p.text,"pizza, sea food, pasta")

LIMIT 3

where α is a query parameter to arbitrate between
spatial and textual relevance. Figure 7(a) gives the query
plan for this query.

This type of queries has been addressed extensively in the
literature. In various forms; the snapshot version of [14,
10], the continuous version [20, 45], and the road-network
distance [38] version. Another version of this query treats
objects as rectangles, not as points, and considers the spatial
relevance based on the spatial overlap between the query
MBR and objects MBR [21].

5.4.2 Top-K frequent keywords

In this type of queries, it is required to retrieve the
K-most frequent keywords [28]. One example is to retrieve
the top three popular keywords in tweets in the past hour
for each USA state.
SELECT FREQUENT(w.text,3) FROM Tweets w

GROUP BY PARTITIONS(w.loc, state-bounds)

Figure 7(b) gives the query evaluation plan for this
query.

5.4.3 Reverse Top-K relevant tuples

This type of queries [26, 27] finds tuples that have the
query tuple in their top-k relevant spatial-keyword result-
set. This type of query is motivated by the need to find the
influence set of the query tuple. One example is to find the
restaurants that can be affected by opening a new restau-
rant:
SELECT * FROM POIs AS p1

WHERE q IN

[SELECT * FROM POIs p2

ORDER BY (α DIST(Euclidean,p1.loc,p2.loc)

+(1-α)OVERLAP(p1.text,p2.text))

LIMIT k ]

Figure 7(c) gives the query evaluation plan for this query.

5.5 Join Query Example
The spatial-keyword join (ST-Join) query [6, 30] identi-

fies pairs of objects with specific spatial relevance threshold
α and textual similarity threshold β, e.g., find tweets near
points of interest and that have shared keywords.
SELECT * FROM TWEETs AS w,POIs AS p

WHERE OVERLAP(p.text,w.text)≥ α

AND DIST(Euclidean, p.loc, w.loc)≤ β



, where α is the minimum textual overlap threshold, β is the
maximum spatial distance threshold. Figure 4(d) gives an
example join query plan.

6. RELATED WORK
In this section, we survey the literature related to spatial-

keyword query processing. We discuss spatial-keyword
queries and spatial/textual extensions to the SQL query
language.

6.1 Spatial-keyword queries
There is a large body of work that addresses spatial-

keyword queries. The survey [10] discusses the following
three types of spatial-keyword queries and their correspond-
ing indexes:

• Boolean kNN spatial-keyword query [9]: retrieves the k tu-
ples nearest to the query’s location such that each object’s
text description contains all the query keywords, e.g., find
the nearest three restaurants to my location that offer
seafood.

• Top-k kNN spatial-keyword query [24]: retrieves a set of
K objects ranked by a combination of the distance to the
query location and the relevance to the query keywords,
e.g., retrieve the three closest restaurants to the point q.loc
that offer the most from the following words: “pizza, sea
food, pasta”.

• Boolean range spatial-keyword query [11]: retrieves all the
objects inside a specific spatial range and that contain all
query keywords, e.g., find hotels in a specific area that
have a pool.

. However, there exist other types of queries that are not
discussed in the survey [10]. We classify spatial-keyword
queries into the following categories: (1) filter, (2) top-k,
(3) group, and (4) other. Queries in each category differ
along the following dimensions:

• Snapshot vs. continuous query: A snapshot query is exe-
cuted once against a certain snapshot of the state of the
system. A continuous query is progressively executed on
the system until revoked.

• The spatial dimension: i.e., assuming an underlying road-
network or simply assuming an Euclidean space.

• Ranking score: i.e., whether ranking uses spatial relevance
only, textual relevance only, or a combination of both.

• Spatial geometry: i.e., whether the spatial attribute of tu-
ples is represented as a point, a rectangle, or a polygon.

The filter category contains queries that retrieve tuples
based on spatial-keyword criteria, e.g., [19, 14, 27, 10, 30].
The boolean range query is an example of a spatial-keyword
filter query. The top-k category, e.g., [20, 45, 21, 38, 26,
14], includes queries that retrieve a list of k tuples ranked
according to their spatial and textual relevance to the query.
Both the top-k kNN query and the boolean kNN query are
examples of the top-k queries. The top-k frequent keywords
query on micro-blogs [28] is another variation of the top-
k spatial-keyword queries that finds the most popular key-
words keywords of tweets in a specific spatial area. The

group category describes queries that identify groups of tu-
ples based on spatial and textual proximity criteria. The
m-closest keywords query [47, 17] finds the spatially close
groups of tuples that contain all query keywords, e.g., a find
the groups of building that collectively provide dining, ac-
commodations, and shopping with as small inter-building
distance as possible. Cao et al. [8] present queries that
find groups of tuples nearest to the query’s location. Each
group of tuples contains all the query’s keywords and have
the least inter-tuple distance, e.g., a tourist wants to find
the best group of building that collectively provide dining,
accommodations, and shopping. The tourist wants to min-
imize his walking distance and requires that the retrieved
group of building is close to his location and has as least
inter-building distance as possible. [40] This work addressed
finding groups of objects ranked based on the some ranking
functions The other category includes other types of queries
such as the spatial-keyword join query that identifies pairs of
tuples that are spatially and textually relevant, e.g., [6, 30],
e.g., find tweets within a specific distance of attractions, such
that there is overlap between the textual content of a joined
tweet and an attraction. Several indexes exist to address
spatial-keyword queries. To index data on only the spatial
properties of data tuples, we can use any of the well known
spatial indexes, e.g., the R-tree [18] or its variations [5], the
kd-tree [34], or the quad-tree or any of its variations [39].
Inverted lists [42] and bitmaps [41] can be used to index
text data. Hybrid indexes, e.g., the IR-tree [12], index data
on both the spatial and textual properties.

6.2 Spatial-keyword query languages
The only proposal for a spatial-keyword query language

is described in [29]. This language targets the processing of
micro-blogs, e.g., tweets. This proposal is rather limited as
it handles only top-k queries and does not address queries
that retrieve groups of objects. There exist several spatial
extensions to the SQL query language, e.g., [15, 37, 32,
16, 4]. These extensions provide two main components for
the processing of spatial queries: (1) abstract data types to
represent spatial data, e.g., point, rectangle and polygon,
(2) spatial predicates and functions. These spatial exten-
sions do not support spatial-keyword queries. Melton et
al. [32] and Wang et al. [43] propose extensions to the SQL
query language for text search. Park et al. [35] surveys key-
word search in relational databases. Lee et al. [22] proposes
building blocks for spatial-textual filter and top-k queries.
However, this work does not consider spatial-keyword group
queries.

7. CONCLUSIONS
In this paper, we introduce Atlas as an extension to SQL

to represent spatial-keyword queries. We demonstrate that
Atlas can express a wide range of spatial-keyword queries
using spatial distance grouping, conditional limit, and tra-
ditional spatial/textual predicates. Also, we propose to
use functions for latent textual properties such as senti-
ment and semantic similarity to compose novel types of
spatial-keyword queries. We express several complex queries
from the literature to demonstrate the power of Atlas. We
also propose query pipelines to evaluate spatial-keyword
queries. The specification of Atlas is applicable to any
spatial-keyword processing system. We plan to realize Atlas
in the real-time spatial-keyword system Tornado [30]. We



also plan to study the completeness of the Atlas specifica-
tions.

8. REFERENCES
[1] Waze. https://www.waze.com, 2015.

[2] A. Aitchison. Beginning spatial with SQL Server 2008.
Apress, 2009.

[3] S. Alsubaiee, A. Behm, and C. Li. Supporting
location-based approximate-keyword queries. In
SIGSPATIAL, pages 61–70, 2010.

[4] W. G. Aref and H. Samet. Extending a dbms with spatial
operations. In Advances in Spatial Databases, pages
297–318, 1991.

[5] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: an efficient and robust access method for
points and rectangles, volume 19. ACM, 1990.

[6] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual
similarity joins. VLDB, 6(1):1–12, 2012.

[7] X. Cao, G. Cong, T. Guo, C. S. Jensen, and B. C. Ooi.
Efficient processing of spatial group keyword queries.
TODS, 40(2):13, 2015.

[8] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective
spatial keyword querying. In SIGMOD, pages 373–384,
2011.

[9] A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable
method for processing top-k spatial boolean queries. In
Scientific and Statistical Database Management, pages
87–95, 2010.

[10] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial
keyword query processing: An experimental evaluation. In
VLDB, volume 6, pages 217–228, 2013.

[11] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and
T. Suel. Text vs. space: efficient geo-search query
processing. In The international conference on Information
and knowledge management, pages 423–432, 2011.

[12] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. VLDB,
2(1):337–348, 2009.

[13] C. Corley and R. Mihalcea. Measuring the semantic
similarity of texts. In ACL workshop on empirical modeling
of semantic equivalence and entailment, pages 13–18, 2005.

[14] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on
spatial databases. In ICDE, pages 656–665, 2008.

[15] M. J. Egenhofer. Spatial sql: A query and presentation
language. TKDE, 6(1):86–95, 1994.

[16] S. G. Greener and S. Ravada. Applying and Extending
Oracle Spatial. 2013.

[17] T. Guo, X. Cao, and G. Cong. Efficient algorithms for
answering the m-closest keywords query. In SIGMOD,
pages 405–418, 2015.

[18] A. Guttman. R-trees: a dynamic index structure for spatial
searching, volume 14. ACM, 1984.

[19] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing
spatial-keyword (sk) queries in geographic information
retrieval (gir) systems. In SSBDM, pages 16–16, 2007.

[20] W. Huang, G. Li, K.-L. Tan, and J. Feng. Efficient
safe-region construction for moving top-k spatial keyword
queries. In International conference on Information and
knowledge management, pages 932–941, 2012.

[21] A. Khodaei, C. Shahabi, and C. Li. Hybrid indexing and
seamless ranking of spatial and textual features of web
documents. In Database and Expert Systems Applications,
pages 450–466, 2010.

[22] T. Lee, J.-w. Park, S. Lee, S.-w. Hwang, S. Elnikety, and
Y. He. Processing and optimizing main memory
spatial-keyword queries. VLDB, 9(3):132–143, 2015.

[23] G. Li, J. Feng, and J. Xu. Desks: Direction-aware spatial
keyword search. In ICDE, pages 474–485, 2012.

[24] Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee, and
X. Wang. Ir-tree: An efficient index for geographic
document search. TKDE, 23(4):585–599, 2011.

[25] B. Liu. Sentiment analysis and opinion mining. Synthesis
Lectures on Human Language Technologies, 5(1):1–167,
2012.

[26] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k
nearest neighbor search. In SIGMOD, pages 349–360, 2011.

[27] Y. Lu, J. Lu, G. Cong, W. Wu, and C. Shahabi. Efficient
algorithms and cost models for reverse spatial-keyword
k-nearest neighbor search. TODS, 39(2):13, 2014.

[28] A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. M.
Ghanem, S. Ghani, and M. F. Mokbel. Taghreed: a system
for querying, analyzing, and visualizing geotagged
microblogs. In SIGSPATIAL, pages 163–172, 2014.

[29] A. Magdy and M. F. Mokbel. Towards a microblogs data
management system. In MDM, volume 1, pages 271–278,
2015.

[30] A. R. Mahmood, A. M. Aly, T. Qadah, E. K. Rezig,
A. Daghistani, A. Madkour, A. S. Abdelhamid, M. S.
Hassan, W. G. Aref, and S. Basalamah. Tornado: A
distributed spatio-textual stream processing system.
PVLDB, 8(12):2020–2023, 2015.

[31] J. Martinez-Gil. An overview of textual semantic similarity
measures based on web intelligence. Artificial Intelligence
Review, 42(4):935–943, 2014.

[32] J. Melton and A. Eisenberg. Sql multimedia and application
packages (sql/mm). Sigmod Record, 30(4):97–102, 2001.

[33] W. G. A. M. J. A. Q. M. M. M. O. Y. N. S. MingJie Tang,
Ruby Y. Tahboub. Similarity group-by operators for
multi-dimensional relational data. TKDE., 28(2):510–523,
2016.

[34] B. C. Ooi, K. J. McDonell, and R. Sacks-Davis. Spatial
kd-tree: An indexing mechanism for spatial databases. In
IEEE COMPSAC, volume 87, page 85, 1987.

[35] J. Park and S.-G. Lee. Keyword search in relational
databases. Knowledge and Information Systems,
26(2):175–193, 2011.

[36] R. Ramakrishnan and J. Gehrke. Database management
systems. 2000.

[37] P. Rigaux, M. Scholl, and A. Voisard. Spatial databases:
with application to GIS. Morgan Kaufmann, 2001.

[38] J. B. Rocha-Junior and K. Nørv̊ag. Top-k spatial keyword
queries on road networks. In The international conference
on extending database technology, pages 168–179, 2012.

[39] H. Samet. The design and analysis of spatial data
structures, volume 85. Addison-Wesley Reading, MA, 1990.

[40] A. Skovsgaard and C. S. Jensen. Finding top-k relevant
groups of spatial web objects. The VLDB Journal,
24(4):537–555, 2015.

[41] K. Stockinger, J. Cieslewicz, K. Wu, D. Rotem, and
A. Shoshani. Using bitmap index for joint queries on
structured and text data. In New Trends in Data
Warehousing and Data Analysis, pages 1–23. 2009.

[42] A. Tomasic, H. Garcia-Molina, and K. Shoens. Incremental
updates of inverted lists for text document retrieval,
volume 23. ACM, 1994.

[43] S. Wang and K.-L. Zhang. Searching databases with
keywords. Journal of Computer Science and Technology,
20(1):55–62, 2005.

[44] C. A. Wong, M. Sap, A. Schwartz, R. Town, T. Baker,
L. Ungar, and R. M. Merchant. Twitter sentiment predicts
affordable care act marketplace enrollment. Journal of
medical Internet research, 17(2), 2015.

[45] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient
continuously moving top-k spatial keyword query
processing. In ICDE, pages 541–552, 2011.

[46] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou.
Approximate string search in spatial databases. In ICDE,
pages 545–556, 2010.

[47] D. Zhang, Y. M. Chee, A. Mondal, A. K. Tung, and
M. Kitsuregawa. Keyword search in spatial databases:
Towards searching by document. In ICDE, pages 688–699,
2009.


