
Exploiting Predicate-window Semantics over Data Streams

Thanaa M. Ghanem Walid G. Aref Ahmed K. Elmagarmid

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398

{ghanemtm,aref,ake}@cs.purdue.edu

April 1, 2005

Abstract

The continuous sliding-window query model is used widely in data stream management systems
where the focus of a continuous query is limited to a set of the most recent tuples. In this paper, we
show that an interesting and important class of queries over data streams cannot be answered using the
sliding-window query model. Thus, we introduce a new model for continuous window queries, termed
the predicate-window query model that limits the focus of a continuous query to the stream tuples
that qualify a certain predicate. Predicate-window queries have some distinguishing characteristics, e.g.,
(1) The window predicate can be defined over any attribute in the stream tuple (ordered or unordered).
(2) Stream tuples qualify and disqualify the window predicate in an out-of-order manner. In this paper,
we discuss the applicability of the predicate-window query model. We will show how the existing
sliding-window query models fail to answer some of the predicate-window queries. Finally, we discuss
the challenges in supporting the predicate-window query model in data stream management systems.

1 Introduction

The emergence of data streaming applications calls for new query processing techniques to cope with the
high rate and unbounded nature of data streams. Queries over data streams are characterized by the
following: (1) Most of the queries in the streaming environment are continuous. Continuous queries need
continuous reevaluation as new tuples arrive, and (2) Usually, queries are interested only in a specific part
(window-of-interest) of the received data. The sliding-window query model [1] is introduced to answer
continuous queries that are interested only on the most recent stream tuples. There are two common
types of sliding-windows: Time-based sliding window (e.g., tuples in the last hour) and tuple-based sliding
window (e.g., the last 100 tuples). Window-aware operators (e.g., window-join [3, 5, 6] and window-
aggregates [7]) are modifications of their counterpart traditional operators to support sliding-window
queries. The main difference in window-aware query operators is the need to process tuples expired from
the window as well as new tuples incoming into the window.

1.1 Motivation

Continuous sliding-window queries over data streams have been introduced to limit the focus of a contin-
uous query to a specific part (window-of-interest) of the incoming stream tuples. The window-of-interest

in the sliding-window query model includes the most-recent input tuples. In a sliding-window query over
n input streams, S1 to Sn, a window of size wi is defined over the input stream Si. The sliding-window
wi can be defined over any ordered attribute attr in the stream tuple (e.g., a timestamp or a sequence
number). As the window slides, the query answer is updated to reflect both the new tuples entering the

1



w

Temp90 91 92 93 9489888786

Figure 1: Example 1

sliding-window and the old tuples expiring from the sliding-window. Tuples enter and expire from the
sliding-window in a First-In-First-Expire (FIFE) fashion.

An interesting and important class of queries is not supported by the sliding-window query model.
Consider a continuous query that is interested only in the input tuples that qualify a certain predicate p,
where p is defined over an unordered attribute. For example, consider a temperature monitoring application
in which a large number of sensors are spatially distributed, and each sensor sends continuously its current
temperature. A common query in this environment is: Q1 “Continuously, report the sensor identifiers for

sensors that have temperature greater than 90”. At any time point T ′, the window-of-interest for Query Q1

includes only the sensors that qualify the predicate “temperature greater than 90”. If a sensor S reports a
temperature greater than 90, then S should be considered in Q1’s window. Whenever S reports another
temperature that disqualifies the predicate “temperature greater than 90”, S expires from Q1’s window.
Notice that sensors enter and expire from Q1’s window in an out-of-order manner. A sensor expires (and
hence is deleted) from Q1’s window only when the sensor reports another temperature that disqualifies
the window predicate.

To utilize the sliding-window query model, the query semantics reads as follows: Q2: “Continuously,

report sensor identifers for sensors that have temperature greater than 90 in the last T time units”, where
T is the size of the sliding-window. The Query Q2 is semantically different from Query Q1. The main
difference between the two queries is that the window-of-interest in Q1 includes “sensors having temperature

greater than 90” while the window-of-interest in Q2 includes “sensors that have reported temperature greater

than 90 in the last T time units”.

Example 1: This example illustrates the difference between Q1 and Q2 (with T=5). Consider the
temperature monitoring application where the input stream has the schema <SensorID, Temperature,
TimeStamp>. Assume that the following input tuples have arrived <2,88,1> <2,92,2> <3,91,3> <1,95,4>
<2,89,5> <3,95,6>. Q1 and Q2 produce the following output: (1) When tuple <2,92,2> arrives, Sensor 2
is reported in the answer. Similarly, when tuple <3,91,3> arrives, Sensor 3 is reported in the query answer.
Later, when tuple <2,89,5> arrives, Sensor 2 expires (is deleted) from the answer. On the other hand,
when tuple <3,95,6> arrives, Sensor 3 is not deleted from the query answer since Sensor 3 still qualifies
the window predicate only with a different temperature. Figure 1 gives the behavior of Sensors 2 (white
circles) and Sensor 3 (black circles) in query Q1. (2) In Query Q2, when tuples <2,92,2> and <3,91,3>
arrive, Sensors 2 and 3 are reported in the answer. Later, when tuple <2,89,5> arrives, the answer will
not be affected since temperature 89 disqualifies the predicate. When tuple <3,95,6> arrives, Sensor 3
will be reported again in the query answer. To summarize, at time 6, the answer to Q1 is Sensors 3 and
1, because these are the sensors with temperature greater than 90 at time 6. In contrast, the answer to
Q2 is Sensors 2, 3 and 1. Sensor 2 appears in the answer of Q2, because Sensor 2 reports a temperature
greater than 90 once in its history in the past 5 time units. Notice that Sensor 2 will expire from Q2 at
time 7 (when tuple <2,92,2> is 5 time units old).

2



1.2 The Negative Tuples Approach

In the rest of this paper we assume that the pipelined query execution model with the negative tuples
approach [1, 2] is used to process window queries over data streams. The pipelined query execution model
for data streams is a modification of the one used in traditional database management systems [2] where
all query operators are connected via first-in-first-out queues. In the negative tuples approach, a special
operator, termed EXPIRE, is added at the bottom of the query pipeline; one EXPIRE operator per
data stream. EXPIRE buffers the input stream tuples, and outputs a negative tuple whenever a tuple
expires from the window. The negative tuple is processed by the various operators in the query pipeline
to negate the effect (if any) of the corresponding positive tuple. The output of the continuous query is
a continuous stream of positive and negative tuples. A negative tuple is interpreted as a deletion of a
previously produced positive tuple.

2 The Predicate-window Query Model

The predicate-window query model is a generalization over the sliding-window query model where the
former supports a larger class of continuous queries over data streams. The window-of-interest for the
predicate-window includes the input stream tuples that satisfy a given predicate.

Assumptions: In the predicate window query model, we have the following assumptions:

• Each input stream tuple t has a correlation attribute t.CORAttr. The input stream tuples with the
same value of the correlation attribute are correlated together as follows. If a later tuple tn carries
the same values of the correlation attribute as that of t, then tn is considered an update over t.
In Example 1, the correlation attribute is SensorID. Therefore, tuple <2,89,5> is an update over
tuple <2,91,2>.

• There is no regular pattern for updates. In Example 1, some sensors may send their readings every
fixed time interval and some other sensors send their readings whenever a change in temperature is
detected.

2.1 Continuous Predicate-window Query Semantics

A predicate-window query Q is defined over n data streams S1 to Sn and n window predicates P1 to Pn

where the window predicate Pi is defined over the tuples in stream Si. At any point in time T , the answer
to Q equals the answer to a snap-shot query Q′, where Q′ is issued at time T and the inputs to Q′ are the
tuples in stream Si that qualify the predicate Pi at time T .

Assume that an input tuple ti from stream Si has the following schema: ti <

CORAttr, PAttrs,Attrs >, where CORAttr is the correlation attribute, PAttrs are the attributes over
which the predicate Pi is defined and Attrs are the other attributes. A tuple ti qualifies the predicate Pi at
time T , iff: (1) ti arrives in the stream at point in time before T , (2) ti.PAttrs qualifies Pi and (3) There
is no stream tuple t′i that arrives after ti and t′i.ID = ti.ID.

2.2 Syntax and Operators

We represent the predicate-window by adding a new construct, termed PWINDOW, to SQL. The syntax
for PWINDOW is as follows:

PWINDOW <predicate> ON <CORAttr>

where <predicate> is the predicate that qualifies (and disqualifies) tuples into (and out of) the window
and <CORAttr> is one or more attributes that correlate incoming stream tuples.

3



+/u/−

+/u/−

+/u/−+/u/−

SUM

4

3

S

S

2SS1

PWINDOW PWINDOW

Figure 2: The PWINDOW operator

Example 1 revisited: The following is the SQL syntax for the query Q1 in Example 1:
SELECT S.SensorID

FROM Sensors S

[PWINDOW S.Temperature > 90 ON S.SensorID]

A new operator PWINDOW needs to be incorporated in the stream query engine. The PWINDOW
operator is a generalization of the EXPIRE operator. PWINDOW is placed at the bottom of the query
pipeline (Figure 2). PWINDOW encapsulates the window predicate (or multiple predicates) and applies
it on every incoming stream tuple. PWINDOW is responsible for notifying the query pipeline by any
changes in the window contents. PWINDOW is a statefull operator that needs to keep all tuples currently
in the window in its state H. PWINDOW produces three different types of tuples:

1. Positive Tuple (t+): When a new incoming stream tuple t qualifies the window predicate and
t.CORAttr is not in H, PWINDOW inserts t in H and output a positive tuple for t.

2. Update Tuple (tu): When a new incoming stream tuple t qualifies the window predicate and
t.CORAttr is already in H, PWINDOW updates the attributes of t in H and produces an update
tuple for t as output.

3. Negative Tuple (t−): When a new incoming stream tuple t does not qualify the window predicate
and t.CORAttr is in H, PWINDOW deletes t from H and produces a negative tuple for t as output.

Different operators in the query pipeline will be furnished by methods to process the different types
of tuples. The output of the query is a stream of positive, update, and negative tuples. An update tuple
is interpreted as a replacement for the previously produced positive tuple with the same tuple identifier.
The negative tuple is interpreted as a deletion of the previous positive (or update) tuple with the same
tuple identifier.

3 A Comparison with the Existing Window Approaches

In this section, we show how the existing sliding-window query approaches fail to answer some of the
predicate-window queries. We use query Q1 (from Example 1) as a running example.

3.1 WHERE Clause

The main difference between a predicate in PWINDOW and a predicate in the where-clause is that
a disqualified tuple in the PWINDOW predicate may result in a negative tuple as an output while a
disqualified tuple in the where-clause predicate does not result in any output tuples. We illustrate the

4



difference between the window predicate and the where predicate by the following example. Consider a
SQL query that is similar to Q1 but the window predicate is expressed in the where predicate as follows:
SELECT S.SensorID

FROM Sensors S

WHERE S.Temperature > 90

If this query is continuously running as the stream tuples arrive, at time 2, when tuple <2,92,2> arrives,
Sensor 2 is reported in the query answer. Later, when tuple <2,89,5> arrives, and since the temperature
89 disqualifies the where predicate, tuple <2,89,5> does not affect the query answer. The output from the
SQL query with the where predicate is different from the expected output of Q1. In Q1, although tuple
<2,89,5> disqualifies the window predicate, tuple <2,89,5> results in an output negative tuple to expire
Sensor 2 from the query answer.

The where predicate cannot be used to express predicate-window queries. When a tuple t qualifies the
where predicate and is reported in the query answer, t will remain in the query answer for ever. In the
predicate-window query model, when a tuple t qualifies the window predicate and is reported in the query
answer, later, t may be deleted from the query answer if t receives an update so that t does not qualify
the window predicate any more.

3.2 Sliding-windows

The sliding-window query model fails to answer some of the predicate-window queries (as shown in Example
1). The sliding-window query model is characterized by the following: (1) A window with size w is defined
over an ordered attribute in the stream schema (e.g., a timestamp or a sequence number) and (2) Tuples
enter and expire from the sliding-window in a First-In-First-Expire (FIFE) fashion. Some of the predicate-
window queries do not follow the characteristics of the sliding-window query model. For example, consider
query Q1. The window predicate is defined over the unordered attribute temperature. There is no window
size for the sliding-window that can emulate the behavior of Q1. Moreover, in Q1, tuples enter and expire
from the predicate-window in an out-of-order manner. A tuple expires from the predicate window whenever
the tuple receives an update that disqualifies the window predicate. Due to the different characteristics,
some of the predicate-window queries cannot be answered using the sliding-window query model.

3.3 Partitioned Sliding-windows

Partitioned sliding-window queries have been introduced and used by several data stream management
systems [1, 7]. A partitioned sliding-window partitions the input stream into sub-streams and the sliding-
window is applied on each sub-stream independently. The windows of the various sub-streams are merged
to produce the final query answer. The CQL clause for the partitioned-window is as follows:
PARTITIONBY <PARAttr>

ROWS <w>

WHERE <predicate>

where <PARAttr> is the partitioning attribute, <w> is the sub-stream sliding-window size, and
<predicate> is an optional window filter.

The “partition by <PARAttr>” in the partitioned-window clause is similar to the “ON <CORAttr>”
in the PWINDOW clause. The two clauses aim to group input stream tuples having the same value of
some attribute. Although having some similarities, we show that partitioned sliding-windows fail to answer
some predicate-window queries.

A partitioned sliding-window query may have two classes of predicates as follows: (1) Partitioned-
window predicates (where <predicate> in the PARTITION BY clause) and (2) Query predicates (the
outer where clause in the query). The difference between the partitioned-window predicate and the query

5



(a) (b)

SS

SELECT

SELECT

EXPIRE

EXPIRE

Figure 3: Partitioned sliding-window

predicate is as follows. The partitioned-window predicate qualifies (and disqualifies) tuples into (and out-
of) the window for each sub-stream. In this case, the window size is calculated over the qualified tuples
only. For example, if the window size is 3, then at any time point, the last 3 qualified tuples will be
inside the window of the corresponding sub-stream. On the other hand, the query predicate qualifies (and
disqualifies) tuples into (and out-of) the query answer. In this case, the window size is calculated over
both qualified and disqualified tuples. For example, if the window size is 3, the last 3 tuples will be inside
the window of the corresponding sub-stream. From these last 3 tuples, only the qualified tuples will be
used in the query answer.

In the following, we show that both the partitioned-window query with window predicates and the
partitioned-window query with query predicates are semantically different from the window predicate in
the predicate-window query model.

3.3.1 Partitioned-window predicates

A partitioned-window clause partitions the stream into sub-streams. A partitioned-window predicate
qualifies (and disqualifies) tuples into (and out-of) each sub-stream. Assume that a partitioned sliding-
window Qp query that is similar to Q1 but with the window predicate “temperature > 90” is used as the
partitioned-window filter. The CQL syntax for Qp is as follows: SELECT S.SensorID

FROM Sensors S

[Partition By S.SensorID

Rows 1

WHERE S.Temperature > 90]

The semantics of the query Qp is as follows: “For each sensor, continuously report the last reading with

temperature > 90”. The query pipeline for Qp is shown in Figure 3a, where the window filter (the select

operator) is applied before the window size (the EXPIRE operator). Let Qp be a continuously running
while the stream tuples arrive. At time 2, when tuple <2,92,2> arrives, Sensor 2 is reported in the query
answer. Later, when tuple <2,89,5> arrives, since 89 disqualifies the selection filter, tuple <2,89,5> is
filtered out and does not contribute to the window for Sensor 2 sub-stream. Tuple <2,92,2> expires from
the window only when Sensor 2 reports another reading with temperature greater than 90. Notice that the
output of Qp is different from the output of the predicate-window query Q1. In Q1, when tuple <2,89,5>
arrives, Sensor 2 expires from the query answer.

The window filter in Qp is different from the window predicate in Q1 in the following: the window
filter in Qp qualifies (and disqualifies) tuples into (and out of) the sub-streams. On the other hand, the
window predicate in Q1, qualifies (and disqualifies) sub-streams into (and out of) the query answer.

6



3.3.2 Query predicates

The other type of predicates in the partitioned-window query is the query predicate. The query predicate
in a partitioned-window query qualifies tuples into the query answer. The window for each sub-stream
may include both qualified and disqualified tuples. Consider a partitioned-window query Qp’ similar to
Q1 but with the window predicate used as a query predicate as follows:
SELECT S.SensorID

FROM Sensors S

[Partition By S.SensorID

ROWS 1]
WHERE S.Temperature > 90

The semantics for Qp’ is as follows: “Continuously report the readings with temperature greater than

90 considering only the last reading for each sensor”. The pipeline for query Qp’ is given in Figure 3b
where the window size (the EXPIRE operator) is applied before the query filter (the select operator).
Assume that query Qp’ is continuously running when the stream tuples arrive. At time 3, tuple <3,91,3>
arrives to the EXPIRE operator. Since it is the most recent reading for Sensor 3, tuple <3,91,3> will
be forwarded to the select operator. Since 91 qualifies the selection predicate, Sensor 3 is produced in
the query answer. Later, at time 6, tuple <3,95,6> arrives. Upon receiving <3,95,6>, since only the
last reading for each sub-stream resides inside the window, the EXPIRE operator will emit two tuples: a
negative tuple -<3,91,3> and a positive tuple <3,95,6>. Both tuples will be passed to the select operator.
Both -<3,91,3> and <3,95,6> appear in the query answer. Notice that the semantics of the reception of
-<3,91,3> then <3,95,6> is that Sensor 3 is deleted from the answer then Sensor 3 is reported again in
the answer.

Qp’ query answer (including the deletion then insertion of Sensor 3) is semantically different from the
predicate-window query Q1. The semantics of the predicate-window query requires that at any point in
time, the query answer includes all sensors satisfying the window predicate. Q1 semantics does not hold
in the time interval between the deletion and insertion of Sensor 3 in Qp’ window. The length of the time
period for the semantically wrong answer is non-deterministic since tuples may encounter delays in the
query pipeline. The problem can be worse if an aggregate operation (e.g., COUNT) is performed over
the output tuples. Assume that another query is interested in the COUNT of sensors having temperature
greater than 90. Assume that before tuple -<3,91,3>, the COUNT value was 10. Upon receiving -
<3,91,3>, the COUNT operator will update its answer to 9. When tuple <3,95,6> is processed by the
COUNT operator, a new count with value 10 will be produced. Notice that the count of value 9 should
not appear in the query answer.

The previous examples shows that in the partitioned-sliding-window, the independent application of
the partitioned-window clause and the where-clause is semantically different from the predicate-window
query. The reason is that the independent evaluation of the window and the query predicates cannot
capture the case of a tuple still being inside the window but only with a different value.

3.4 The NOW window

The keyword NOW defines a window over a data stream [1]. The NOW window means that at any point
in time, say T , the answer of the query should include only the tuples that have a timestamp T . The NOW
window is semantically different from the predicate-window query. Consider a query Qn that is similar to
Q1 with the NOW window. The CQL syntax for Qn is as follows:
SELECT S.SensorID

FROM Sensors S [NOW]

7



WHERE S.Temperature > 90

The semantics for Qn is as follows: “Report the sensors that have reported temperature greater than 90

NOW ”. Assume that Qn is continuously running when the input stream tuples arrive. At time 2, the
query answer will include only Sensor 2 (because of the arrival of tuple <2,92,2>). Similarly, at time 3,
the window will include only Sensor 3.

Query Qn’s answer is different from Q1’s answer. At any time point T , the NOW window includes
only tuples that arrive at time T. On the other hand, at any time T , the predicate-window may include
tuples that have arrived before T .

3.5 Punctuations

A punctuation is an artificial tuple, carrying a predicate p, that is inserted in the data stream to mark
the end of a subsequence [9]. A punctuation tuple with predicate p arriving at time T means that no
more tuples qualifying p will arrive later (after time T ) in the input stream. The punctuation predicate
does not carry any information about the input stream tuples that have arrived before time T and already
have been used in generating the query answer. The tuples used in generating the query answer before
the arrival of a punctuation p may include both tuples qualifying p and tuples disqualifying p.

The punctuation predicate cannot be used to represent the window predicate in the predicate-window
query model. The reason is that before the arrival of a punctuation p, tuples disqualifying p may be
included in the window-of-interest of a query. On the other hand, a window predicate, say wp, ensures
that, at any time point, only tuples qualifying wp are included in the window-of-interest of the query. Due
to the different semantics, punctuations fail to evaluate predicate-window queries.

4 Types of Predicate-window Queries

The window predicate can take several other forms other than the selection predicate in Query Q1. In
this section, we discuss the various types of predicate-window queries.

4.1 Select predicate-window

In the select predicate-window type, the window predicate is a selection predicate that is defined over
one attribute in the input stream. The selection predicate compares the incoming stream tuple against a
constant (e.g., Temperature > 90).

4.2 Join predicate-window

The join predicate-window is a generalization of the select predicate-window. The join window predicate
is defined over an attribute in the input stream tuple and compares the incoming stream tuple against a
set of constants stored in a relational table.

Example: Consider the following scenario: Persons wearing RFID’s are moving inside a building.
Each RFID continuously reports the RoomID of the current location. Consider the following query:
“Continuously report the identifiers of persons located in one of the AlertRooms”. The pre-defined set
of alert rooms is stored in a relational table AlertV alues. The window predicate in this query is a join
predicate between the incoming stream and the AlertV alues table.

8



4.3 Dynamic predicate-window

In the select and the join predicate-windows, the window predicate is fixed and the updates cause tuples to
qualify into (or disqualify from) the window. The dynamic predicate-window is another type of predicate-
windows in which tuples expire from the window because the window predicate is continuously changing
(e.g., current time).

Example: A sliding-window query is a dynamic predicate-window in which the window predicate is
defined over the timestamp attribute. Consider the following sliding-window query: “Continuously report

the sensor identifiers for sensors that have reported a reading in the last T time units”. The same query
can be rephrased as “Continuously report the sensor identifiers for tuples that have a timestamp greater

than NOW − T”. The SQL representation for this query is:
SELECT S.SensorID

FROM Sensors S

PWINDOW S.TimeStamp > NOW − T ON S.TimeStamp

4.4 IN/OUT predicate-window

In the previous sections, we introduced the predicate-window query model with one predicate defined in the
PWINDOW clause. In this section, we introduce an extended predicate-window query model, namely the
IN/OUT predicate-window model. The main idea in the IN/OUT predicate-window model is to distinguish
between two predicates: (1) IN window-predicate : tuples that qualify the IN window-predicate will be
considered by the query. (2) OUT window-predicate : when a tuple currently in the predicate-window
qualifies the OUT window-predicate, then that tuple will expire from the window. The IN and OUT
window predicates are different and are independent. The two predicates should not have any overlap (no
stream tuple can satisfy both the IN and OUT predicates at the same time). In the predicate-window
query model, the OUT window-predicate (implicitly) is the complement of the IN window predicate.

5 Challenges in Realizing Predicate-windows in Data Stream Manage-
ment Systems

In this section, we discuss the challenges in realizing the predicate-window query model in data stream
management systems.

5.1 Incremental Maintenance of the Query Answer

As discussed in Section 2.2, the PWINDOW operator is responsible for tracking changes in the window and
emitting tuples accordingly (positive, update, or negative tuples). The output tuples from PWINDOW
flow in the query pipeline and are processed by the various operators. The results of processing these
tuples by the various operators are used to update the query answer incrementally. For each relational
operator and for each tuple type, the following should be specified: (1) The actions to be taken by the
operator to process the input tuple, (2) the changes in the operator’s state (if any) due to the processed
tuple, and (3) the output of the operator.

The incremental maintenance of continuous predicate-window queries is different from the traditional
incremental query maintenance. The incremental evaluation of continuous queries in traditional databases
has been addressed in Tapestry [8] and the maintenance of materialized views [4]. Tapestry addresses
append-only queries in which an output tuple will remain in the query answer forever. Unlike Tapestry,
the output tuple of a predicate-window query may be updated or deleted. On the other hand, materialized

9



101
100
90
80
70

Temperature

Time

��
�����

���

��
�����

���

(a)

��	
	


�

�
������

Time

Temperature

70
80
90

100
101

(b)

Figure 4: Object Update Pattern

views deal with data resident on disk and the query answer is materialized. In materialized views, changes
to the base tables are reflected into the materialized view via incremental maintenance algorithms [4].
Unlike materialized views, both the input to and output of the predicate-window query is a stream of
tuples.

Long-living tuples: Unlike sliding-windows, a tuple entering the predicate-window may remain in the
window for long periods of time. We call the tuples that do not expire from the predicate-window as “long-

living-tuples”. The number of tuples inside a predicate-window can grow unboundedly due to long-living
tuples. Limiting the number of tuples inside a predicate-window is an interesting area of research.

5.2 Predicate Selectivity

For the window predicate, two different selectivities can be distinguished: positive selectivity and negative
selectivity. The positive selectivity is defined the same as the traditional selectivity definition. Positive
and update tuples will contribute to the positive selectivity of the window predicate. Negative tuples
emitted from the window predicate will contribute to the negative selectivity. The negative selectivity can
be defined as the selectivity of the OUT predicate in the predicate-window query. The OUT predicate can
be implicit as the complement of the window predicate or explicit as in the IN/OUT predicate-window
query model.

Positive and negative selectivities are illustrated by Figure 4. Given query Q1 as in Example 1, the
OUT predicate in this query is (implicitly) the complement of the window predicate “temperature greater
than 90”. Figure 4 gives the input of two different sensors to the PWINDOW operator. The circles in
the figure represent the input to the PWINDOW operator. The white circles represent positive or update
output tuples, the black circles represent negative output tuples, and the dashed circles represent filtered
out inputs. The two PWINDOW operators have the same number of input tuples (11 tuples) and the
same number of positive/update tuples (5 tuples) but a different number of negative tuples (black circles).
The negative selectivity of the query depends on the update pattern of the input tuples. Estimating the
selectivity of the window predicate is critical for query optimization. Estimating the positive and negative
selectivities of the window predicate is another interesting area for future research.

5.3 Shared Execution of Predicate-window Queries

Applications over data streams always involve a large number of concurrent continuous queries over the
same data. Queries must be handled collectively by exploiting similarities and sharing resources such
as computation, memory, and disk bandwidth among the queries. The PWINDOW operator is a new
operator introduced by the predicate-window query model. Sharing the PWINDOW operator among
several predicate-window queries can greatly improve the performance of the query processing engine.
Efficient techniques for sharing the PWINDOW is an interesting area for future research.

10



6 Conclusion

In this paper, we proposed the predicate-window query model as a general model for window queries over
data streams. Examples are discussed to illustrate how the existing sliding-window query approaches fail
to answer some of the predicate-window queries. Moreover, the predicate-window query model can emulate
the behavior of the sliding-window query model. We discussed several challenges and open research issues
that need to be thought of for efficient realization of the predicate-window query model inside a data
stream management system.

7 Acknowledgment

This work was supported in part by the National Science Foundation under Grants IIS-0093116, IIS-
0209120, and 0010044-CCR.

References

[1] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query Language: Semantic Foundations and Query Execution. Technical
report, Stanford University, October 2003.

[2] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K. Elmagarmid. Query Processing using Negative Tuples in
Stream Query Engines. Technical Report 04-040, Purdue University, November 2004.

[3] L. Golab and M. T. Ozsu. Processing Sliding Window multi-joins in Continuous queries over Data Streams. In VLDB, 2003.

[4] A. Gupta and I. S. Mumick. Maintenance of Materialized Views: Problems, Techniques, and Applications. IEEE Data Eng. Bull.,
18(2):3–18, 1995.

[5] M. A. Hammad, W. G. Aref, and A. K. Elmagarmid. Stream Window Join: Tracking Moving Objects in Sensor-Network Databases.
In SSDBM, 2003.

[6] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating Window Joins over Unbounded Streams. In ICDE, 2003.

[7] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and Evaluation Techniques for Window Aggregates in Data
Streams. In SIGMOD, 2005.

[8] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous Queries over Append-Only Databases. In SIGMOD, pages 321–330,
1992.

[9] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting Punctuation Semantics in Continuous Data Streams. TKDE,
15(3):555–568, 2003.

11


