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ABSTRACT
Concept Geo-tagging is the process of assigning a textual
identifier that describes a real-world entity to a physical ge-
ographic location. A concept can either be a spatial concept
where it possesses a spatial presence or be a non-spatial con-
cept where it has no explicit spatial presence. Geo-tagging
locations with non-spatial concepts that have no direct rela-
tion is a very useful and important operation but is also very
challenging. The reason is that, being a non-spatial concept,
e.g., crime, makes it hard to geo-tag it. This paper proposes
using the semantic information associated with concepts and
locations such as the type as a mean for identifying these
relations. The co-occurrence of spatial and non-spatial con-
cepts within the same textual resources, e.g., in the web, can
be an indicator of a relationship between these spatial and
non-spatial concepts. Techniques are presented for learn-
ing and modeling relations among spatial and non-spatial
concepts from web textual resources. Co-occurring concepts
are extracted and modeled as a graph of relations. This
graph is used to infer the location types related to a con-
cept. A location type can be a hospital, restaurant, an edu-
cational facility and so forth. Due to the immense number
of relations that are generated from the extraction process,
a semantically-guided query processing algorithm is intro-
duced to prune the graph to the most relevant set of related
concepts. For each concept, a set of most relevant types are
matched against the location types. Experiments evaluate
the proposed algorithm based on its filtering efficiency and
the relevance of the discovered relationships. Performance
results illustrate how semantically-guided query processing
can outperform the baseline in terms of efficiency and rele-
vancy. The proposed approach achieves an average precision
of 74% across three different datasets.

1. INTRODUCTION

Around 80% of all data contains some reference to spatial
locations [5]. The Web of Data [7] is mostly comprised of a
set of single concepts or real-world things termed concepts.
Some of the concepts in the Web of Data have an associ-
ated spatial dimension or location, e.g., the White House
or the San Diego Zoo. We refer to these concepts as spa-
tial concepts. We assume that each location that is itself a
concept and we refer to it as a spatial concept. In contrast,
other concepts do not have an associated spatial dimension
or location, e.g., pollution, crime, traffic, and health. We
refer to these concepts as non-spatial concepts. Non-spatial
concepts can have an implicit relation with other spatial
concepts. For example, “crime”, a non-spatial concept, can
be related to spatial concepts that have the following types,
e.g., bus-stops and avenues. “Crime” and bus stops do not
conceptually belong to the same type. The question that this
paper addresses is the following: Given a non-spatial query
concept, say X, how can we identify spatial concept types
that are related to X? For example, consider the following
query: “Find Pollution in NYC”. In the query, “Pollution” is
the non-spatial query concept. The answer to the query is a
list of spatial results that have the following types, e.g., bus
stops, railroads, and garages. Given a location of interest
such as “NYC” of the query, if we can find the locations of
the bus stops, the railroads, and the garages, we can now
geotag the non-spatial concept “pollution” on the matching
location types in NYC.

The co-occurrence of these concepts within textual resources
provides evidence for identifying the implicit relations be-
tween spatial and non-spatial concepts. Most keyword-based
search engines retrieve relevant results based on the query
keywords occurring in the textual resources. For example,
answering the query: “Find Education in Seattle” can ob-
tain spatial results, e.g., schools and Universities that can
only have the keyword “Education” (or its derivative forms)
appearing explicitly in the corresponding textual resources.

In this paper, we propose to answer this type of queries
by identifying the relation between the non-spatial query
concept and the spatial concepts types. We refer to this
process as type relatedness. For example, consider the query:
“Find Pollution in Indiana”. The spatial concept “Wabash
Valley Power Authority” that has Type “Power Plant” is
related to the non-spatial query concept “Pollution”, and



hence needs to considered by the query. In order to be able
to answer these types of queries, this paper addresses the
following two challenges. The first challenge is related to
representing the co-occurrences of spatial and non-spatial
concepts within the same textual resources. We propose to
create an undirected weighted graph that contains an edge
between concepts that occur in the same textual resource.
The second challenge is related to the traversal of the graph
to infer the types of spatial concepts that are semantically
related to the non-spatial concept in the query. We propose
a series of Linked-Data filters for pruning the results and
presenting the user with the most relevant types that relate
spatial concepts to the non-spatial query concept.

This paper introduces a system for Geo-tagging concepts.
Geo-tagging being the process of assigning a textual identi-
fier, namely a concept, to a location.The proposed system,
termed Concept Geotagger, dubbed “CGTag”, operates in
two phases: (i) an offline phase, and (ii) an online phase.
In the offline phase, CGTag extracts the co-occurring con-
cepts in every textual resource. Then, CGTag creates a
clique graph among these co-occurring concepts for every
textual resource. We refer to these clique graphs as the local
graphs. An edge between two concepts indicates the exis-
tence of a co-occurrence relation and is assigned a weight of
how frequent the relation has appeared across documents.
The weight does not include the number of occurrences of
the relation in the same document. For example, if a rela-
tions appeared 4 times within the first document and 3 times
in another document then the final weight will be 2, disre-
garding the number of times it appeared in each document.
Then, these relations are stored in a database, termed the
knowledge store. This knowledge store contains the aggrega-
tion of the smaller local graphs. We refer to the graph in the
knowledge store as the global graph. If a relation between
two concepts is identified in a local graph, where the same
relation already exists in the global graph, then the weight
(i.e., frequency of occurrence) of the relation in the global
graph is increased by one.

Finally, the constructed relations are stored in the global
graph of the knowledge store. In the online phase, CGTag
offers a web interface that captures the user query. The
query parameters are the non-spatial concept of interest,
e.g., pollution, crime, etc., and a location of interest, e.g.,
Los Angeles. The location of interest helps restrict the re-
sults to a specific region. These two parameters are passed to
a query processing algorithm that learns the types of spatial
concepts that are most related to the query. This learning
process takes place on the global graph in the knowledge
store. First, the query processor filters out the spatial con-
cepts that do not belong in the location of interest from the
global graph. Next, the query processor filters the remain-
ing concepts based on a proposed set of semantic predicates
(i.e., relations). Finally, the query processor identifies the
types of the remaining set. These types are used to geotag
the non-spatial query concept with spatial concepts in the
location specified by the query.

1.1 Contribution
The contributions of this paper are as follows.

• We propose CGTag, a system for geotagging a non-

spatial concept query with spatial concepts based on
type relatedness.
• We propose a semantic query-processing algorithm that

uses several Linked-Data filters.
• We propose an evaluation method for type relatedness

in addition to a baseline to determine the correctness
of the results.

The rest of paper proceeds as follows. Section 2 presents
the related work. Section 3 illustrates how CGTag repre-
sents the relation between co-occurring concepts. Section 4
presents the architecture of CGTag and discusses its main
components. Sections 5 and 6 present the experimental
setup and experimentalresults, respectively. Finally, Sec-
tion 7 contains concluding remarks.

2. RELATED WORK
There has been a variety of studies performed for construct-
ing large knowledge bases. Some of these knowledge bases
are constructed in an automated fashion. These knowledge
bases utilize unsupervised techniques that process web re-
sources. For example, Linkedgeodata [16] converts data
from OpenStreetMap to an RDF model. Linkedgeodata de-
rives a lightweight ontology from the OpenStreetMap data.
Linkedgeodata also provides an interlinking dataset that
links its concepts with DBpedia, GeoNames, and other datasets.
Linkedgeodata also provides simple spatial semantic predi-
cates (i.e., relations) based on proximity and the contain-
ment of points. DeepDive [14] employs statistical learning
and inference to construct a knowledge base. GeoDeep-
Dive [18] employs unsupervised techniques over geograph-
ically specific textual resources to observe aspects of rock
formation where a rock formation is based on two or more
minerals.

In terms of semantic search and querying, various studies
discuss how to capture the query semantics or intent. Egen-
hofer [3] advocates the concept of Semantic Geospatial Web,
where he states the need to explicitly represent the query in-
tent through different predicates. This implies a more pre-
cise retrieval based on the semantics of the data rather than
the query’s explicitly stated keywords only. Lim et al. [10]
discuss how relational databases queries are not usually pre-
cise where users often have a vague understanding of what
they are querying. They propose a Query-By-Example ap-
proach that allows capturing the query semantics in a rela-
tional database setting. Calderon-Benavides et al. [2] sug-
gest the use of facets or dimensions to capture the query
intent when searching for information over the Web. The
selection of the facets is performed by observing a set of
queries. Among these dimensions is the spatial sensitivity
that indicates the interest of the user in spatial locations.
Fernandez et al. [4] propose a semantic search model that
integrates semantic knowledge within traditional informa-
tion retrieval ranking models. They propose a ranking func-
tion that combines the semantic similarity with keyword-
based similarity. Lim et al. [11] study the issue of expressing
queries against an ontology in SQL. Their approach relies on
asking the user for a small number of examples that satisfy
the query so that the system infers the exact query intent
automatically. The approach consists of three steps, namely
providing examples that satisfy the query, using machine
learning techniques to mine the query semantics, and apply-



ing the query semantics over the data in order to generate
the query result.

3. REPRESENTING CO-OCCURRENCE
The hypothesis adopted in CGTag is that all concepts men-
tioned in the same textual resource are implicitly related to
each other [6,13]. A clique can be used to represent the rela-
tions between the co-occurring concepts. A clique contains
edges between all pairs of vertices. A clique is used to rep-
resent the concepts co-occurrences where the vertices repre-
sent the concepts and the edges represent the co-occurrence
relation with an assigned weight. The same weight is as-
signed to all the edges between the unique nodes in the ini-
tial relation representation. The assumption is that concepts
co-occurring in the same textual resource have equal impor-
tance. The intuition behind creating a clique is to indicate a
single co-occurrence relation between the concepts and each
other. As illustrated in the following sections, weight filter-
ing (i.e., threshold) is used to discard co-occurring relations
with a low weight.

The co-occurring concepts are referred to as candidate con-
cepts. The types of a candidate concept can be used by CG-
Tag to infer the concept type relatedness to a non-spatial
query concept. For example, if the non-spatial query con-
cept is “Pollution”, some of the candidate concepts can have
types such as “Factory” or “Bus Station”.

4. ARCHITECTURE
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Figure 1: System architecture

Figure 1 illustrates the proposed architecture. The input
is a set of textual resources. For example, a textual re-
source can be a Wikipedia article where the title represents
the concept name. First, the textual resources are passed
through an information extraction component that identi-
fies the other concepts in the textual resources. Second, the
identified concepts are passed to a clique construction where
a local graph is generated. Third, the clique is “mashed-up”
with the global graph of the knowledge store. Fourth, the
web interface is used to issue the queries (i.e., non-spatial
concept) over a user-specified location (if needed). The lo-
cation is used to narrow the results to spatial concepts in a
specific region in space. If the location is omitted, CGTag
attempts to match against all the spatial concepts. Finally,
the query processing algorithm returns the type-related spa-
tial concepts to the user.

4.1 Information Extraction
The offline phase starts by extracting the co-occurring con-
cepts. The information extraction phase (IE, for short)

identifies the candidate concepts in textual resources. IE
performs the following three main tasks: (i) identification,
(ii) disambiguation, and (iii) linked-data concept (URI) as-
signment to the identified concept. The assigned (URI) can
be used to look-up additional information for the concept
in the Linked Data cloud. In this study, a statistical infor-
mation extraction technique is adopted that achieves good
accuracy when compared to rule based approached.

4.2 Graph Construction
The second step of the offline phase is to construct a local
graph clique representation and append the clique relations
to the global graph. The following algorithm illustrates the
steps involved in the graph construction.

Algorithm 1 Graph Construction

Input: cconcepts,graph
for i = 0;i < cconcepts.length; i + + do

for j = i + 1;j < cconcepts.length; j + + do
if exists(graph, cconepts[i], cconcepts[j]) then

weight← getweights(graph, cconcepts[i], cconcepts[j])
weight← weight + 1
updateweights(graph,cconcepts[i],cconcepts[j],weight)

else
weight← 1
addnodes(graph,cconcepts[i],cconcepts[j],weight)

Algorithm 1 illustrates how the local graph is constructed
and appended to a global graph. The algorithm requires
two inputs. The first input is the set of candidate concepts
of the clique. The second input is the global graph. If a
relation already exists between any pair of the candidate
concepts in the global graph, the weight of the relation in the
global graph is incremented by one. Otherwise, a new edge
representing the co-occurrence between the two concepts is
introduced into the global graph with a weight of one.

4.3 Knowledge Store
In the offline phase, the knowledge store component is used
to store the concepts and relations. In the online phase,
the knowledge store is used by the query processing compo-
nent to answer the user queries. In addition, the knowledge
store aggregates the spatial predicates (i.e., relations) of the
concepts such as latitude and longitude.

4.4 Semantic Query Processing
The clique construction creates a substantial number of re-
lations that need to be filtered. A set of semantic filters are
proposed to filter the irrelevant concepts from the global
graph. Given a non-spatial query concept, the semantic
query processor infers the types of spatial concepts in the
global graph that are most related to the non-spatial con-
cept query.

Algorithm 2 illustrates the filtering steps and their order
of execution. The input to the semantic query processor is
(i) the non-spatial concept query, and (ii) a location of in-
terest The function getcandidates queries the concepts (i.e.
candidate concepts) that are related to the query concept.
The relation is defined by the existence of an edge between
the query concept and other queries. Given that there could



Algorithm 2 Semantic Query Processing

Input: concept
Input: location
Output: matches

matches← []
cthreshold← val1
sthreshold← val2
matches← getcandidates(concept)
matches← filterbycooccurance(matches, cthreshold)
matches← expandbytype(matches)
matches← filterbytype(matches)
matches← filterspatially(matches, location)
matches← filterbysimilarity(matches, sthreshold)

be an immense amount of candidate concepts, the semantic
query processor applies a set of Linked Data filters to prune
the candidate concepts set. Finally, the remaining set rep-
resents the spatial concepts that have a type that is most
related to the non-spatial query concept.

The filtering steps in Algorithm 2 are grouped into three
main filters. The first filtering step filters concepts based on
the co-occurrences frequency (i.e., weight). The second fil-
tering step filters concepts based on some Linked-Data prop-
erties. Finally, the third filtering step filters the concepts
based on the similarity between their textual resources.

4.4.1 The Co-occurrence Threshold Filter

The weight of the relation between two concepts represents
how frequent the two concepts co-occur together. This weight
reflects a measure of how much two concepts are related. In
other words, the higher the weight, the more relevant the
concepts are to each other. A cut-off (i.e., threshold) is de-
fined to filter out the relations with low weights. The thresh-
old value is defined based on the required number of returned
results. This threshold is known as the co-occurrence thresh-
old. For example, if we are interested in k -results, we adap-
tively set a threshold value that would return the k -highest
concepts.

In this paper, we use the co-occurrence threshold filter as a
baseline for measuring concept-to-type accuracy. The reason
is that the weight represents the frequency of co-occurrence
between two concepts across all the analyzed textual re-
sources. For example, CGTag can consider only relations
that have a weight of at least three. In other words, when
a non-spatial concept query is issued, the corresponding re-
lated concepts are fetched from the knowledge store that
have a weight of at least three (i.e., the threshold is set to
be three or lower).

4.4.2 Linked-Data Filter

The Linked-Data cloud includes a rich set of semantic predi-
cates (i.e., relations) for concepts. It also includes a rich set
of ontologies that describe the concepts and predicates. The
Linked-Data cloud can be used as a mean for understanding
the spatial semantics of concepts. Some knowledge bases
provide type classes and ontologies that aid in understand-
ing the hierarchical nature of concepts, e.g., see [1,8]. Others

provide useful predicates, e.g., spatial information [16], ab-
stracts of documents, and references. A subset of predicates
and ontology properties are used to learn what constitutes
a relevant relation between concepts. The Linked-Data fil-
ter includes three main steps: (i) expand by type, (ii) type
filtering, and (iii) spatial filtering.

Many collections in the Linked-Data cloud provide a “type”
predicate 1 [1, 8]. For example, DBPedia provides a type
predicate to describe the concepts it contains. In DBPedia,
a concept. e.g., “The White House” has the types Architec-
turalStructure, Place, and Building. This rich information
can aid the semantic query processor when filtering based
on the type. Some relations for a non-spatial query concept
can themselves be types. For example, there can be a rela-
tion between a non-spatial concept “The White House” and
another concept named “Building”. where building is also
itself a type. This is still a very useful relation as it allows
us to know that a “Building” itself is an important type to
consider in the result set.

Some ontologies include a predicate that describes the type
of the concepts in a specific collection. In most collections,
the types can be described in a hierarchical manner indi-
cating super-type and sub-type relationships. For example,
the DBPedia ontology has the type “Building”, which is a
superclass of (Hotel, Restaurant, ShoppingMall, Castle, His-
toricBuilding) among others.

Algorithm 3 Filter by Type

Input: oldmatches
Output: newmatches

spatiallist← [Place,Organisation, SpatialThing,Area]
newmatches← newlist()
for concept in oldmatches do

concepttypes← gettypes(concept)
if len(concepttypes)← 0 then

concept2type← convert2type(concept)
if concept2type in spatiallist then

newmatches.append(concept)
else

lst← getsuperclasses(concept2type)
for itm in lst do

if itm in spatiallist then
newmatches.append(concept)
break

else
for typ in concepttypes do

if typ in spatiallist then
newmatches.append(concept)
break

else
lst← getsuperclasses(typ)
for itm in lst do

if itm in spatiallist then
newmatches.append(concept)
break

Algorithm 3 illustrates how a concept is filtered based on
its ontology type. The spatial types, e.g., “Place”, “Organi-
sation”, “SpatialThing”, and “Area” can be manually identi-

1http://www.freebase.com



fied in the ontology of interest. Each concept can have more
than one type. In the type filtering step, the intuition is to
filter all the concepts that are not a spatial type. The first
step is to filter by type and determine if the evaluated con-
cept has a type that is among the specified spatial types list.
The second step is to expand by type in order to determine if
the type of a concept is a subclass of a spatial type. Finally,
the matching concepts are returned for further filtering.

4.4.3 Similarity Filtering

We assume that there exists a textual resource that describes
what a concept is. This applies for both spatial and non-
spatial concepts. Given that textual resources tend to share
common keywords, we suggest using these textual resources
to measure a level of similarity between concepts. This be-
comes very useful when the number of filtered concepts is
large. For example, a non-spatial concept query, e.g., “Bioin-
formatics”, has a spatial concept result of Type “Education”
including Schools and Universities. The results can be nar-
rowed down by performing a pairwise document similarity
between the textual resources of the concepts. For exam-
ple, the “Bioinformatics” concept is compared against the
other textual resources matching the spatial concepts of type
“University” and “School”, and the results may contain only
matches of type “University”.

The similarity between a pair of concepts is calculated by
generating a TF-IDF representation [15] for the non-spatial
query concept and every filtered spatial concept list. TF-
IDF stands for Term frequency/Inverse Document frequency
and is used to indicate how important a term is with respect
to a document in a collection or corpus. The first step is to
generate the TF-IDF vectors for the concepts’ textual re-
sources. The second step is to compute the cosine similarity
between the two resulting vectors.

cosΘ =
t1.t2

| t1 || t2 | (1)

Equation (1) indicates the cosine similarity calculation method.
The parameters t1 and t2 represent the textual resource of
the non-spatial concept and one of its candidates, respec-
tively. The resulting score of the comparison is checked
against a predefined threshold value to determine if the two
textual resources of the concepts are similar. Section 5 il-
lustrates some empirical results that help determine a rea-
sonable threshold value to use.

4.5 Type Filtering of Non-Spatial Concepts
The final step in the online phase is to filter the spatial
concepts based on the types proposed by the query process-
ing component. The type filtering component is responsible
for determining the Geo-tagged resources (i.e., spatial con-
cepts) that have a type matching the types deduced by the
semantic query processor. If a location is specified in the
query, then the location acts as a filtering criteria for the
spatial concepts to compare against. For example, if the
query processor suggests the type “Art”, then the spatial
linking module attempts to match the type “Art” against
the types of geo-tagged resources. If location is specified

such as “NYC” then the linking is restricted to “NYC” only.

Interlinking allows linking non-spatial concepts to collec-
tions that include spatial information about the concepts.
Interlinking supplies a URI for concepts. This allows fetch-
ing futher semantic information for the concepts from the
Linked Data cloud. Many linked-data resources do not have
any interlinking information. There are systems, e.g., SILK [9],
that support creating the interlinking automatically. Vilches-
blazquez et al. [17] propose using co-reference resolution for
interlinking geospatial Linked Data. Interlinking datasets
are utilized in this work to discover concepts that have a
spatial dimension (i.e., latitude, longitude).

5. EXPERIMENTAL SETUP
5.1 Evaluation
CGTag is evaluated based on two overlapping factors: (i) query
processing filtering efficiency, and (ii) the accuracy of the
type relatedness.

The filtering efficiency of each strategy presented in Sec-
tions 4.4, 4.4.1 and 4.4.2 is evaluated separately and then
in combination with each other. In specific, the number
of remaining concepts are observed after each strategy has
been applied. The Linked Data predicates are also evaluated
separately (i.e., type filtering, spatial filtering, similarity fil-
tering).

In order to evaluate the accuracy of type relatedness, we pre-
sented 8 evaluators with 30 arbitrarily selected non-spatial
concept queries. Given a non-spatial concept, the objective
is to understand what would be theexpected types of spa-
tial concepts in the result. For example, given a non-spatial
concept query, e.g., “Science” from Table 1 and a location,
e.g., “California” (i.e., query is ”Science in California”), the
expected results can include spatial concepts belonging to
the type School and University. In specific, one would ex-
pect a spatial concept result such as “Stanford Univeristy”
and “UC Berkley”.

In this study, the Linkedgeodata interlinks dataset illus-
trated in Table 2 is used. The table indicates the number
of spatial concepts that were assigned a specific type. The
Linkedgeodata collection provides 7 types that match the
types of the selected concepts (i.e., spatial and non-spatial
concepts). These types are“City”,“Island”,“Mountain”,“School”,“Stadium”,
and “University”. This set of types is used as the evaluation
set. Majority vote among the evaluations is used to deter-
mine the correct types for each non-spatial concept. The
evaluators are instructed to indicate at least the two most
common types that they are likely to find for the spatial
concepts results.

Table 1 lists the 30 non-spatial queries that are selected for
type relatedness evaluation and the corresponding major-
ity vote judgments produced by the evaluators. The value
of 1 indicates the evaluators’ agreement on a certain type
for a specific non-spatial concept. Precision is used as an
evaluation measure in order to quantitatively measure the
accuracy of the results over the queries. It is important to
note that the evaluation is purely subjective, not relying on
any ground truth except for the evaluators’ knowledge.



5.2 Queries
Two sets of non-spatial concept queries are defined for the
experiments. The first set is used for testing the filtering
efficiency of the query processing algorithm. A total of 90
non-spatial concepts of Type “Activity” are arbitrarily se-
lected from the DBPedia collection. Concepts of type “Ac-
tivity” include a wide range of sub-classes that span multiple
types. The queries are processed by the semantic query pro-
cessing algorithm introduced in Section 4.4 and the output
is averaged to produce the results reported in Section 6. For
the second set of queries, a total of 30 non-spatial concepts
are arbitrarily selected as the queries to evaluate the type
relatedness. The selected 30 concepts in the rows of 1 are
the top-ranking concepts in terms of number of relations
they have with other concepts. This ensures a fair evalu-
ation for queries of non-spatial concepts that have enough
coverage from multiple documents. In other words, a higher
weight indicates a higher co-occurrence between these con-
cepts across multiple textual resources.

It is important to distinguish between types and non-spatial
concepts. While types and non-spatial concepts may actu-
ally mean the same, it is important to note that types are a
special kind of non-spatial concepts that can be selected by
ontologies such as LinkedGeoData to represent a set of con-
cepts. In this paper, we adopt the same distinction between
non-spatial concepts and types.

5.3 Collections and Datasets
A set of 178K articles from Wikipedia are used as the pri-
mary source for identifying the co-occurrences among con-
cepts. Wikipedia is a very relevant resource for the task as
it contains full articles about concepts. The DBPedia collec-
tion is the RDF representation of Wikipedia. DBPedia pro-
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Science 0 0 0 0 1 0 1

Medicine 0 0 0 0 1 0 1

Business 1 1 0 0 1 0 0

Fishing 0 1 1 0 0 0 0

Canal 0 1 1 1 0 0 0

Dormitory 0 0 0 0 1 0 1

English studies 0 0 0 0 1 0 1

Agriculture 0 1 1 0 1 0 1

Training 0 0 0 0 1 1 1

Research 0 0 0 0 1 0 1

Population 0 1 1 0 0 0 0

River 0 1 1 1 0 0 0

Train station 1 1 0 0 0 0 0

Village 0 1 1 1 0 0 0

College 0 1 0 0 1 0 1

High school 0 1 0 0 1 0 1

Student 0 0 0 0 1 1 1

Lake 0 1 1 1 0 0 0

Suburb 0 1 1 0 0 0 0

Museum 0 1 0 0 0 0 1

Baseball 0 0 0 0 1 1 1

Education 0 1 0 0 1 0 1

Unincorporated area 0 1 1 1 0 0 0

Road 0 1 0 1 0 0 0

Neighborhood 0 1 0 0 1 0 1

History 0 1 0 0 1 0 1

Bridge 0 1 1 1 0 0 0

Broadcasting 1 1 0 0 0 1 1

Law 1 1 0 0 1 0 1

Association football 0 0 0 0 1 1 1

Table 1: Test set used for type relatedness evaluation

vides an additional rich medium for interlinking the concepts
mentioned in Wikipedia with other collections. Linkedgeo-
data [16] 2 is used for identifying the spatial information
(i.e., latitude and longitude). Interlinks between the spatial
locations, e.g., Linkedgeodata, and concepts, e.g., DBPedia
are realized using the interlinks datasets provided by Linked-
geodata. The dataset provides links between a DBPedia en-
try (representing a Wikipedia concept) and a Linkedgeodata
entry (representing an Openstreetmap entry).

Criteria USA DEU UK

Airport 3128 27 109

City 8469 7409 4521

Island 92 0 45

Mountain 887 76 587

School 2026 7 154

Stadium 55 6 8

University 70 4 25

Total 14727 7529 5449

Table 2: Interlinks Dataset Statistics

Table 2 illustrates the various types that the interlinks dataset
provides. Three spatial concepts datasets are used for: (i) United
States (USA), (ii) United Kingdom (GBR), and (iii) Ger-
many (DEU).

5.4 Concept Extraction
Concept extraction is performed using DBPediaSpotlight [12] 3,
an unsupervised learning tool for identifying DBPedia top-
ics in textual resources. As indicated earlier, every concept
has an associated textual resource. For example, a concept
such as the White House has a Wikipedia page that repre-
sents the textual resource of that concept. The White House
concept can have other candidate concepts mentioned in its
textual resource. We processes 178K concepts where we ex-
tract the distinct candidate concepts from every textual re-
source of a concept. The tool includes a support parameter
that indicates the prominence of a concept in Wikipedia.
The support parameter indicates how important a concept
is based on the concepts that link to it. We fine-tune the
support parameter of the tool to highlight concepts with
high prominence only. We set the support parameter to be
larger than 100, indicating our interest in concepts that have
more than 100 pages linking to this concept.

5.5 Baseline
The Co-occurrence threshold (THR) is used as the baseline.
Initially, the threshold is set to 3 (i.e., 3 minimum relations
between two concepts) in order for a concept to qualify as
candidate concept. The threshold is changed adaptively if
less than 10 results per non-spatial query is obtained.

6. RESULTS AND DISCUSSION
6.1 Type Relatedness Evaluation
In this section, type relatedness of the query results is dis-
cussed given different filtering strategies. In specific, the

2http://www.linkedgeodata.org
3http://spotlight.dbpedia.org

http://www.linkedgeodata.org
http://spotlight.dbpedia.org


type relatedness accuracy is measured when using: (i) the
Linked-Data strategy without similarity filtering (R1), (ii) the
Linked-Data strategy with similarity filtering (R2), (iii) the
co-occurrence threshold strategy (R3), (iv) Linked Data +
co-occurrence strategies without the Linked Data similarity
filtering (R4), and (v) Linked Data + co-occurrence strate-
gies with similarity filtering (R5). Precision is used as an
accuracy measure for this evaluation. The reason is because
precision conveys the accuracy of the presented types. Re-
call on the other hand is not used as we are not currently
focusing on how many types can be but rather how correct
one or a few can be. Correctness is defined as the number
of types that are most relevant to the query concept and are
not below a certain user-defined threshold.

Technique USA GBR DEU

LD-wo-Similarity 0.43 0.43 0.42

LD-w-Similarity 0.69 0.7 0.78

THR(3) 0.78 0.68 0.06

LD-wo-Similarity+THR(3) 0.536 0.53 0.52

LD-w-Similarity+THR(3) 0.72 0.73 0.76

Table 3: Precision of results

Table 3 gives the precision values for each of the five combi-
nations (i.e., R1,R2,R3,R4,R5) over the three datasets. The
R5 strategy that considers the similarity predicate achieves
nearly consistent results across the three datasets. When
compared to the baseline, R5 achieves better results except
in the case of the USA dataset. This is due to the tight con-
straints at the semantic predicate level. It can be observed
that some relations are missed because the Linked-Data type
filtering generates diverse types. The missed relations is due
to the nature of concepts included in the USA dataset. The
missed relations would also be less apparent if the relations
are created over a domain specific dataset. For the THR(3)
entry for Germany dataset, the result is very low compared
to the other two datasets due to the large limited concepts
relations in that dataset.

6.2 Clique Size
We study the effect of clique sizes on the number of relations.
The clique size is the number of concepts considered when
generating the clique. We measure the average number of
relations available for the 90 arbitrarily chosen non-spatial
concept queries. The clique sizes considered are 10, 50 and
100 concepts (i.e. nodes in a graph where a node represents
a concept).
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Figure 2: Average number of relations available over 90 non-
spatial queries

Figure 2 illustrates how the number of relations are affected
by the size of the clique graph. A larger clique generates
a higher number of relations. This will in turn affect the
number of generated results. Observe that the significance
of the clique size does not matter as the number of concepts

considered increases. This shows that considering more con-
cepts does not necessarily add significantly more relations.

The number of concepts to consider for the clique graph
depends on a number of aspects. The first aspect is the do-
main that a concept covers. Some textual datasets tend to
have concepts mentioned sparsely across documents. This
calls for considering more concepts per document (i.e. big-
ger clique size). Another alternative is to choose a smaller
set of concepts per document (i.e. smaller clique size) and
use ranking techniques to select the most representative con-
cepts.

The second aspect for selecting the number of nodes (i.e.
concepts) in the clique graph is the type and size of the doc-
uments to be analyzed. Analyzing documents with abstracts
will be different from analyzing blog entries or news articles.
In the former scenario, most important concepts tends to
reside in the abstract section while in the latter they tend
to be scattered across the document.
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Figure 3: Database size based on number of nodes

The third aspect is the overall disk space occupied by the
database. As the number of concepts increases, so does the
storage requirement. This in turn leads to slower query re-
sponse time. Figure 3 illustrates how the number of nodes
affects the graph storage size.

6.3 Co-occurrence Threshold Selection
The following results evaluate the co-occurrence threshold
(THR) approach. The effect of selecting various thresholds
is illustrated with respect to the number of identified rela-
tions among candidate concepts. A graph size of 100 nodes
is used in all of the remaining experiments.
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Figure 4: Number of relations discovered at different thresh-
old values

A total of 90 queries are used in order to determine the
number of relations among candidate concepts at each of
the threshold values. Figure 4 illustrates how the number of
relations significantly differs when the threshold is slightly
varied.

6.4 Linked-Data Filtering
Next, the results of Linked-Data filtering is discussed. The
first set of experiments evaluates the effectiveness of each
strategy separately.
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Figure 5: Individual Strategies - NOP: No filtering, THR(2):
Threshold filtering of 2, LTP: Type filtering, LSP: Spatial
filtering, LSIM: Similarity filtering

Figure 5 illustrates the effect of running each strategy sep-
arately on the number of candidate concepts relations. Co-
occurrence threshold filtering (THR) is applied with a value
of 2. Linked-Data type filtering (LTP) includes the type
filtering results in addition to the expanded results of the
Linked Data Expansion (LTE) step (i.e., LTP = LTP +
LTE). Threshold filtering performs better as it relies only
on filtering entries that are seen in its graph. LTP filters
out almost half the entries on average over the 90 queries.
Linked-Data spatial filtering (LSP) exhibits the highest fil-
tering effectiveness as it returns only the entries in a spe-
cific location. Linked-Data similarity (LSIM) filtering also
exhibits high filtering effectiveness on the textual resource
level. The effectiveness of LSIM is almost the same as that of
THR when using a value of two. This would not be the case
if the (THR) value used is different. For example, the no-
filtering strategy may also be considered a THR approach
with a value of one. Observe that changing the threshold
slightly can achieve significantly different results.

The second set of experiments evaluates the combined ef-
fectiveness of the strategies. The four combinations that
are evaluated include: (i) Linked-Data Expansion+Linked
Data Type Filtering+ Linked Data Similarity filtering (i.e.,
C1), (ii) Linked data Expansion+ Linked Data Type filter-
ing + Linked Data Similarity filtering + Linked Data Spatial
filtering (i.e., C2), (iii) Linked Data filtering + Co-occur-
rence filtering (i.e., C3), and (iv) Linked Data filtering +
Co-occurrence filtering without spatial filtering (i.e., C4).
Figure 6 illustrates the filtering effect of each of these four
combinations.

The first combination (i.e., C1) is the least effective of the
other four combinations (i.e., C1, C2, C3, and C4). C1 does
not consider the Linked-Data spatial filtering predicate (i.e.,
not filtering based on a location). A significant decrease in
the number of candidate relations occurs when using the spa-
tial predicate in combination C2. This means that most of
the candidate concepts relations corresponding to the non-
spatial query are not specific to the query location. The
effect of spatial filtering can also be observed in the results
of the fourth combination C4. On the hand, the third combi-
nation C3, representing the Linked-Data and co-occurrence
strategies with all its predicates, offers the best filtering ef-
ficiency. The co-occurrence threshold approach provides a
good initial filtering criterion that the Linked-Data filter can

LET+LTP+LSIM
LET+LTP+LSIM+LSP
LD+THR(2)
LD-wo-LSP+THR(2)
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Figure 6: Combining techniques and measuring the average
number of candidate concepts relations

build upon. The co-occurrence threshold filter provides fre-
quent relations while the Linked-Data filter provides useful
semantic processing.
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Figure 7: Linked Data+co-occurrence (i.e., hybrid) filtering
over 3 datasets

In Figure 7, the effect of filtering on the DEU dataset and
the USA dataset can be observed. The USA dataset con-
tains the highest number of candidate concepts relations.
This illustrates the effect of running the experiments on non-
homogeneous datasets where USA, DEU, and GRB have an
unequally distributed set of concepts that possess diverse
types.

6.5 Similarity Threshold Selection
In this experiment, different thresholds are illustrated to de-
termine the similarity between a non-spatial query concept
and its related spatial concepts.
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Figure 8: Number of relations left at different similarity
thresholds

Figure 8 illustrates how the number of candidate relations
decreases as the threshold increases. Clearly, it is important
to use a low threshold as this may lead to missing some
important candidate concept relations.

Determining the similarity threshold is also dependent on
the type and length of the textual resources being used. As
the textual resources length increases, so does the sparsity.
In turn, this implies the need for a low-valued threshold.



7. CONCLUDING REMARKS
This paper presents CGTag, a system for discovering type
relatedness between spatial and non-spatial concepts. CG-
Tag presents a methodology for capturing the co-occurrence
of concepts from textual resources. It demonstrates how
these co-occurrences can be used as a means for discovering
implicit spatial relationships between non-spatial and spa-
tial concepts. CGTag uses local and global graphs for repre-
senting the co-occurrence relations. The global graph keeps
growing as more concepts and relations are identified. CG-
Tag has a query-processing algorithm that identifies the spa-
tial types related to a query-specified non-spatial concept.
Experimental results illustrate that concept co-occurrences
within the same textual resource is a viable mean for cap-
turing the implicit relation between non-spatial and spatial
concepts.
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