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ABSTRACT
The plethora of lacation-aware devices has led to countless location-
based services in which huge amounts of spatio-temporal data get
created everyday. Several applications requie efficient processing
of queries on the locations of moving objects over time, i.e., the
moving object trajectories. This calls for efficient trajectory-based
indexing methods that capture both the spatial and temporal dimen-
sions of the data in a way that minimizes the number of disk I/Os
required for both updating and querying. Motivated by applications
that require only the recent history of a moving object’s trajectory,
this paper introduces the trails-tree; a disk-based data structure for
indexing recent trajectories. The trails-tree maintains a temporal-
sliding window over the trajectories and uses: (1) an in-memory
memo structure that reduces the I/O cost of updates using a lazy-
update mechanism, and (2) a lazy vacuum-cleaning mechanism to
delete parts of the trajectories that fall out of the sliding window.
Experimental evaluation illustrates that the trails-tree outperforms
the state-of-the-art index structures for indexing recent trajectory
data by up to a factor of two.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—Spatial-
databases and GIS

Keywords
Recent Trajectories, Spatio-temporal Indexing

1. INTRODUCTION
Advances in location-aware devices and smartphones have led

to the generation of large volumes of spatio-temporal data. One
type of spatio-temporal data, termed the moving objects’ trajecto-
ries, corresponds to the locations over time of these devices or the
moving objects that carry them. Location-based services collect
trajectories for further processing. Most existing spatio-temporal
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applications capture either the current locations only or the entire
history of the moving objects. However, many applications and
user needs mandate the storage of only the most recent portions of
the trajectories, e.g., the most recent day of the objects’ movements.
In many GPS services, maintaining the entire location history of
each user can violate the user’s privacy agreement. In this case,
an application may require limited retention of the data [9]. Sim-
ilar needs for storing only the recent portions of trajectories arise
in (a) traffic prediction and anomaly detection, e.g., [2], (b) discov-
ering travelling companions, e.g., [10]. In this case, each moving
object maintains a logical time-sliding window, where only the tra-
jectory portion inside that sliding window is retained. We use the
term object trail to refer to the recent portion of a trajectory.

When the number of moving objects is large, the overhead of
processing the location updates as the objects move becomes a bot-
tleneck. To alleviate this bottleneck and allow for efficient query
processing over the objects’ recent trajectories, a disk-based index
over the trails data is called for. The index will need to efficiently
support the following three main operations: (1) insertion of the
new locations of the objects into the trails, (2) deletion of old entries
from the trails that expire as the time-window slides, and (3) pro-
cessing of queries over the objects’ trails.

When the temporal sliding window is large, using main-memory
stream-based approaches is not applicable as the moving objects’
locations will need to reside on disk. One existing approach,
namely SWST [9], addresses the problem of disk-based trail in-
dexing. SWST processes updates as a sequence of deletions and
insertions and uses multiple indexes to store the trails’ data. As
we demonstrate in the experiments, SWST has a performance dis-
advantage due to the need to access more than one index while
processing a query on the trajectory data. In this paper, we aim to
address these performance challenges of SWST.

This paper introduces the trails-tree, a new disk-based index for
trails that efficiently processes the main index operations; insertion,
querying, as well as the lazy removal of expired entries. The trails-
tree uses a memo structure that reduces the update cost. The memo
is an in-memory update structure that eliminates the need to have
an explicit update step while processing incoming trail entries.

2. PRELIMINARIES

2.1 Related Work
Our proposed index, the trails-tree, is an extension to the RUM-

tree [12, 8], where both are variants of the R-tree [7]. The RUM-
tree is an index that stores only the current locations of the mov-
ing objects. Queries over sliding windows have been studied thor-
oughly in the context of data stream management systems. Several
research efforts address disk-based indexing of the entire trajec-



tory of a moving object, e.g., [3, 5]. SWST [9] is a disk-based
for indexing recent trajectories. SWST is structured as a static
spatial grid index with two temporal grid indexes per spatial grid
cell. SWST assumes that an update operation provides both the
object’s old location along with the object’s new location. In con-
trast, the trails-tree requires only the new location of the moving
object. SWST searches for the last location update of an object
and deletes it. Then, a new entry for the last location update is in-
serted with a temporal range ending with the start-timestamp of the
incoming update. Then, a new entry is inserted for the incoming
update. Thus, in SWST, processing an update requires one deletion
and two insertions.

2.2 Data and Query Representation
We assume that the location updates of the moving objects arrive

in increasing order of their timestamps. Further, we assume that all
locations are in the two-dimensional space. A trajectory, say T ,
of a moving object, say O, can be viewed as a discrete sequence
of tuples in the form (oid, xi, yi, ti), where oid is the identifier of
the moving object O, and (xi, yi) is the spatial location in which
object O exists at timestamp ti. We assume that the moving objects
have a “time-sliding window W" that indicates how deep in history
the tuples are kept. Tuples that have a timestamp less than (Current
time - W ) are discarded, where Current time is the wall clock time.
A Trail or a Limited Trajectory, LT for short, of a moving object is
the recent portion of a trajectory.

A Trajectory Segment, say S, is a representation of the period be-
tween two consecutive location updates and can be represented as
[(oid, x, y, ts, te)]. In this representation, ts is the start-timestamp
and te is the end-timestamp during which the object stays at lo-
cation (x, y). One specific type of segment is termed the current
segment that stores the current location of the moving object and it
has te = NOWTIME, where NOWTIME is a numerical con-
stant value that indicates that the end-timestamp is yet to be known.

The focus of this paper is on spatio-temporal range queries. This
query is represented by the tuple (xmin, ymin, xmax, ymax, tmin,
tmax), where (xmin, ymin) is the lower-left bound of the query’s
spatial range, (xmax, ymax) is the upper-right bound of the query’s
spatial range, and current time-W≤ tmin ≤ tmax ≤current time.
It is required to retrieve trail segments that satisfy the following
constraints: 1) (xmin ≤ x ≤ xmax) and (ymin ≤ y ≤ ymax), 2)
(ts ≤ tmax) and (te ≥ tmin).

Moving objects report location updates in the form (oid,x,y,ti),
where oid is the identifier of the moving object, and (x, y) is the
object’s new location at Time ti. Notice that the old location of the
object is not needed for the trails-tree. Each update is stored as a
trail segment in the form (oid,x,y,ts,te). This segment format stores
the temporal range (ts,te) during which the moving object exists at
Location (x,y). When an update arrives, te is not known for this
update. Thus, the new segment is inserted in the following format
(oid,x,y,ts, NOWTIME) reflecting that this entry is a current en-
try. An exact value for te will not be known until the arrival of a
subsequent update, and is reflected into the index lazily.

In order to support limited retention of trajectory data, seg-
ments with ts < tc −W must be deleted, where tc is the cur-
rent time and W is the temporal sliding window. The deletion
of these segments may get delayed in the trails-tree. Also, mul-
tiple fake current segments for the same oid may temporarily co-
exist. With the help of memo, the cleaning procedures are respon-
sible for identifying the states of segments, fixing the fake cur-
rent segments, and deleting the expired ones. For example, let the
temporal-sliding window of the trails-tree index be 5 time units.
At Timestamp 0, a new location update arrives for moving object

O at location (x1,y1). Thus, a new current segment S1 format-
ted as (O,x1,y1,0, NOWTIME) is created in the trails-tree to
represent the new location update. Then, assume that at Times-
tamp 1, another location update arrives for the moving object O
at location (x2,y2). This results in creating a subsequent current
segment S2 formatted as (O,x2,y2,1, NOWTIME). This makes
S1 fake-current. Notice that now both S1 and S2 have te set to
NOWTIME while only S2 should have te set to NOWTIME.
If S1 is visited by any of the cleaning mechanisms at Timestamp ≤
5, S1 gets fixed and is transformed into a valid segment, and will
be formatted as (O,x1,y1,0, 1). S1 expires at tc > 5. S1 will be
removed from the trails-tree if it is visited by any of the cleaning
mechanisms after Timestamp 5.
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Figure 1: State diagram of segments within the trails-tree.

3. THE TRAILS-TREE
In the trails-tree, a segment can be in one of the following five

states: current, fake-current, valid, expired, or deleted. A cur-
rent segment of a moving object is the one with the most recent
start-timestamp ts for this object. This segment has te set to NOW-
TIME. A fake-current segment is one that has subsequent location
updates and still has te set to NOWTIME (i.e., it is a fixed fake-
current segment). A valid segment S is the one that has te set to
the value of ts of the update that directly arrived after S and also
has ts ≥ tc − W . An expired segment is the one that is out of
the window (i.e., ts < tc − W ) and is to be deleted. A deleted
segment is an expired segment that is visited by any of the cleaning
mechanisms and is removed from the trails-tree. Figure 1 gives the
state diagram of a segment in the trails-tree.

3.1 Index Structure
The trails-tree index borrows from the RUM-tree [12, 8] in

that both have an “R-tree”, a memory-based “update memo”, and
“cleaning strategies”. However, in the trails-tree, the dimensions of
the R-tree, the structure of the memo, and the cleaning process are
different from those of the RUM-tree. The trails-tree is structured
as a 3D R-tree with an auxiliary data structure, termed the current
memo (CM, for short). The dimensions of the 3D R-tree are the 2D
space and the time. The purpose of the trails-tree’s CM is to iden-
tify the exact state of segments within the underlying R-tree. CM
contains entries of the form (oid, tS−list), where oid is the object
identifier, and tS−list is a pointer to a list of start-timestamps. CM
is hashed based on oid to speed up the search.

Whene a new update arrives for an object, say oid, the ts of this
update is appended at the end of tS−list of the corresponding CM
entry for this object oid. Values stored in the tS−list will be used to
fix the temporal ranges of the indexed fake-current segments during
the cleaning process. Notice that CM keeps the entries for only the
updated moving objects and not for all the moving objects. The
size of CM is kept rather small and can easily fit in main memory.

3.2 Index Operations

3.2.1 Handling Inserts and Updates



The insertion and update procedures of the trails-tree are essen-
tially the same. Due to lazy deletion, an update translates into only
an insert. When an incoming update of the form (oid, x, y, ts)
arrives, it is checked against CM using the value of oid. If no
current memo entry (cme, for short) is found, a new cme entry
created. The value of ts is appended to the tS−list of the cor-
responding cme. For example, in Figure 2(a), two location up-
dates are indexed in the trails-tree for the moving object oid1,
namely (oid1, x1, y1, t1) and (oid1, x2, y2, t2). The first location
update is inserted into Node A as a current segment S1 of the form
(oid1, x1, y1, t1, NOWTIME). A new cme is created for oid1
with t1 inserted in the tS−list of this memo entry. The second lo-
cation update is inserted into Node B. The temporal duration of the
first location update is known by now (i.e., it is [t1, t2]) and the seg-
ment for the first location update (i.e., S1) can be fixed. However,
we delay fixing the first segment until leaf Node A is touched either
by another update into Node A or by the vacuum cleaning process.
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Figure 2: Example on update and clean processing in the trails-tree.

3.2.2 Cleaning
The cleaning process (1) removes expired segments, and (2) fixes

fake-current segments . The trails-tree uses two cleaning strate-
gies, namely clean-upon-write and vacuum cleaning using tokens.
The clean-upon-write strategy cleans a leaf node whenever the leaf
node is fetched during an update to take advantage of the already
spent disk I/O. The clean-upon-write strategy is not sufficient as
some nodes may never get cleaned if they do not receive any new
updates. This can significantly increase the size of the CM. The
vacuum cleaning strategy solves this problem by maintaining a list
of pointers (cleaning list) to the leaf nodes of the underlying R-
tree and periodically chooses leaf nodes for cleaning. We use log-
ical objects, termed cleaning tokens, to mark the leaf nodes to be
cleaned. Both cleaning techniques can work in parallel. Whenever
a node is chosen for cleaning, all segments in this node are checked.
If an entry is found to be expired, it is removed from the node and
any entry in the tS−list having a timestamp less than or equal to
the start-timestamp of the expired segment is also removed. If the
segment is found to have te = NOWTIME, it is checked against
CM to determine if its end-timestamp needs fixing.

During the cleaning process, a segment is checked against its cor-
responding cme. Start-timestamps in cme.tS−list are traversed. If
there exists an entry e with a start-timestamp that is strictly greater
than the start-timestamp of the segment at hand, then the segment
is fixed, and e is removed from cme.tS−list. If no memo entry is
found for this segment or no greater timestamp value exists, then
this segment is considered current and is left unchanged. If all

timestamp values within the corresponding cme.tS−list have been
consumed (i.e, tS−list is empty) the entire memo entry is removed.

Figure 2(b) gives an example of the cleaning process when
Nodes A and B are inspected. Assume that Segment S1 in Node
A is not expired. S1 is checked against CM and an entry in the cor-
responding cme.tS−list is found with Timestamp t2 that is greater
than t1. Then, S1 gets fixed with end-timestamp t2, and t2 is
removed (i.e., consumed) from the corresponding cme.tS−list in
CM. When Node B is inspected for cleaning (assuming that S2

is also not expired), S2 is checked against CM and no entry in
cme.tS−list with timestamp greater than the start-timestamp of S2

can be found. Hence, S2 remains unchanged (i.e., is a current seg-
ment). If S2 is found to be expired (i.e., t2 + W < tc), S2 will
be removed from Node B and any entry of timestamp less than or
equal to t2 will be removed from the corresponding cme.tS−list.

3.2.3 Query Processing
Spatio-temporal range query processing in the trails-tree in-

volves a filter and refine processes. The filter process runs the
query on the underlying R-tree and produces an initial output.
The refine step removes expired segments and checks for fake-
current segments and fixes them. If the segment being checked
has te = NOWTIME, it is checked against CM to find a times-
tamp within the corresponding cme.tS−list that is greater than the
segment’s te. If a timestamp is found, the segment’s te gets fixed
using the retrieved timestamp. If no timestamp is found, the output
segment remains unchanged. If the segment’s temporal range does
not overlap the query’s temporal range, the segment is omitted.

4. EXPERIMENTAL EVALUATION
We compare the performance of the trails-tree against the state-

of-the art SWST [9] index. We realize SWST strictly following the
structure and parameters described in [9]1. All implementations
are in C++ on an Intel core I5 machine with 3GB RAM. Five syn-
thetic and real datasets are used in the experiments: UNIFORM,
Brinkhoff, GSTD, GeoLife, and T-Drive. The UNIFORM dataset
is a synthetic dataset generated by uniformly distributing objects in
the X-Y space. Then, for every moving object, a random direction
is selected for every location update. The Brinkhoff [4] dataset is a
synthetic dataset of 20K trajectories generated using the Minnesota
Traffic Generator [1] on the road network of the city of Indianapo-
lis, Indiana. The GeoLife dataset [14] and the T-Drive dataset [13]
are real datasets of 18.6K and 10.3K trajectories, respectively. The
GSTD dataset is a synthetic dataset of 100K moving objects gener-
ated by GSTD [11]. In most practical systems, multilevel indexes,
e.g., the B+-tree and the R-tree, store internal nodes in memory
buffers to speed up the operations performed on the index. Only
leaf nodes are stored in disk pages. Thus, the performance metric
used is the number of leaf-node accesses that represents the num-
ber of required disk I/Os. The response time of an index operation
depends on two factors; the number of disk I/Os and the CPU cost
of the operation. In our experiments, we assume that one disk I/O
takes around 13 milliseconds [6]. We measure the CPU cost based
on the wall-clock time taken to perform an index operation. We
calculate the overall response time by multiplying the number of
I/O’s by the disk I/O time (13ms), and then add the CPU cost.

4.1 Update Performance
We use the five datasets above with 2.5 million updates per

dataset. From Figure 3(a), SWST requires a higher number of disk
I/Os compared to the trails-tree. The reason is that SWST requires

1Original SWST code was not available from the authors of [9].
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two insertions and one deletion per update. In contrast, the cost of
an update in the trails-tree is reduced to the cost of one insertion
into the underlying R-tree. In Figure 3(b), the CPU time for SWST
is smaller than that of the trails-tree. The reason is that the trails-
tree uses the computationally expensive R-tree insertion algorithm
in contrast to SWST that uses the computationally inexpensive grid
and B+-tree insertion algorithms. However, Figure 3(c) gives the
overall response time for both the CPU and I/O times, where the
response time for the trails-tree is smaller by up to 50%.

4.2 Query Performance
Using the T-Drive dataset, we study the effect of varying the spa-

tial range of queries from 1% to 30% of the entire spatial range
while fixing the temporal range of queries to 30% of the temporal
sliding window. Figure 4(a) illustrates that initially, SWST slightly
outperforms the trails-tree in terms of I/O cost for queries with very
small spatial ranges (i.e., up to 2% of the spatial range). However,
as the queries’ spatial ranges increase, the trails-tree outperforms
SWST by up to a factor of two. The reason is that for queries with
small spatial range, SWST visits few spatial and temporal cells.
However, as the spatial range of queries increases, the number of
spatial and temporal cells visited by SWST increases. Besides, the
temporal cells of SWST have high overlap in temporal ranges that
requires visiting all the temporal cells that overlap a certain query.

We study the effect of varying the temporal range of queries from
0% to 100% of the temporal sliding window that maps into 0% to
10% of the entire temporal range of the experiment, while fixing
the spatial range to be 6% of the entire spatial range of each dimen-
sion. Figure 4(b) illustrates that the trails-tree consistently outper-
forms SWST by up to a factor of two. The reason is that SWST
accesses more than one index to answer a single query. In addition,
the grid cells of the temporal index of SWST have high overlap
in their temporal ranges. This results in visiting multiple temporal
grid cells to answer a single query.

5. CONCLUSIONS
In this paper, we introduce the trails-tree, an index that stores

only a limited history of the moving object’s data. The experi-
ments compare the trails-tree against SWST (the state-of-art index
for limited trajectories). The experiments illustrate that the trails-
tree outperforms SWST by up to a factor two in terms of disk I/Os
and the overall response time (CPU+I/O).

6. REFERENCES
[1] Minnesota traffic generator.

http://mntg.cs.umn.edu, 2013.
[2] D. W. Bei Pan, Yu Zheng and C. Shahabi. Crowd sensing of

traffic anomalies based on human mobility and social media.
In SIGSPATIAL, pages 354–363, 2013.

[3] V. Botea, D. Mallett, M. A. Nascimento, and J. Sander. PIST:
An efficient and practical indexing technique for historical
spatio-temporal point data. GeoInformatica, 12(2):143–168,
2008.

[4] T. Brinkhoff. A framework for generating network-based
moving objects. GeoInformatica, 6(2):153–180, 2002.

[5] P. Cudré-Mauroux, E. Wu, and S. Madden. TrajStore: An
adaptive storage system for very large trajectory data sets. In
ICDE, pages 109–120, 2010.

[6] Y. Deng. What is the future of disk drives, death or rebirth?
ACM Computing Surveys (CSUR), 43(3):23, 2011.

[7] A. Guttman. R-trees: a dynamic index structure for spatial
searching, volume 14. ACM, 1984.

[8] Y. N. Silva, X. Xiong, and W. G. Aref. The RUM-tree:
supporting frequent updates in R-trees using memos. VLDB
J., 18(3):719–738, 2009.

[9] M. Singh, Q. Zhu, and H. V. Jagadish. SWST: A disk based
index for sliding window spatio-temporal data. In ICDE,
pages 342–353, 2012.

[10] L.-A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C.-C. Hung,
and W.-C. Peng. On discovery of traveling companions from
streaming trajectories. In ICDE, pages 186–197. IEEE, 2012.

[11] Y. Theodoridis, J. R. Silva, and M. A. Nascimento. On the
generation of spatiotemporal datasets. In Advances in Spatial
Databases, pages 147–164. Springer, 1999.

[12] X. Xiong and W. G. Aref. R-trees with update memos.
ICDE., page 22, 2006.

[13] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with
knowledge from the physical world. In SIGKDD, pages
316–324, 2011.

[14] Y. Zheng, X. Xie, and W.-Y. Ma. GeoLife: A collaborative
social networking service among user, location and
trajectory. IEEE Data Engineering, 33(2):32–39, 2010.


