
On Map-Centric Programming Environments
(Vision Paper)∗

Walid G. Aref Sunil Prabhakar Jaewoo Shin Ruby Y. Tahboub Aya Abdelsalam
Jalaleldeen W. Aref

Purdue University, West Lafayette, Indiana
{aref,sunil,shin152,rtahboub,jaref}@cs.purdue.edu, aya.abdelsalam.91@gmail.com

ABSTRACT
2D maps and 3D globes can be used as programming toys to
help students learn programming in contrast to using robots,
visual, or multimedia components in Computer Science I
introductory programming courses. This paper studies re-
search challenges related to supporting this concept, and
presents one instance of a 2D and 3D map-based program-
ming environment to motivate these challenges.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education; D.2.6 [Programming Envi-
ronment]: Map-integrated Environment.

General Terms
Design.

1. INTRODUCTION
Academic institutions have been challenged to develop in-

novative methods to increase the interest of high-school stu-
dents in learning Computer Science as well as to improve
retention among Computer Science undergraduate students.
Nowadays, computer literacy among the incoming student
population has increased significantly due to the ubiquity
of smartphones and tablets as well as the ubiquity of com-
puter gaming and social-networking applications. Computer
programming education needs to go beyond the boring na-
ture of the freshman Programming I courses to address this
change in the demographics of the incoming student body.
A first program that prints “Hello World!” on the screen is
not thrilling anymore to students playing computer games
with high-quality graphics since kindergarten. To add ex-
citement, several colleges have redesigned their freshman

∗Walid G. Aref’s research is partially supported by the Na-
tional Science Foundation under Grants IIS 1117766 and IIS
0964639.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SIGSPATIAL ’15, November 03-06, 2015, Bellevue, WA, USA
Copyright 2015 ACM 978-1-4503-3967-4/15/11
http://dx.doi.org/10.1145/2820783.2820886 ...$15.00.

Programming I courses to use toy devices, e.g., Robots [8],
or multimedia [7]. The target would be to program the robot
to perform certain tasks while learning various programming
concepts in the process. Although interesting to some stu-
dents, using robots has several disadvantages. High setup
cost in obtaining and maintaining the robots is one set back.
Another disadvantage is the frustration that many students
have when dealing with hardware as well as software debug-
ging issues simultaneously.

In this vision paper, we propose to use 2D and 3D navi-
gational spaces, e.g., Maps, Globes, and the Solar System,
as the “toy” through which freshman CS students learn pro-
gramming concepts. Besides the low setup cost, learning
using 2D and 3D maps adds the excitement needed by in-
troducing high-quality graphics and high interactivity by re-
lating the programming tasks to maps or photos of locations
that the students can relate to. Moreover, learning program-
ming using maps and globes can be very suitable to students
and researchers in the area of Spatial Computing [6] and Ge-
ographic Information Science and Systems (GIS) [9]. Also,
learning to program using maps and globes is more appeal-
ing when developing curricula that promote Computational
Thinking [10, 1].

1. address = read_address("305 N University St",
 "West Lafayette", "IN", "47907")
2. display_message(“Hello Earth”, address)

Figure 1: The visualization of a “Hello Earth” pro-
gram in LIMO using Google Earth.

Following this vision, we have prototyped LIMO, a web-
based map-centric visual environment that is designed around
the activities of moving objects on 2D and 3D versions of a
map. LIMO’s current version supports interfaces to Google
Maps (2D) [3] and Google Earth (3D) [2]. In LIMO, a set
of simple programming constructs are made available to the
student programmer to build programs of various degrees of
complexities. LIMO offers script and visual interfaces for
programming so that as the LIMO programs execute, their
animations are displayed simultaneously on the visual inter-
face. In addition, LIMO has simple programming interfaces
that provide access to the underlying road network as well
as a points-of-interest (POI) dataset extracted from Open-
StreetMap [4]. A backend PostgreSQL [5] database is used
to store the road network and POI databases.

1.1 Example Map-based Programs
Program 1. Hello Earth. Figure 1 demonstrates a

“Hello Earth” program that displays “Hello Earth” on ad-
dress ‘305 N University St, West Lafayette, IN 47907”. The
program uses a function termed read address that takes
as input a textual address where the ”Hello Earth” message
needs to be placed. Then, the program displays the message
on the map using a display message function.

Program 2. Following Directions. Figure 2 gives a
simple program that starts from one address and follows di-
rections until it reaches a certain destination. The program
informally illustrates the use of several LIMO programming
constructs, mainly start at address, move distance, turn,
move to next intersection, and move until intersection.

1. address = read_address("700 Hillcrest Rd",
"West Lafayette", "IN", "47906")
2. display_marker(address)
3. start_at("com1", address,"EAST")
4. move_to_next_intersection("com1")
5. turn_to("com1", "Ravinia Rd", "NORTH")
6. move_until("com1", "Woodland Ave")
7. turn_to("com1", "Woodland Ave", "left")
8. move_distance ("com1", 0.09)
9. last_location = get_current_point("com1")
10. display_marker(last_location)
11. show_on_map("com1")

Figure 2: A simple LIMO program for following di-
rections to reach from one address location to an-
other using OpenStreetMap.

Program 3. Locating Nearby Airports. Figure 3
gives a more elaborate program that uses the underlying
Point-Of-Interest (POI) database to retrieve the nearby air-
ports to a given focal point (a k-nearest-neighbor opera-
tion). The program illustrates the use of a getall function
to retrieve the POIs from the underlying database. The
k-nearest-neighors are identified by simply looping over all
airports in a given area (in this case, the State of Indiana)
and computing and displaying the distance between the focal
point and each airport. The top five airports are reported
and are marked on the map (Refer to Figure 3).

The examples above demonstrate the use of several LIMO
programming constructs. Although not the focus of this
paper, to give the reader a more holistic view, other LIMO
programming constructs are briefly listed in Table 1.

2. CHALLENGES
LIMO is one example of a map-centric programming lan-

guage. It is a proof-of-concept to demonstrate the feasibility
of having 2D and 3D maps as the underlying toy for learn-

Table 1: Sample LIMO Programming Library
Category Function Name Description/ Options

Map
(Basics)

start at(name, address,
direction)

Sets Commuter’s start
location to address with
heading direction

move distance(name,
distance),
move until(name, street),
move to next intersection
(name)

Move Commuter for
certain distance or until
a clear
street/intersection

turn to(name,
streetName, direction)

Re-orient the commuter
towards a new street and
direction, e.g., 123
University St. and South

display message
(message,
address|location)

Place a text message,
e.g., at a given address
or at a geo-location

display marker (address|
location)

Place a marker on the
map at a given address
or a geo-location

display [distance|
time](commuter)

Display total
distance/time commuted
so far

compute distance(add1,
add2)

Return the distance
between two addresses or
geo-locations

Spatial
get location(address)

Return a point that
represents the
geo-coordinate of the
given address

get(name, description,
geometric shape)

Return the location (as
geometric shape) of the
place that matches
place-name and
description

get all(description,
geometric shape)

Return a list of locations
(as geometric shape) for
places that match the
input description

overlaps| touches|
intersects| contains
(shape1, shape2)

Boolean operators that
test whether two shapes:
overlap, touch, intersect,
or contain one another

display shape (geometric
shape)

Display geometric shape
(e.g., lake boundary) on
map

Figure 3: Example LIMO program to find the nearest five airports to a given textual address. Also, the
figure illustrates the various components of the LIMO programming environment, mainly a program scripting
area, a program output area, and an interactive map.

ing computer programming. However, as can be obvious
already, there are many research challenges that need to be
addressed. There are expressiveness challenges, interfacing
challenges, and performance challenges. We highlight these
challenges below.

2.1 The Expressiveness Challenge

2.1.1 Proper Design of the Programming Constructs
The question is: What are the proper programming con-

structs to have in a map-centric programming language?
The programming constructs should be: (a) Ease to use, and
(b) Complete. These programming constructs should fully
address the map navigation functions as well as seamlessly
integrate and weave the POI database into the programming
language.

2.1.2 Defining a Minimal Set of Programming Con-
structs

The challenge here is to define a minimal set of map nav-
igation programming constructs that are both sound and
complete. It is important to balance that with the ease of
use of the programming constructs. An important issue is to
draw a line between what makes a primitive programming
construct and what is left for the programmer to realize. For
example, is shortest path a primitive? or should LIMO pro-
vide the constructs to be able to realize one shortest-path
algorithm? Similarly, is the k-nearest-neighbor (kNN) oper-
ation a primitive or should the programmer realize a KNN

algorithm from a set of provided primitives? The cutoff or
boundary between what a primitive programming construct
is and what is not needs to be studied.

2.1.3 Data Types
Identifying the types of the spatial objects that the map-

centric programming language will handle is important. In
addition to the regular geometric types, e.g., points, line seg-
ments, poly-lines, etc., how will the programming language
deal with the temporal aspects of these types, e.g., trajec-
tories of moving objects, and the programming constructs
that operate on the trajectories? While being comprehen-
sive is good, this may make the programming language hard
to learn. Also, how text data interplays with map and lo-
cation data is important to address. LIMO tries to address
this issue with the programming interfaces that it provides,
but this needs to be studied more thoroughly.

2.2 The Interfacing Challenge

2.2.1 The Connection Between the Textual and the
Map Interfaces

Designing the visual interface of the programming lan-
guage and the degree of interaction between the textual pro-
gramming interface and the map interface are important,
e.g., when the user clicks on the map and how this affects
the programming interface. Also, as the programs execute,
when do the effects of the execution of the programming
primitives get reflected on the map? In other words, it is

important to utilize the map as both an input and output
devices to the map-centric programs.

2.2.2 Identifying the Various Types of Visual Map In-
terfaces and their Effect on the Programming
Constructs

In contrast to limiting the interface to 2D and 3D maps,
other possible choices of visual map interfaces are a galaxy-
level visual interface, an inter-galactic visual interface, or
a 2D or 3D indoors visual interface. Because the way the
navigation is performed in each visual interface may differ,
new programming constructs may be needed for each visual
interface.

2.2.3 Concurrent Visual Map Interfaces
Also, it is feasible that the programming environment per-

mits a combination of concurrent multiple 2D and 3D map
interfaces. Defining how the programming interface will in-
teract and will make use of these concurrent interfaces is
challenging. However, allowing multiple concurrent map in-
terfaces will also enable concurrent programming exercises.

2.2.4 Database Interfacing
The types of the underlying databases that the map-centric

programming language can have access to may vary. For
example, one map-centric programming language may al-
low access to only a 2D road-network map database. An-
other may add a Points-of-Interest (POI) database, e.g.,
shops, malls, airports, clubs, etc. Other possibilities are
3D glode databases (includes road networks, countries, con-
tinents, oceans, etc.) or a galactic and intergalactic sky
database. The challenge is to provide a uniform and simple
interface that would allow each of these datasets to be in-
tegrated seamlessly into the map-centric programming lan-
guage, and explore whether specific programming constructs
will need to be tailored for each underlying database or not.

2.3 Performance and Productivity Challenges

2.3.1 Modeling location and geocoding text addresses
Location information can be either presented using a tex-

tual address or a geo-coordinate. The mapping between the
two in both directions is a core operation in a map-centric
programming language and should be supported in a seam-
less and very efficient way.

2.3.2 Response Time and Interactivity
Having real-time response to all operations is important.

The interaction between the visual interface and the under-
lying databases that are accessed by the programming lan-
guage constructs need to be very efficient. Approximate vs.
exact execution of these constructs needs to studied in light
of performance and real-timeliness needs. Also, if approxi-
mate techniques are to be used, how will this affect the pro-
gramming language interface? For example, should the pro-
grammer specify the level of approximation or confidence-
level guarantees while coding with the map-centric program-
ming language?

2.3.3 Novel Debugging Tools
Designing a proper debugger for debugging the map-centric

programs with proper interactions and interrogations be-
tween the textual and visual map interfaces is an interesting

subject. New single-step modes and map-based breakpoints
and stopping criteria at landmarks may need to be defined.
For example, the program should stop if a variable in the
program reaches a certain geographic location, and similar
map-based debugging criteria and constructs need to be de-
veloped for map-centric programming languages.

2.3.4 Programming Paradigms
It is important to study how map-centric programming

languages can be used to teach the various programming
paradigms, e.g., procedural vs. object-oriented program-
ming languages.

3. CONCLUSIONS
Based on practical experience with the LIMO system, we

realize that map-centric programming languages are inter-
esting and important. They can help Computer Science
students as well as the spatial computing community. It
would be important to identify other applications of the
map-centric programming languages beyond teaching how
to program, e.g., as a simulation tool, for verification of di-
rections, for the visually impaired, and traffic and dynamic
constraints.

4. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous review-

ers for their constructive comments. The support by the
National Science Foundation under Grants IIS 1117766 and
IIS 0964639 is greatly appreciated.

5. REFERENCES
[1] Computer science curricula 2013. https://www.acm.

org/education/CS2013-final-report.pdf.

[2] Google earth. https://www.google.com/earth.

[3] Google maps. https://www.google.com/maps.

[4] Openstreetmap. http://www.openstreetmap.org.

[5] Postgresql. http://www.postgresql.org/.

[6] P. Agouris, W. G. Aref, M. F. Goodchild, E. Hoel,
J. Jensen, C. A. Knoblock, R. Langley, E. Mikhail,
S. Shashi, O. Wolfson, and M. Yuan. From gps and
virtual globes to spatial computing -2020. In The next
transformative technology, computing community
consortium (CCC) workshop proposal.
http: // archive2. cra. org/ ccc/ files/ docs/

spatialComputing_ 2. pdf , 2012.

[7] M. Guzdial. A media computation course for
non-majors. In ACM SIGCSE Bulletin, volume 35,
pages 104–108, 2003.

[8] T. Lauwers and I. Nourbakhsh. Designing the finch:
Creating a robot aligned to computer science
concepts. 2010.

[9] P. A. Longley, M. F. Goodchild, D. J. Maguire, and
D. W. Rhind. Geographic information science and
systems. John Wiley & Sons, 2015.

[10] J. M. Wing. Computational thinking. CACM,
49(3):33–35, 2006.

