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ABSTRACT
The ubiquity of location-aware devices and smartphones has un-
leashed an unprecedented proliferation of location-based services
that require processing queries with both spatial and relational
predicates. Many algorithms and index structures already exist for
processing k-Nearest-Neighbor (kNN, for short) predicates either
solely or when combined with textual keyword search. Unfortu-
nately, there has not been enough study on how to efficiently pro-
cess queries where kNN predicates are combined with general rela-
tional predicates, i.e., ones that have selects, joins and group-by’s.
One major challenge is that because the kNN is a ranking opera-
tion, applying a relational predicate before or after a kNN predicate
in a query evaluation pipeline (QEP, for short) can result in different
outputs, and hence leads to different query semantics. In particu-
lar, this renders classical relational query optimization heuristics,
e.g., pushing selects below joins, inapplicable. This paper presents
various query optimization heuristics for queries that involve com-
binations of kNN select/join predicates and relational predicates.
The proposed optimizations can significantly enhance the perfor-
mance of these queries while preserving their semantics. Experi-
mental results that are based on queries from the TPC-H benchmark
and real spatial data from OpenStreetMap demonstrate that the pro-
posed optimizations can achieve orders of magnitude enhancement
in query performance.

1. INTRODUCTION
The widespread use of location-aware devices has led to count-

less location-based services that embed complex queries with spa-
tial as well as relational predicates. This demands spatial query
processors that can efficiently process spatial queries of various
complexities.

One of the most ubiquitous spatial predicates is the kNN-Select,
e.g., find the k-closest restaurants to my location (or any focal
point). Another important spatial predicate is the kNN-Join, e.g.,
find for each gas station the k-closest fire departments. A kNN-
Join can also be useful when multiple kNN-Select predicates are
to be executed on the same dataset. To share the execution, ex-
ploit data locality, and avoid multiple yet unnecessary scans of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

underlying data (e.g., as in [12]), all the query focal points of the
kNN-Select predicates are treated as an outer relation and process-
ing is performed in a single kNN-Join.

This paper studies the class of queries that combine spatial kNN
predicates with relational predicates. Such queries arise frequently
in practice. Examples of such queries include: (i) Find a restaurant
that is close to my location (kNN-Select predicate) and is within my
budget (relational select); (ii) Find (hotel, restaurant) pairs that are
close to each other (kNN-Join predicate) such that the hotel is a 5-
star hotel (relational select), or that the restaurant offers vegetarian
food (relational select), or that the hotel is one of my preferred ones
(relational join with my-preferred hotels table).

Queries that involve both kNN and relational predicates raise
important challenges. To illustrate, consider the following exam-
ple for two queries that involve kNN-Join and relational predicates.
Assume that we have a Restaurant Table, say R, and an Hotel Table,
say H , with the schemas: (id, location, seafood) and (id,
location), respectively. Attribute R.seafood is Boolean and
takes the value True if the restaurant provides seafood, and False

otherwise. The k-NN-Join operates on Attributes R.location and
H.location that represent the locations of the tuples in the two-
dimensional space.

EXAMPLE 1.
(a) For each hotel, find the restaurants that provide seafood and are
amongst the hotel’s k-closest restaurants.
(b) For each hotel, find the k-closest restaurants from those that
provide seafood.

Figure 1 gives the QEPs, relational algebraic expressions, and
the output corresponding to the two queries of Example 1 for
k = 4. The triangles denoted by h1 and h2 represent the locations
of the tuples in the Hotel Table, and the circles represent the loca-
tions of the tuples in the Restaurant Table, denoted by r1 through
r9. For each Restaurant tuple, the value of the Boolean attribute
R.seafood is indicated inside the corresponding circle (An ‘X’
indicates that seafood=False while a checkmark indicates that
seafood=True). As the figure demonstrates, the two QEPs pro-
duce different outputs.

Although the above queries seem similar, they have different se-
mantics. In the expression: (σB(A 1kNN B)), conceptually, the
kNN-Join should be performed before filtering any restaurants. In
contrast, in the expression: (H 1kNN σ(R)), conceptually, the
kNN-Join should be applied after all the non-seafood restaurants
are filtered out. Nowadays spatial query processors do not disam-
biguate these semantics. We refer to the semantics of the former
expression as Pre-Filter and the semantics of the latter expression
as Post-Filter. Similar semantics arise for queries with kNN-Select
and relational predicates.
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(a) A query with a Pre-Filter kNN-Join. The output
pairs are: (h1, r2), (h1, r5), (h1, r8), (h2, r2),
and (h2, r4).
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(b) A query with a Post-Filter kNN-Join. The output
pairs are: (h1, r1), (h1, r2), (h1, r5), (h1, r8),
(h2, r2), (h2, r4), and (h2, r5), (h2, r8).

Figure 1: The Pre-Filter and Post-Filter semantics for queries
with kNN-Join and relational predicates.

It is up to the user to choose the proper semantics for the query.
While in the above example it might be more intuitive that the user
requires the Post-Filter semantics (i.e., retrieve exactly k restau-
rants for each hotel regardless of the closeness between the hotel
and the restaurants), in some other scenarios, the closeness of an
entity can have high significance on the intended semantics of the
query. To illustrate, consider the following example:

EXAMPLE 2.
For each school, we need to make sure that the nearest hospital has
an urgent care unit. Assume that we want to find the schools that
do not satisfy this condition, i.e., schools with the nearest hospital
not having an urgent care unit.

A possible solution to the above query is to select for each school
the nearest hospital, i.e., a kNN-Join (k = 1), and then apply a
relational predicate (has urgent care = False) to each resulting pair.
Finally, the list of intended schools is retrieved. Observe that if
the relational predicate is applied first before the kNN-Join, during
the evaluation of the kNN-Join, every school will be joined with
a hospital that does not have an urgent care. In this case, the final
result will be all the schools, which is clearly not the correct query
answer because some schools may have a neighboring hospital that
does have an urgent care unit. These schools were filtered out (too
early) by the relational predicate.

In addition to the challenge of disambiguating the semantics of
queries with kNN and relational predicates, a performance chal-
lenge emerges. Assume that a user intends to apply the Pre-Filter
semantics for the query in Figure 1(a). Similarly to relational joins,
the kNN-Join is a relatively costly operation. A well-known heuris-

tic for optimizing a join is to push the select(s) below the join in
the QEP (e.g., see [19]). However, if we apply such heuristic to
the QEP of Figure 1(a), it will lead to the Post-Filter semantics.
The lack of such optimization calls for new optimization techniques
that can still leverage the pruning effect of selection without com-
promising the correctness of evaluation according to the intended
semantics.

In addition to the above case of interaction between kNN-Join
and relational predicates, we study the cases of interaction between
kNN-Select and relational predicates. For each case, we identify
the possible semantics, and present optimization techniques that
can enhance the query performance while preserving the semantics.
To arbitrate between the possible optimization alternatives and the
possible QEPs for each query, we utilize our techniques in [5] to
estimate the cost of the kNN predicates and decide the cheapest
QEPs to execute.

The contributions of this paper are summarized as follows:

• We identify the various semantics for queries with kNN and
relational predicates.

• We present various optimization heuristics for queries with
kNN-Select/Join and relational predicates that can enhance
the query performance while preserving the semantics (Sec-
tions 4 and 5).

• We extend our cost model in [5] to show how a query op-
timizer can arbitrate between the various QEPs that queries
with kNN and relational predicates can have (Section 6).

• We conduct extensive experiments using queries from the
TPC-H benchmark [2] and real spatial datasets from Open-
StreetMap [1]. The experimental results demonstrate that
the optimization heuristics coupled with the cost model can
achieve a query performance gain of up to three orders of
magnitude (Section 7).

2. RELATED WORK
A large body of research has tackled location-based queries. We

categorize the related work that is in line with the scope of this
paper into three main classes: (1) processing single-operator spatial
queries, (2) processing queries that involve spatial and non-spatial
operators, and (3) estimating the cost and the selectivity of spatial
operators.

In the first class, several research efforts have targeted the effi-
cient processing of queries with single spatial or spatio-temporal
operators, e.g., k-nearest-neighbor, reverse nearest-neighbor, ag-
gregate nearest-neighbor, range, and spatial-join operators (e.g.,
see [7, 17, 23, 28, 37, 40]). However, queries in this class are
purely spatial with no relational predicates.

In the second class, two lines of research have been pursued:

1. Processing spatial queries with relational operators: Sec-
ondo and the BerlinMOD benchmark [15, 16] study the pro-
cessing of queries that involve combinations of spatial range
predicates and relational predicates. However, they address
neither the optimization of these queries nor the processing
of queries that combine kNN and relational predicates. [41]
studies the processing of the spatial kNN-Select/Join pred-
icates inside a relational database, but does not address the
optimization of such predicates when combined with rela-
tional predicates in the same query.

2. Spatial keyword queries: [13] surveys the state-of-the-art
for geo-textual indices that address spatial keyword queries.



Usually, these indices have two components: (i) a spatial in-
dex, e.g., an R-tree and (ii) a text index, e.g., an inverted file.
Some indices loosely combine these two components while
others integrate them tightly resulting in hybrid indices, e.g.,
the IR-Tree [14, 25, 39]. Although useful, these indices
are optimized only for spatio-textual search and cannot be
directly used for general predicates on relational attributes,
e.g., hotel price and customer rating of a restaurant, etc.

In the third class, several research efforts (e.g., see [3, 6, 8, 9, 11,
22, 26, 27, 36]) tackled the estimation of the selectivity and cost of
the spatial join and range operators. [5, 38] study the cost of the
kNN predicates. In this paper, we adopt our cost model in [5] to
optimize the execution of queries that combine kNN and relational
predicates.

3. PRELIMINARIES
We assume that the data consists of points in the two-

dimensional space. For simplicity, we use the Euclidean distance
as the distance metric. We do not assume a specific indexing struc-
ture. The algorithms can be applied to a quadtree, an R-tree, or
any of their variants, e.g., [10, 18, 20, 24, 29]. These are hierarchi-
cal spatial data structures that recursively partition the underlying
space/points into blocks until the number of points inside a block
satisfies some criterion (e.g., being less than some threshold). We
just assume that whatever index is adopted, it will provide a col-
lection of leaf blocks where the count of points in each block is
maintained.

We make extensive use of the MINDIST and MAXDIST met-
rics [28]. Refer to Figure 2 for illustration. The MINDIST (or
MAXDIST) between a point, say p, and a block, say b, refers to
the minimum (or maximum) possible distance between p and any
point in b. Similarly, the MINDIST (or MAXDIST) between two
blocks is the minimum (or maximum) possible distance between
them. In some scenarios, we process the blocks in a certain order
according to their MINDIST from a certain point. An ordering of
the blocks based on the MINDIST from a certain point or block is
termed MINDIST ordering.
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Figure 2: The MINDIST and MAXDIST metrics.

In this paper, we focus on the variants of the kNN operations
given below. Assume that we have two tables, say R and S, where
each tuple represents a point in the two-dimensional space and con-
tain some other attributes that describe the point. For example, for
an hotel table, hotel location is the 2D-point spatial attribute, while
hotel name, hotel address, hotel rating, and hotel amenities are at-
tributes that describe an hotel.

• kNN-Select: Given a query-point q, σk,q(R) returns the k-
closest to q from the set of points in R.

• kNN-Join: R 1kNN S returns all the pairs (r, s), where
r ∈ R and s ∈ S, and s is among the k-closest points to r.

Observe that the kNN-Join is an asymmetric operation, i.e., the
two expressions: (R 1kNN S) and (S 1kNN R) are not equiva-
lent. In the expression (R 1kNN S), we refer to Relation R as the
outer relation and to Relation S as the inner relation.

We assume that a query is compiled into a binary tree-structured
QEP of pipelined operators that follow a lazy evaluation scheme
using operator iterators. Each operator is aware of its left and right
child operators. A unary operator, e.g., select, has only one child
operator. All the operators are pull-based. Starting from the root,
each operator in the QEP calls the getNext() method of its di-
rect child operator(s) to get a tuple. Then, the same method is re-
cursively called down the QEP by the underlying operators until the
table-scan operators at the leaf level are reached. Once an operator
gets its next tuple, it performs its designated operator logic, be it
a select, a join, or a group-by, and reports its output to its parents
to respond to the parent’s getNext() call. For more details on
pull-based query evaluation pipelines, the reader is referred to [19].

4. KNN-SELECT WITH RELATIONAL
PREDICATES

As discussed in Section 1, depending on the order of evaluat-
ing a kNN-Join in a QEP, a query with a kNN-Join and relational
predicates can have two semantics, namely, the Post-Filter and Pre-
Filter semantics. Similarly, queries with kNN-Select and relational
predicates have the same two semantics. To illustrate, consider the
following example. We use the same schema as in Example 1.

EXAMPLE 3.
(a) From the k-closest restaurants to my location q, find the restau-
rants that provide seafood.
(a) From the restaurants that provide seafood, find the k-closest to
my location q.

Figure 3 gives the QEPs, relational algebraic expressions, and
the output corresponding to the two queries of Example 3 for
k = 4. We use the same notations as in Figure 1. As the fig-
ure illustrates, the two queries produce different results, and hence
they have different semantics. We refer to the semantics of the
query in Example 3(a) as Pre-Filter, and the those of the query in
Example 3(b) as Post-Filter.

As mentioned in Section 1, it is up to the user to choose which
semantics to apply. In the rest of this section, we study alternative
query optimization heuristics that can enhance the execution of the
above queries while preserving their semantics.

4.1 Pre-Filter kNN-Select
Given an input Relation, say Rs, a query with a Pre-Filter kNN-

Select retrieves the tuples that qualify a set of relational predi-
cates from among the tuples that are k-closest to a certain query-
point, say q. The relational predicates can arbitrarily involve se-
lects, joins, or group-by’s on Rs as well as other relations, say R1

through Rn. Based on the semantics of the query, tuples from Rs

that are amongst the nearest-neighbors say q are the only tuples that
should contribute to the result of the query. Intuitively, to process
such query, the kNN-Select should be performed early in the QEP,
and then the relational predicates should be applied afterwards. Re-
fer to QEP(a) in Figure 4 for illustration.

Because the cost of the kNN-Select depends on many parame-
ters, e.g., the value of k and the location of q, performing the kNN-
Select early in the QEP may be costly and can lead to suboptimal
overall query performance. This is especially true when the selec-
tivity of the relational predicates is high. In such case, applying
the relational predicates first and selecting the tuples that belong to
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(b) A query with a Post-Filter kNN-Select. The
output is: r1, r2, r5, and r8.

Figure 3: The Pre-Filter and Post-Filter semantics for queries
with kNN-Select and relational predicates.

the kNN may result in better performance. An interesting problem
is how to select the nearest-neighbors after applying the relational
predicates knowing that if a regular kNN-Select predicate is ap-
plied, it will lead to the Post-Filter kNN semantics. To address this
problem, we introduce the k-in-circle optimization heuristic. For
each tuple, say t, that qualifies the relational predicates, we count
the number of points that are included inside the circle centered
at t and whose radius equals the distance between q and t. If the
number of points in the circle is ≥ k, we determine that t does not
belong to the answer of the query, and vice versa. Refer to Figure 5
for illustration. Assume that points t1 and t2 qualify the relational
predicates. When k = 4, t1 belongs to the nearest-neighbors of q
because the corresponding circle encloses 2 points; in contrast, t2
is ignored because the corresponding circle encloses 4 points.

Notice that the counting process is robust. Since we store the
count of points in each block of the index, when a block is com-
pletely included within the circle, the count of points in that block
is simply added to the total count without examining any of the
points in that block. Similarly, when a block is completely outside
the circle, that block is pruned.

To further enhance the k-in-circle optimization, instead of per-
forming the counting for every tuple that qualifies the relational
predicates, we apply the counting only for the k-closest to the query
location. These k-closest tuples can be efficiently computed using
a priority queue. Afterwards, we scan these k-closest tuples in de-
creasing order of their distance from the query point (by successive
retrievals of the top element in the priority queue). Given the top
element in the priority queue, we do the counting process and if the
corresponding count is ≥ k, we ignore that tuple and get the next
tuple from the priority queue. If the count is < k, we determine that
this tuple and all the remaining tuples in the priority queue belong
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Rs

!kNN

(a)

Relational 
Predicates

Relational 
Predicates

(b)

Rs

R1 R2 Rn

R1

R2

Rn

…

…

k-in-circle

(a)

Pre-Filter Select

Rs

!kNN

(a)

Relational 
Predicates

Relational 
Predicates

(b)

Rs

R1 R2 Rn

R1

R2

Rn

…

…

k-in-circle

(b)

Figure 4: Different QEPs for queries with Pre-Filter kNN-
Select.
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Figure 5: The k-in-circle optimization

to the answer of the query. For instance, in Figure 5, if both t1 and
t2 qualify the relational predicates and k = 5, t2 is scanned first
because it is is farther to q than t1. Since the circle corresponding
to t2 encloses 4 points, we conclude that t2 belongs to the answer
and consequently t1 does.

As we show in Section 6, depending on the cost of the relational
predicates as well as the cost of the kNN-Select, we arbitrate be-
tween QEP(a), QEP(b).

4.2 Post-Filter kNN-Select
Given an input Relation, say Rs, a query with a Post-Filter kNN-

Select retrieves the k-closest tuples to a certain query-point, say
q, from the tuples that qualify a set of relational predicates. The
relational predicates can arbitrarily involve selects, joins, or group-
by’s on Rs as well as other relations, say R1 through Rn.

According to the semantics of this query, pushing the kNN-
Select below the relational predicates in the QEP produces incor-
rect results because it leads to the Pre-Filter semantics. Concep-
tually, the relational predicates should be evaluated first. After-
wards, tuples that qualify these predicates are processed to find the
k-closest to the q. Refer to QEP(a) of Figure 6 for illustration.

Observe that the kNN-Select operator in QEP(a) operates with
no index information because the tuples that qualify the relational
predicates are computed as part of the evaluation of the query, and
hence have no corresponding index. Furthermore, when the se-
lectivity of the relational predicates is low, i.e., when many tuples
qualify the relational predicates, QEP(a) can be costly. The reason
is that in this case, the relational predicates are applied to all the
tuples and many tuples of these tuples will be compared according
to their closeness to q, however, in the end, only k of these tuples
comprise the answer to the query. Thus, although QEP(a) is legit-
imate, it can have bad performance. One important observation is
that the k tuples that comprise the answer of the query are likely to
be located around or within the locality of q. Hence, when the value
of k is relatively small, applying the relational predicates to tuples
that are far from the query-point is redundant and can be avoided
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Figure 6: Different QEPs for queries with Post-Filter kNN-
Select.

without affecting the correctness of evaluation of the query.
To address this issue, [21] presents the Distance-Browsing ap-

proach for processing kNN-Select. The main idea of this ap-
proach is that it can progressively retrieve the next nearest-neighbor
of a query point through its getNextNearest() method.
The Distance-Browsing approach is incremental; every time the
getNextNearest() method is invoked, it does not redo the
search from scratch. Instead, an internal state is kept to enable the
efficient retrieval of the next nearest point without re-scanning the
data points.

To process a query with a Post-Filter kNN-Select, one can apply
QEP(b) of Figure 6. Each time the getNextNearest() of the
kNN-Select operator is invoked, the next nearest tuple is returned,
and then the relational predicates are applied to that tuple. Once
k tuples qualify the relational predicates, the execution terminates
(see the ‘Stop After k’ operator at the root of the QEP). In Section 6,
we show how to choose between QEP(a) and QEP(b).

Although the Distance-Browsing approach is good for queries
with Post-Filter kNN-Select, it is inefficient when applied to
queries with Post-Filter kNN-Joins because it operates on a tuple-
by-tuple basis while processing a kNN-Join is more efficient when
applied on a block-by-block basis. In Section 5.2, we present a
block-by-block approach for processing Post-Filter kNN-Joins.

5. KNN-JOIN WITH RELATIONAL
PREDICATES

In this section, we study the various cases for interleaving a
kNN-Join with relational predicates. [34] studies the conceptual
evaluation of queries that involve similarity predicates [32], e.g.,
similarity joins including ϵ-join and kNN-joins [33]. [34] provides
equivalence transformation rules that guarantee the correctness of
evaluation for such queries. According to [34],

σA(A 1kNN B) ≡ σ(A) 1kNN B.

In other words, when there is a relational predicate, e.g., select on
the outer relation of a kNN-Join, applying the relational predicate
after computing the kNN-Join, i.e., (σA(A 1kNN B)) is equiva-
lent to applying the predicate to the outer relation before computing
the kNN-Join, i.e., (σ(A) 1kNN B). The reason is that applying
the relational predicate before the kNN-Join will filter out some
tuples (points) from the outer relation that would also be filtered
out anyway if the relational predicate is applied after the kNN-join
(Refer to [4, 34] for more detail). Thus, pushing the relational pred-
icates below the outer relation of a kNN-Join is a valid query opti-
mization heuristic. In contrast, when there is a relational predicate,
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Figure 7: Different QEPs for queries with Pre-Filter kNN-Join.

e.g., a relational select on the inner relation of a kNN-Join, apply-
ing the relational predicate after computing the kNN-Join is not
equivalent to applying the relational predicate to the inner relation
before computing the kNN-Join, i.e.,

σB(A 1kNN B) ̸≡ A 1kNN σ(B).

As explained in Example 1 (see Figure 1 in Section 1), we re-
fer to the kNN-Join in Figure 1(a) as Pre-Filter and the one in Fig-
ure 1(b) as Post-Filter. In the rest of this section, we present various
optimization alternatives that can enhance the execution of queries
with kNN-Join and relational predicates while preserving the se-
mantics of these queries.

5.1 Pre-Filter kNN-Join
In this section, we study queries with Pre-Filter kNN-Join, where

the relational predicates are on the inner relation of the kNN-Join.
Conceptually, the kNN-Join should be applied first, then the re-
sulting tuples are filtered out by the relational predicates. Refer to
QEP(a) of Figure 7 for illustration.

Although QEP(a) is legitimate, it can suffer from repeated redun-
dant computations. It is highly likely that a point in the inner rela-
tion corresponds to the k-nearest-neighbors of more than one point
in the outer relation, e.g., Point r2 in Figure 1(b). [35] shows that
for k = 1, the number of the reverse nearest neighbors of a point
can reach up to six. For higher values of k, the number of reverse
nearest neighbors of every point can be much higher, leading to a
large number of repeated computations. To avoid this redundancy,
we use a cache (i.e., a hash table) that stores for every processed
tuple whether it qualifies or disqualifies the relational predicates. If
a tuple is already processed (i.e., exists in the hash table) and qual-
ifies the relational predicates, it is directly emitted to the output,
otherwise, it is ignored.

QEP(b) of Figure 7 is another alternative for evaluating queries
with Pre-Filter kNN-Join. In this QEP, the relational predicates
are applied to the inner relation first and the qualifying tuples are
materialized into a temporary relation. Afterwards, the k-in-circle
optimization heuristic is applied as we explain below. Notice that
this optimization allows for pushing relational select(s) below the
kNN-Join without compromising the correctness of evaluation.

In QEP(b), for every tuple, say po, in the outer relation, the
k-closest tuples in the materialized relation are determined and
scanned in a decreasing order of their distance from po. As dis-
cussed earlier in Section 4, this can be efficiently achieved using a
priority queue. For each pair (po, pi), where pi ∈ the materialized
relation, we count the number of points from the inner relation that
are contained within the circle centered at po and whose radius is
the distance between po and pi. If the number of points within that
circle is ≥ k, pi is ignored, otherwise, the pair (po, pi) is added to
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Figure 8: Different QEPs for queries with Post-Filter kNN-
Join.

the answer of the query as well as all the pairs (po, pr), where pr
is any point that is remaining in the priority queue.

Observe that in QEP(a), any index-based algorithm for process-
ing the kNN-Join (e.g., [31]) can be applied. In contrast, in QEP(b),
the materialized relation has no corresponding index. In this case,
the kNN-Join is executed using a nested-loops join [19]. In Sec-
tion 6, we show how to choose between QEP(a) and QEP(b).

5.2 Post-Filter kNN-Join
In this section, we study queries with Post-Filter kNN-Join,

where the relational predicates are on the inner relation of the kNN-
Join. Conceptually, the relational predicates should be applied to
the inner relation first and the qualifying tuples are materialized in
a temporary relation.1 Afterwards, the kNN-Join can be performed
between the outer relation and the materialized relation. Refer to
QEP(a) of Figure 8 for illustration.

QEP(b) of Figure 8 is another alternative for evaluating queries
with Post-Filter kNN-Join. In this QEP, the index on the inner re-
lation is used with no need to materialize the tuples that qualify
the relational predicates. Given a block from the outer relation,
say bo, we scan the blocks of the inner relation in MINDIST or-
der from bo. We apply the relational predicates to the points in
these blocks from the inner relation and add those tuples that qual-
ify the relational predicates to a list, say qualifyingList. Once the
size of qualifyingList reaches or exceeds k, we record the high-
est MAXDIST, say highestMaxDist, from bo of the encountered
blocks. We continue scanning until a block is encountered whose
MINDIST is greater than highestMaxDist. Afterwards, for every
point in bo, the nearest neighbors in qualifyingList are deter-
mined and are added to the result of the query. Observe that when
a scanning round corresponding to a block from the outer relation
is completed, the scan operator is reset to start a new round of scan
according to the MINDIST of the next block; For illustration, refer
to the dashed line from the kNN-Join operator to the Scan operator
in QEP(b) of Figure 8.

Similarly to QEP(b) of Figure 7, repeated computations of the re-
lational predicates can occur for points from the inner relation that
belong to the k-nearest-neighbors of multiple points in the outer
relation. We apply the same caching mechanism to solve this prob-
lem. In particular, if a tuple is already processed (i.e., exists in
the hash table) and qualifies the relational predicates, it is directly
1Similar to QEP(a) of Figure 7, the materialized relation has no
corresponding index that the kNN-Join operation can leverage.

passed to the kNN-Join operator, otherwise, it is ignored. For il-
lustration, refer to the dashed line from the Scan operator to the
kNN-Join operator in QEP(b) of Figure 8.

6. COST-BASED OPTIMIZATION
In order to decide which query processing strategy to use for a

query with either a Pre-Filter or a Post-Filter kNN-Select/Join, es-
timating the cost of these kNN predicates is essential. For instance,
for a query optimizer to choose between QEP(a) and QEP(b) in Fig-
ure 6, the cost of the kNN-Select predicate needs to be determined.
We adopt our cost estimation techniques in [5] for estimating the
cost of the kNN-Select and kNN-Join operators. Given a kNN op-
erator, in [5], we estimate the number of blocks that are going to
be scanned during the processing of this operator. The main idea
of our cost model is to maintain a compact set of catalog informa-
tion that can be kept in main-memory to enable fast estimation via
lookups. In this paper, we apply the Staircase and Catalog-Merge
techniques [5] to estimate the cost of the kNN-Select and kNN-
Join, respectively.

In the rest of this section, we show how the cost model can be
used to arbitrate between the alternative QEPs that each query can
have.

Pre-Filter kNN-Select
Refer to Figure 4 for illustration. The cost of the kNN-Select
in QEP(a) can be directly estimated using the Staircase technique
in [5]. However, in QEP(b), the kNN-Select operates with no spa-
tial index, and hence the cost is determined by the cost of the rela-
tional operators. Notice that the CPU cost of the kNN operator ap-
plies the k-in-circle optimization is O(n log k) in CPU time, where
n is the number of tuples that qualify the relational predicates be-
low the operator.

Depending on the cost of the relational predicates as well as the
cost of the kNN-Select, we choose either QEP(a) or QEP(b).

Post-Filter kNN-Select
Refer to Figure 6 for illustration. Estimating the cost of the kNN-
Select operator in QEP(b) can be described as follows. Because
there is no correlation between the location of a tuple and whether
it qualifies the relational predicates, we can assume that the tuples
that qualify the relational predicates are uniformly distributed in
the space. If the selectivity of the relational predicates is ρ ≤ 1,
then k

(1−ρ)
tuples will contain k tuples that qualify the relational

predicates. Thus, we substitute the value of k by k
(1−ρ)

and then
apply the Staircase technique in [5] to estimate the cost of the kNN-
Select. However, in QEP(a), the kNN-Select operates with no spa-
tial index, and hence the cost is determined by the cost of the rela-
tional operators.

Depending on selectivity and cost of the relational predicates and
the value of k, we choose either QEP(a) or QEP(b) of Figure 6.

Pre-Filter kNN-Join
Refer to Figure 7 for illustration. The cost of the kNN-Join in
QEP(a) is straightforward. In this case, the kNN-Join operates in
a standard way, and hence its cost can be estimated by directly us-
ing the Catalog-Merge technique in [5]. However, in QEP(b), the
kNN-Join operates with no index on the inner relation, and hence
its cost is equivalent to the cost of a nested-loops join [19]. The
cost of the relational predicates in both QEP(a) and QEP(b) is the
same because QEP(a) applies a caching technique that avoids any
repeated computations. Depending on the relational selectivity and
the value of k, we choose either QEP(a) or QEP(b).
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Figure 9: Part of the schema of the TPC-H benchmark.

Post-Filter kNN-Join
Refer to Figure 8 for illustration. In QEP(a), the kNN-Join operates
with no spatial index, and hence its cost is the same as the cost of
a nested-loops join. The overall cost of this QEP equals the cost of
performing the relational predicates plus the cost of a nested-loops
join [19]. Estimating the cost of the kNN-Join operator in QEP(b)
can be described as follows. Similarly to kNN-Select queries, we
assume no correlation between the location of a tuple and whether it
qualifies the relational predicates, and hence we assume that the tu-
ples that qualify the relational predicates are uniformly distributed
in the space. If the selectivity of the relational predicates is ρ ≤ 1,
we substitute the value of k by k

(1−ρ)
, and then apply the Catalog-

Merge technique in [5] to estimate the cost of the kNN-Join.
Depending on the selectivity and cost of the relational predicates

and the value of k, we choose either QEP(a) or QEP(b) of Figure 8.

7. EXPERIMENTS
In this section, we evaluate the performance of the proposed op-

timization techniques. We realize a testbed in which we imple-
ment the state-of-the-art kNN-Select and kNN-Join algorithms as
described in [21, 31]. In addition, we employ our Staircase and
Catalog-Merge techniques as described in [5] to estimate the cost
of the kNN operators. Our implementation is based on a region-
quadtree index [30], where each node in the quadtree represents
a region of space that is recursively decomposed into four equal
quadrants, subquadrants, and so on with each leaf node contain-
ing points that correspond to a specific subregion. We choose the
quadtree because the blocks of a quadtree do not spatially overlap.
This property leads to robust performance for kNN queries. In our
testbed, we tried an R-tree implementation, but it does not yield the
same good performance as the quadtree even for the baseline kNN
queries due to the spatial overlap of the R-tree blocks. All imple-
mentations are in Java. Experiments are conducted on a machine
running Mac OS X on Intel Core i7 CPU at 2.3 GHz and 8 GB of
main memory.

The datasets used in the experiments are based on the TPC-H
benchmark [2]. We choose to use the TPC-H benchmark because it
is a well-crafted source of relational data with well-defined schema
and queries with complex relational expressions. We generate var-
ious instances of the data using the TPC-H generator with different
scale factors. Figure 9 gives part of the relational schema of the
TPC-H benchmark tables. The size of each table is displayed as
multiples of the scale factor (SF). For instance, if SF = 10, then the
size of the Orders Table is 10× 1.5M = 15M tuples. For illustra-
tion, only the attributes that are relevant to the queries we use are
displayed.

In Figure 9, each of the Customer and Supplier tables has an ad-
dress attribute. The TPC-H-generated values for this attribute are
randomly generated strings. We replace them with real location
data from OpenStreetMap [1]. The location of each point in the

Figure 10: Sample of OpenStreetMap GPS data with a region-
quadtree built on top

data represents the (lat, long) coordinates of real GPS data col-
lected world-wide. Figure 10 displays a sample of the data that we
plot through a visualizer that we build as part of our test bed. The
figure also displays a region-quadtree that is built on top of the data.

The queries we use in the experiments are derived from Query
Q13 specified by the TPC-H benchmark. We choose this query for
the following reasons: 1) it contains a reference to the address at-
tribute in a way that makes it natural to use with a kNN predicate,
2) it has relatively complex relational constructs, e.g., group-by,
and joins, allowing us to demonstrate that the proposed optimiza-
tions work well with relatively complex relational predicates, and
3) the relational constructs in the query allow us to try different
selectivity values, and hence demonstrate how our cost estimation
model can be used to make the right choice for a QEP.

For each customer, say c, Q13 retrieves the number of orders c
has made. To enable different selectivities for our corresponding
relational predicates, we change the query to retrieve a customer if
he made at least one order with price > t. This threshold represents
a tuning parameter for controlling the selectivity or the reduction
factor of the relational expression. The modified query can be
expressed in SQL as follows:

SELECT C.Custkey, COUNT(O.Orderkey) AS N
FROM Customer C, Orders O
WHERE C.Custkey = O.Custkey
AND O.TotalPrice > t
GROUP BY C.custkey
HAVING N > 0;

We try all the possible values of t and map each value to the cor-
responding reduction factor using histograms for the TotalPrice At-
tribute. Furthermore, to speedup the execution of the above query,
we assume the existence of a hash index on Custkey Attribute of
Table Orders (to speed up the join between the Tables Customer
and Orders) as well as a B+Tree index on the TotalPrice Attribute.
Furthermore, we assume that both Supplier and Customer Tables
are indexed using region quadtrees based on Attribute Address.

We embed a kNN-Select or a kNN-Join into the above query.
For each possible query semantics, we have two possible QEPs.
Furthermore, we estimate the cost of each these two QEPs and
choose the one that has the least cost. We refer to the QEP that
automatically chooses the best QEP based on the estimated cost as
the Cost-Based QEP.

For the queries we study, our performance metric is the execution
time. We monitor this metric after varying: 1) the value of k, 2) the
selectivity (i.e., reduction factor) of the relational expression, and
3) the scale factor, i.e., the size of the database.



k Relational First kNN First Optimized

100% 6.693000000000001E-4 0.0010654 5.0050000E-04
99% 0.016011400000000002 2.9190000E-04 2.550000E-04
98% 0.027221099999999998 1.9610000E-04 1.7510000E-04
97% 0.0407575 2.0230000E-04 1.3560000E-04
95% 0.0462737 1.9540000E-04 1.5030000E-04
94% 0.06283140000000001 1.7740000E-04 1.2920000E-04
92% 0.0792482 1.7620000E-04 1.3170000E-04
91% 0.0941053 1.6470000E-04 1.2820000E-04
89% 0.10990789999999999 1.9360000E-04 1.4130000E-04
87% 0.1332827 1.360000E-04 1.1780000E-04
86% 0.15555170000000001 1.7340000E-04 1.2560000E-04
84% 0.1666587 1.370000E-04 1.1550000E-04
82% 0.19164399999999998 1.2680000E-04 1.1280000E-04
80% 0.21357469999999998 1.6030000E-04 1.2420000E-04
78% 0.24253809999999998 1.650000E-04 1.2750000E-04
76% 0.250772 1.6310000E-04 1.2310000E-04
74% 0.26539579999999996 1.6280000E-04  1.2080000000000001E-4
72% 0.2851578  1.5759999999999998E-4 1.2790000E-04
70% 0.3092874 1.6420000E-04 1.2590000E-04
68% 0.3292013 1.6050000E-04 1.2530000E-04

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

0

0.001

0.01

0.1

Reduction Factor
100% 97% 92% 87% 82% 76%

Relational First
kNN-First
Cost-Based

Selectivity of the Whole 
Expression = 50%

Reduction Factor = 99%

�1

(a) k = 10. Scale Factor = 1.

k Relational First kNN First Optimized

2 0.001678467 1.354870000E-04 1.042870000E-04

4 0.0015371200000000001  1.0958099999999999E-4 1.120460000E-04

8 0.00157484 1.030870000E-04  1.0943300000000001E-4

16 0.001514646  1.0946799999999999E-4 1.180180000E-04

32 0.001514073  1.2080399999999999E-4 1.265440000E-04

64 0.0015193099999999998 1.41940000E-04 1.434330000E-04

128 0.001505158  1.7929800000000002E-4 1.81760000E-04

256 0.001517781 2.472940000E-04 2.406190000E-04
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(b) Reduction Factor = 90%. Scale Factor = 1.
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(c) k = 10. Reduction Factor = 70%.

Figure 11: Performance of queries with Pre-Filter kNN-Select.

k Relational First kNN First Optimized

100% 5.8440000E-04 0.0757491 3.960000E-04
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(a) k = 10. Scale Factor = 1.
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2 0.02274018 0.00160834  0.0013175899999999998
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256 0.02136282 0.01074497 0.01032937

512 0.02137446  0.021887669999999998 0.02186395

1024 0.021725759999999997 0.06165687 0.06116523

2048 0.02182145  0.061007410000000005 0.06103974
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8192 0.02158385 0.07474616 0.02138852

16384 0.02156111  0.07390659000000001 0.0215752

32768 0.021479110000000003  0.07378111999999999 0.02133674

65536 0.02148277  0.07422920000000001 0.02149929

131072 0.02122138  0.07397954000000001 0.021323820000000004
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(b) Reduction Factor = 90%. Scale Factor = 1.
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(c) k = 10. Reduction Factor = 70%.

Figure 12: Performance of queries with Post-Filter kNN-Select.

7.1 Pre-Filter kNN-Select
In this experiment, we study a query with a Pre-Filter kNN-

Select. Given a threshold, say t, and a query-point, say q, that is
chosen at random, the query chooses from the k-nearest customers
to q those who have made at least one order of TotalPrice > t. The
query can be expressed in SQL as follows:

SELECT C.Custkey, COUNT(O.Orderkey) AS N
FROM Customer C, Orders O
WHERE C.Custkey = O.Custkey
AND O.TotalPrice > t AND C is kNN q
GROUP BY C.custkey
HAVING N > 0;

We examine two QEPs for the query; Refer to QEP(a) and
QEP(b) of Figure 4 for illustration. We refer to QEP(a) as kNN-
First and QEP(b) as Relational-First. In addition, we examine
the Cost-Based QEP that automatically chooses either QEP(a) and
QEP(b) based on the estimated cost.

Figure 11 gives the performance of the three QEPs and shows
how the Cost-Based QEP succeeds to choose the best QEP in most
of the cases. Figure 11(a) illustrates that the kNN-First QEP has
almost constant performance irrespective of the value of the reduc-
tion factor because the value of k is constant. Because the value
of k is small in this case, it is cheap to apply the kNN-Select first
and apply the relational predicates afterwards to only k tuples, and
hence the kNN-First QEP has better performance (by up to two or-
ders of magnitude). However, as Figure 11(b) demonstrates, the
performance of the kNN-First QEP degrades as the value of k in-
creases, which is a natural result. In contrast, the Relational-First
QEP has constant performance; because the reduction factor is con-

stant (90%), the k-in-circle optimization enables the QEP to pro-
cess the same number of tuples regardless of the value of k.

Figure 11(c) illustrates that for different scale factors, when the
value of k is small, the Cost-Based QEP always makes the right
choice of choosing the kNN-First QEP, leading to three orders of
magnitude gain compared to the Relational-First QEP.

Last but not least, the Cost-Based QEP succeeds to choose the
best QEP in most of the cases. Note that there are some cases
where the Cost-Based QEP does not make the right choice, but
this happens near the points of intersection between the two curves
of the performance of the Relational-First and kNN-First QEPs.
In this case, the two QEPs have almost the same performance; it
does not matter which QEP to choose. In contrast, Figure 11(c)
demonstrates that when the difference in performance between the
two QEPs is significant, i.e., three orders of magnitude, the Cost-
Based QEP always succeeds in making the right choice.

7.2 Post-Filter kNN-Select
In this experiment, we study a query with a Post-Filter kNN-

Select. Given a threshold, say t, and a query-point, say q, that
is chosen at random, the query chooses the k-closest customers
to q from those customers who have made at least one order of
TotalPrice > t. The query can be expressed in SQL as follows:

SELECT C.Custkey, COUNT(O.Orderkey) AS N
FROM Customer C, Orders O
WHERE C.Custkey = O.Custkey
AND O.TotalPrice > t
GROUP BY C.custkey
HAVING N > 0
ORDER BY distance(C.address, q) LIMIT k;



k Relational First kNN First Optimized

100% 0.002207 5.490011 0.001487
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(a) k = 10. Scale Factor = 1.

k Relational First kNN First Optimized

2 3.210176 7.83618 3.115617

4 3.051159 7.483974 3.157592
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(c) k = 10. Reduction Factor = 90%.

Figure 13: Performance of queries with Pre-Filter kNN-Join.
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Figure 14: Performance of queries with Post-Filter kNN-Join.

We examine two QEPs for the query; Refer to QEP(a) and
QEP(b) of Figure 6 for illustration. Similarly to the above exper-
iments, we refer to QEP(a) as Relational-First, QEP(b) as kNN-
First, and the QEP that automatically chooses either QEP(a) and
QEP(b) as the Cost-Based QEP. For the Relational-First QEP, we
use the B+Tree index on the TotalPrice Attribute to retrieve the tu-
ples of TotalPrice < t.

Figure 12 gives the performance of the three QEPs. As illus-
trated in the figure, there is a variability in the dominance of one
QEP over the other. For instance, in Figure 12(a), when the re-
duction factor is high, the performance of the Relational-First QEP
is better by more than two orders of magnitude. In this case, tu-
ples of TotalPrice < t are quickly retrieved from the B+Tree and
the k-closest tuples are quickly selected from them. However, the
kNN-First QEP terminates only when k tuples that qualify the re-
lational predicates (TotalPrice < t) are retrieved (refer to the ‘Stop
After k’ operator at the top of the kNN-First QEP). Hence, for the
same case of high reduction factor, early termination is unlikely to
happen for the kNN-First QEP as the MINDIST Scan operator will
keep scanning almost all the blocks in the entire space. In contrast,
a low value of the reduction factor implies that k matching tuples
will be found around q, and hence, early termination is more likely
to happen; the kNN-First QEP will dominate in this case.

Similarly, Figure 12(b) shows that for small k values, the kNN-
First QEP performs better because in this case, early termination
is more likely to happen. The opposite happens when the value of
k increases because early termination is unlikely to occur in this
case. In either case, the Relational-First QEP blindly processes the
input table without leveraging the spatial locality, and hence has al-
most constant performance. Figure 12(c) illustrates that for differ-
ent scale factors, when the value of k is small, the Cost-Based QEP
always makes the right choice of choosing the kNN-First QEP.

7.3 Pre-Filter and Post-Filter kNN-Joins
In this experiment, we use a kNN-Join between the Supplier and

Customer tables, where a relational expression is applied on the
Customer Table (i.e., the inner table of the kNN-Join). In particular,
we study two queries:

1. A query with a Pre-Filter kNN-Join: Given a threshold t,
retrieve for each Supplier, from the k-closest customers those
who have made at least one order with TotalPrice > t.

2. A query with a Post-Filter kNN-Join: Given a threshold t,
retrieve for each Supplier, the k-closest customers from those
who have made at least one order with TotalPrice > t.

Similarly to the above experiments, for each of the above queries,
we examine two QEPs as well as the Cost-Based QEP that auto-
matically chooses the QEP with the least cost. We refer to QEP(a)
and QEP(b) of Figure 7 as kNN-First and Relational-First, respec-
tively. Similarly, we refer to QEP(a) and QEP(b) of Figure 8 as
Relational-First and kNN-First, respectively.

Figures 13 and 14 give the performance of the various QEPs
at different parameter settings. Figures 13(a) (and similarly Fig-
ure 14(a)) shows that when the reduction factor is high, the
Relational-First QEP performs better (by three orders of magni-
tude). In this case, customers that qualify the relational predicate
are materialized into a small relation, and hence, the kNN-Join will
be easy to perform, either with the k-in-circle optimization for a
Pre-Filter query or with a standard kNN priority queue for a Post-
Filter query. The kNN-First QEP blindly applies the kNN-Join
without leveraging the pruning effect of the high relational selec-
tivity. In contrast, when the reduction factor is low, the kNN-First
QEP performs better (by two orders of magnitude) because the size
of the materialized relation is large in this case, which degrades the
performance of the Relational-First QEP.



Figure 13(b) (and similarly Figure 14(b)) shows that the perfor-
mance of both the Relational-First and kNN-First QEPs degrades
as the value of k increases, which is a natural result because the
k-nearest-neighbors have to be determined in either QEPs.

Figure 13(c) (and similarly Figure 14(c)) shows that the differ-
ence in performance between the QEPs is maintained for different
scale factors when the other parameters are fixed. In this case, be-
cause the reduction factor is high, the Relational-First QEP outper-
forms the kNN-First QEP by almost two orders of magnitude.

Last but not least, the Cost-Based QEP succeeds in selecting the
best QEP in most of the cases except near the points of intersection
between the two curves. This is especially true when the difference
in performance is significant, e.g., three orders of magnitude as in
Figures 13(c) and 14(c). This proves the robustness of our cost
estimation model.

8. CONCLUDING REMARKS
In this paper, we present a comprehensive study for the various

cases of queries with kNN and relational predicates. Such queries
embed two challenges: 1) a semantics disambiguation challenge,
and 2) a performance challenge. We disambiguate the different
semantics that emerge from the coexistence of kNN-Select/Join
and relational predicates within the same query. We present var-
ious optimization heuristics to enhance the performance of these
queries while preserving their semantics. For each query, we apply
a cost-based estimation model that arbitrates between the various
optimizations and possible QEPs that the query can have. Our ex-
periments that are based on the TPC-H benchmark and real spatial
datasets from OpenStreetMap demonstrate orders of magnitude en-
hancement in query performance.
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